
A Systematic Review on Evaluation of Aspect Oriented Programming
using Software Metrics

Joyce M. S. França and Michel dos Santos Soares
Computing Faculty, Federal University of Uberlândia, Uberlândia, Brazil

Keywords: Aspect-oriented Programming, Systematic Review, Software Metrics.

Abstract: Aspect oriented software development has been applied in past years with the promise of improving mod-
ularization by addressing crosscutting concerns. Many studies have been published, with varying degree of
success on using this paradigm. Software metrics have been presented with the purpose of evaluating the final
results. However, too few studies on empirical evidence of the benefits of aspect-oriented paradigm were pub-
lished, results are frequently subjective, and some studies are non-conclusive. A systematic review on aspect
oriented software development and metrics is proposed in this article.

1 INTRODUCTION

Object-Oriented Programming (OOP) emerged with
the promise of improving modularization and increas-
ing the abstraction level to programming and design.
Despite the success of OOP, the benefits are still not
enough in the sense that it did not solve issues of
modularity. OOP is appropriate at modularizing core
concerns, but fails when modularizing crosscutting
concerns, i.e., concerns scattered throughout imple-
mentation (Filman et al., 2005). For instance, when
dealing with behaviours that span many, often unre-
lated modules, OOP can be inadequate. The negative
impact of code tangling and code scattering affects
software development in many ways, including poor
traceability, low productivity, problems when trying
to reuse code, poor overall quality and increased ef-
forts for software maintenance (Laddad, 2003). A
new implementation construct, the aspect (Kiczales
et al., 1997), was introduced in order to deal with
these issues.

Two main problems motivated this study. The
first one is considering the fact that too few stud-
ies on empirical evidence of the benefits of Aspect-
Oriented Programming (AOP) were published. In ad-
dition to this first problem, a derived problem is that
studies are non-conclusive. For instance, researchers
came to conclusions that AOP present many benefits,
despite drawbacks such as decreased performance
(Mortensen et al., 2012). Other results have shown
that AOP does not provide real benefits or the bene-
fits are marginal (Madeyski and Szala, 2007) (Bartsch

and Harrison, 2008), and there are yet other publica-
tions clearly advising against AOP (Przybylek, 2010)
(Przybylek, 2011). Another issue is that benefits are
normally shown without explicit measurements or re-
sults are subjective (Ali et al., 2010).

2 RESEARCH METHOD

The main research question that motivated this re-
search is: What evidence currently exist in the lit-
erature that aspect-oriented software development is
beneficial? A derived research question is “how the
evidence of benefits of AOP has been measured?”.
The answer to this question is related to what met-
rics have been applied in order to evaluate AOP, and
how AOP compares with OOP.

In order to answer both questions, the proposal is
to perform a systematic review (Kitchenham, 2004)
with the purpose of identifying what type of re-
search has been performed within AOP. The sys-
tematic review started with a search in a number of
software engineering conferences and journals. The
search was performed starting on January 2006 up
until January 2012, i.e., the past 6 years. The cho-
sen conferences were: CSMR (European Conference
on Software Maintenance and Reengineering), ICSE
(International Conference on Software Engineering),
AOSD (International Conference on Aspect-Oriented
Software Development), ECOOP (European Confer-
ence on Object-Oriented Programming), and OOP-

77M. S. França J. and dos Santos Soares M..
A Systematic Review on Evaluation of Aspect Oriented Programming using Software Metrics.
DOI: 10.5220/0003985300770083
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 77-83
ISBN: 978-989-8565-11-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Table 1: Overview of Search Results and selected papers.

Venues Retrieved Papers Pre-selected papers Selected Papers Search Method Data source
CSMR 4 3 0 automatic IEEExplorer
ECOOP 5 2 2 manual -
ICSE 26 6 2 automatic IEEExplorer
AOSD 33 9 4 automatic ACM digital library
OOPSLA 13 0 0 automatic ACM digital library
JSS 40 5 2 automatic ScienceDirect
TOSEM 4 1 0 automatic ACM digital library
TSE 4 1 1 automatic IEEExplorer
IST 32 6 2 automatic ScienceDirect
Total 161 33 13

Table 2: Selected papers.

Venue/year Reference
1 AOSD/06 (Cacho et al., 2006)
2 AOSD/08 (Cacho et al., 2008)
3 AOSD/11 (Ramirez et al., 2011)
4 AOSD/10 (Hovsepyan et al., 2010)
5 ECOOP/08 (Coelho et al., 2008)
6 ECOOP/07 (Greenwood et al., 2007)
7 ICSE/08 (Hoffman and Eugster, 2008)
8 ICSE/08 (Figueiredo et al., 2008)
9 IST/08 (Malta and Valente, 2009)
10 IST/10 (Tizzei et al., 2011)
11 TSE/10 (Mortensen et al., 2012)
12 JSS/08 (Kouskouras et al., 2008)
13 JSS/11 (d’Amorim and Borba, 2010)

SLA (International Conference on Object Oriented
Programming, Systems, Languages and Application).
Papers published on specific workshops held together
with these conferences were not considered. The cho-
sen journals were: JSS (Journal of Systems and Soft-
ware), TOSEM (ACM Transactions on Software En-
gineering Methodology), TSE IEEE (IEEE Transac-
tions on Software Engineering), and IST (Information
and Software Technology).

The chosen search string was (“aspect oriented”
AND “metrics”). The total number of retrieved pa-
pers was 161. The criteria to include a paper was di-
vided into two steps. In the first step, for each paper,
the title, the keywords and the abstract were read in
order to make the selection. When in doubt if the pa-
per should be added, also the introduction and/or the
conclusion were read. In this first step, articles with
focus on AOP as main concern and with some mea-
surements as results were considered. Even though a
large number of papers were retrieved, only a small
part was fully read (33 papers). The reason is because
many “false positives” were retrieved. The word “as-
pect” is generally used in another context. For the
second step, the criteria for consideration was to fully
read the 33 papers with focus on the application of
software metrics in the first version of at least one
software, then the identification of crosscutting con-

cerns followed by software refactoring with aspects,
followed by the application of software metrics in the
refactored software version and a comparison of met-
rics for each software version (OOP and AOP). As a
result, thirteen papers were chosen for further analy-
sis, as described in table 2. Within these, twenty-nine
studies were considered. The other 20 papers were
not selected mainly because, although presented AOP
issues, their focus was not on software metrics or the
evaluation was poor or non-existent.

3 CRITERIA FOR EVALUATION

The selected papers were evaluated based on criteria
of type of evaluation, number of studies, properties
and metrics, and which crosscutting concerns were
implemented as aspects, as described in this section.

3.1 Type of Evaluation

The evaluation of each one of the selected papers was
classified in: real industrial environment, controlled
experiment, case study, and toy application. In this
article, real industrial environment means that the re-
search was applied in practice in a company, when
engineering real software products. This is different

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

78

Table 3: Summary of studies.

Type of
evaluation

Article Number
of studies

Application Size
(LOC)

Original
PL

Aspect
PL

Industrial

(Ramirez et al., 2011) 1 Plato 1212 Java AspectJ

(Mortensen et al., 2012) 3 InstanceDrivers 1600 C++ AspectC++
environment PowerAnalyzer 13900

ErcChecker 51600
(Kouskouras et al., 2008) 1 Telecom 1700 Java AspectJ

Controlled (Hovsepyan et al., 2010) 2 Toll System 363 Java AspectJ
experiment Pacemaker 369

Case study

(Hovsepyan et al., 2010) 2
Toll System 363

Java AspectJ
Pacemaker 369

(Cacho et al., 2006) 3
Middleware

NA Java AspectJMeasurement tool
Agent-based

(Cacho et al., 2008) 1 MobileMedia 4000 Java ME AspectJ

(Coelho et al., 2008) 3
Health Watcher 8825

Java AspectJMobile Photo 1571
JHotDraw 21027

(Greenwood et al., 2007) 1 Health Watcher 4000 Java AspectJ,
CaesarJ

(Hoffman and Eugster, 2008) 3
Telestrada 3400

Java AspectJPet Store J2EE 17800
Health Watcher 4000

(Figueiredo et al., 2008) 2 MobileMedia 3000 Java AspectJ
BestLab 10000

(Malta and Valente, 2009) 4

Jaccounting 11676

Java AspectJJHotDraw 40022
Prevayler 2418
Tomcat 45107

(Tizzei et al., 2011) 1 MobileMedia 11000 Java ME AspectJ
(d’Amorim and Borba, 2010) 1 Health Watcher 5500 Java AspectJ

Toy App (d’Amorim and Borba, 2010) 1 Library System 600 Java AspectJ

from a case study, which involves working with some
sample application, often an open-source project. A
controlled experiment means that an experimental ap-
proach for evaluation was followed with human sub-
jects participating and being evaluated when execut-
ing tasks. A toy application is normally a software
tool developed in academia in order to prove research
concepts.

Other fields of comparison include the total num-
ber of studies presented in each article, the name of
the application(s) developed and presented in the ar-
ticle, the size of the application given in LOC (NA
means not available), the original programming lan-
guage in which the application was developed, and the
AOP language used in the refactoring process. Some
of the selected articles present more than one appli-
cation as study. Therefore, Table 3 presents the num-
ber of studies in one column. When the article had
more than one study, the results of each metric are

compared for each study. For example, if the article
has two studies, and the result of the metric was posi-
tive/negative for both, for this metric the article obtain
positive/negative conclusion. However, if one study
has positive result and the other one negative result,
then this article receive inconclusive mark.

3.2 Considered Crosscutting Concerns

The list of the most common crosscutting concerns
considered (Filman et al., 2005) 4 and the acronyms
used in this article are: S - Security, P - Persistence, C
- Caching, T - Tracing, NPC - Null Pointer Checking,
EH - Exception Handling, RTC - Run-Time Config-
urations, Sy - Synchronization, CC - Concurrency
Control, TM - Transaction Management, CIC - Class
Initialization Checking, DS - Domain Specific.

A�Systematic�Review�on�Evaluation�of�Aspect�Oriented�Programming�using�Software�Metrics

79

Table 4: Crosscutting Concerns implemented in the studies.

Articles Types of Crosscuting Concerns transformed in aspects
S P C T NPC EH RTC Sy CC TM CIC DS

(Cacho et al., 2006)
(Cacho et al., 2008)

(Ramirez et al., 2011)
(Hovsepyan et al., 2010)

(Coelho et al., 2008)

(Greenwood et al., 2007)

(Hoffman and Eugster, 2008)

(Figueiredo et al., 2008)

(Malta and Valente, 2009)

(Tizzei et al., 2011)

(Mortensen et al., 2012)

(Kouskouras et al., 2008)

(d’Amorim and Borba, 2010)

Total 1 4 1 1 1 8 1 1 4 1 1 7

Table 5: Properties and Metrics - 1.

Property Metric Articles Conclusion Total

Code Size

Lines of Code (LOC)

(Greenwood et al., 2007) +

2+, 7-, 3?

(Mortensen et al., 2012) +
(Cacho et al., 2006) -
(Cacho et al., 2008) -
(Ramirez et al., 2011) -
(Coelho et al., 2008) -
(Figueiredo et al., 2008) -
(Malta and Valente, 2009) -
(Tizzei et al., 2011) -
(Hovsepyan et al., 2010) ?
(d’Amorim and Borba, 2010) ?
(Hoffman and Eugster, 2008) ?

Vocabulary Size (VS)

(Cacho et al., 2006) +

1+, 6-

(Cacho et al., 2008) -
(Greenwood et al., 2007) -
(Figueiredo et al., 2008) -
(d’Amorim and Borba, 2010) -
(Coelho et al., 2008) -
(Tizzei et al., 2011) -

Number of attributes (NOA)

(Cacho et al., 2006) +

3+, 1?
(Ramirez et al., 2011) +
(Hovsepyan et al., 2010) +
(Cacho et al., 2008) ?

Number of operations (NOO) (Hoffman and Eugster, 2008) - 1-

Weighted operations per component (WOC)

(Cacho et al., 2006) +

3+, 2-
(Ramirez et al., 2011) +
(Hovsepyan et al., 2010) +
(Cacho et al., 2008) -
(Greenwood et al., 2007) -

Complexity Ciclomatic Complexity per component (Ramirez et al., 2011) + 1+

3.3 Properties and Metrics

Metrics were grouped into properties. Properties such
as code size, cohesion and coupling are useful to eval-
uate the chosen architecture design. Tables 5 and 6
present the final list of properties and metrics. We
extracted from each article which metrics were used.
Moreover, we came to this conclusion obtained from

each article about comparing AOP applications and
non-AOP applications. The conclusion could be posi-
tive (+), negative (-) or inconclusive (?). Inconclusive
results are based on two possibilities. Either metrics
were applied in two different applications and the re-
sults are nearly the same, or one application obtained
positive conclusions and the other one negative con-
clusions.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

80

Table 6: Properties and Metrics - 2.

Property Metric Articles Conclusion Total

Coupling

Coupling between Components (CBC)

(Hovsepyan et al., 2010) +

3+, 3-, 1?

(Greenwood et al., 2007) +
(Figueiredo et al., 2008) +
(Cacho et al., 2006) -
(Cacho et al., 2008) -
(d’Amorim and Borba, 2010) -
(Hoffman and Eugster, 2008) ?

Depth of Inheritance Tree (DIT)
(Ramirez et al., 2011) +

1+, 2-(Cacho et al., 2008) -
(d’Amorim and Borba, 2010) -

Efferent Coupling (EC)
(Ramirez et al., 2011) +

1+, 2-(Tizzei et al., 2011) -
(Kouskouras et al., 2008) -

Cohesion Lack of Cohesion over Operations (LCOO)

(Cacho et al., 2006) +

6+, 3-

(Ramirez et al., 2011) +
(Hovsepyan et al., 2010) +
(Greenwood et al., 2007) +
(Tizzei et al., 2011) +
(d’Amorim and Borba, 2010) +
(Cacho et al., 2008) -
(Hoffman and Eugster, 2008) -
(Figueiredo et al., 2008) -

Concern diffusion over components(CDC)

(Hovsepyan et al., 2010) +

3+, 3-

(Tizzei et al., 2011) +
(d’Amorim and Borba, 2010) +
(Cacho et al., 2008) -
(Greenwood et al., 2007) -
(Figueiredo et al., 2008) -

Concern diffusion over operations (CDO)

(Hovsepyan et al., 2010) +

3+, 2-
(Greenwood et al., 2007) +

Separation (Tizzei et al., 2011) +
of Con-
cerns

(Cacho et al., 2008) -

(Figueiredo et al., 2008) -

Concern diffusion over LOC (CDLOC)

(Cacho et al., 2008) +

6+

(Hovsepyan et al., 2010) +
(Greenwood et al., 2007) +
(Figueiredo et al., 2008) +
(Tizzei et al., 2011) +
(Mortensen et al., 2012) +

Number of added/changed/removed components
(d’Amorim and Borba, 2010) +

1+, 2-, 2?
(Tizzei et al., 2011) -
(Tizzei et al., 2011) -

Change (Greenwood et al., 2007) ?
Impact (Figueiredo et al., 2008) ?

Number of added/changed/removed operations
(Greenwood et al., 2007) +

2+, 1-(Figueiredo et al., 2008) +
(Tizzei et al., 2011) -

4 DISCUSSION

Even after performing the systematic research, the
first research question:What evidence currently ex-
ist in the literature that aspect-oriented software de-
velopment is beneficial?still cannot be properly an-
swered. Most works implement less than three cross-
cutting concerns as aspects, which means that too

many crosscutting concerns were not considered. For
instance, considering that 26 applications were per-
formed within these 13 articles, the important concern
of logging was not implemented. The research ques-
tion: “how the evidence of benefits of AOP has been
measured?”, has been answered mainly with the ap-
plication of metrics proposed for object-oriented pro-
gramming. However, many important metrics, such

A�Systematic�Review�on�Evaluation�of�Aspect�Oriented�Programming�using�Software�Metrics

81

as “Response for a component” and “Operation cohe-
sion”, which are related to the Modularity property,
were not considered at all. Another issue is that few
specific aspect-oriented metrics were applied in the
studies.

In general, it was difficult to conclude the benefits
of AOP in terms of the code size property. Seven stud-
ies presented negative results (the number of lines of
code increased with AOP), two positives, and three
inconclusive. According to these results, for most
studies AOP increased LOC after refactoring with as-
pects. This result is surprising, as it should be ex-
pected that with better modularization with aspects,
and the deletion of lines of code corresponding to
crosscutting concerns, the number of LOC should de-
crease. The metric vocabulary size had negative re-
sults for three studies, which means that the number
of elements such as classes, interfaces and configura-
tion files increased in the AOP version. This is natu-
ral, as with the introduction of aspects further connec-
tion between code elements is necessary. The met-
ric “number of attributes” has positive results when
refactoring with AOP. As only one article mentioned
the metric “number of operations”, it is not possible
to draw conclusions. The metric “weighted opera-
tions per component (WOC)” was mentioned in five
articles, and eight studies, with six positives and two
negatives. It seems that AOP decreases WOC, i.e., de-
creases complexity of a component. However, further
analysis is necessary.

With only one article, and only one application,
it is not possible to draw conclusions on complexity.
Also, all metrics about coupling (CBC, DIT, EC) are
inconclusive, which means that it was not possible to
state that AOP will have any benefit in terms of de-
creasing coupling. DIT and EC had one positive, and
one negative each. CBC had two negatives, three pos-
itives, and one inconclusive result. Cohesion was in-
vestigated in fourteen applications. It was improved
in eight applications, but negative in six applications.
Based on this, although it seems that cohesion is in-
creased with AOP, it is not possible to draw strong
conclusions. About the “Separation of Concerns”,
three metrics were considered: CDC, CDO, and CD-
LOC. The first two are inconclusive, but the metric of
concern diffusion over LOC was positive for all six
articles.

Change impact was defined through two metrics.
The first one, “Number of added/changed/removed
class (modules)”, is insignificant for two articles, and
negative for one article. Based on this, is seems that
the application of AOP does not have a strong impact
on classes, but further analysis is necessary. The sec-
ond one, “Number of added/changed/removed opera-

tions”, is positive (AOP makes few changes) for two
articles, and negative (AOP makes many changes) for
one. Based on this, it is difficult to come to strong
conclusions. From Table 4, it is clear that most im-
plemented crosscutting concern was “Exception Han-
dling”. Therefore, it can be inferred that aspects are
very used to modularize exceptions. Only four out
of thirteen papers implemented three or more cross-
cutting concerns, i.e., most researchers are not intro-
ducing aspects in substitution of many crosscutting
concerns. The reason for this policy is not clear and
should be further investigated.

5 CONCLUSIONS

The results of the systematic review proposed in this
article are that too few studies on empirical evidence
of the benefits of aspect-oriented paradigm were pub-
lished, results are frequently subjective, and some
studies are non-conclusive. Only a small number of
crosscutting concerns are actually being considered
by most researches. In addition, too few software
metrics were applied, which makes it difficult to draw
strong conclusions, and specific AOP metrics were
applied in only few studies. In terms of type of eval-
uation, much more has to be done. Only two studies
were held in a real industrial environment, and only
one controlled experiment was performed. It is sur-
prising that for most studies, the number of lines of
code increased. As the introduction of aspects in-
crease modularity, it could be expected that the num-
ber of lines of code would decrease. It is also surpris-
ing that software metrics that are important for archi-
tectural properties, such as coupling and modularity,
were not investigated in any of the searched papers.

Much more can be done on evaluating AOP. One
important result is that the introduction of AOP in in-
dustry is still in its infancy, as only five out of twenty-
nine studies were performed in a real industrial en-
vironment. Controlled experiments with developers
is also not common (only one article), which means
that there is a large path to follow on this matter. Fur-
ther studies are necessary to understand what happens
with complexity with the introduction of aspects in
an OO code, as only one article mentioned the cyclo-
matic complexity metric.

REFERENCES

Ali, M. S., Ali Babar, M., Chen, L., and Stol, K.-J. (2010).
A Systematic Review of Comparative Evidence of

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

82

Aspect-Oriented Programming.Information and Soft-
ware Technology, 52:871–887.

Bartsch, M. and Harrison, R. (2008). An Exploratory
Study of the Effect of Aspect-Oriented Programming
on Maintainability.Software Quality Control, 16:23–
44.

Cacho, N., Filho, F. C., Garcia, A., and Figueiredo, E.
(2008). EJFlow: Taming Exceptional Control Flows
in Aspect-Oriented Programming. InProc. of the 7th
International Conference on Aspect-Oriented Soft-
ware Development, pages 72–83.

Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A.,
Batista, T., and Lucena, C. (2006). Composing De-
sign Patterns: a Scalability Study of Aspect-Oriented
Programming. InProc. of the 5th International Con-
ference on Aspect-Oriented Software Development,
pages 109–121.

Coelho, R., Rashid, A., Garcia, A., Ferrari, F. C., Cacho,
N., Kulesza, U., von Staa, A., and de Lucena, C. J. P.
(2008). Assessing the Impact of Aspects on Exception
Flows: An Exploratory Study. InECOOP, pages 207–
234.

d’Amorim, F. and Borba, P. (2010). Modularity Analy-
sis of Use Case Implementations. InBrazilian Sym-
posium on Software Components, Architectures and
Reuse, pages 11–20.

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M.,
Kulesza, U., Garcia, A., Soares, S., Ferrari, F., Khan,
S., Castor Filho, F., and Dantas, F. (2008). Evolving
Software Product Lines with Aspects: An Empirical
Study on Design Stability. InProc. of the 30th inter-
national conference on Software engineering, pages
261–270.

Filman, R. E., Elrad, T., Clarke, S., and Akşit, M., edi-
tors (2005). Aspect-Oriented Software Development.
Addison-Wesley, Boston.

Greenwood, P., Bartolomei, T. T., Figueiredo, E., Dósea,
M., Garcia, A. F., Cacho, N., Sant’Anna, C., Soares,
S., Borba, P., Kulesza, U., and Rashid, A. (2007).
On the Impact of Aspectual Decompositions on De-
sign Stability: An Empirical Study. InECOOP, pages
176–200.

Hoffman, K. and Eugster, P. (2008). Towards Reusable
Components with Aspects: An Empirical Study on
Modularity and Obliviousness. InProc. of the 30th
International Conference on Software Engineering,
pages 91–100.

Hovsepyan, A., Scandariato, R., Van Baelen, S., Berbers,
Y., and Joosen, W. (2010). From Aspect-Oriented
Models to Aspect-Oriented Code?: The Maintenance
Perspective. InProc. of the 9th International Con-
ference on Aspect-Oriented Software Development,
pages 85–96.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-Oriented Programming. volume 1241 ofLec-
ture Notes in Computer Science, chapter 10, pages
220–242.

Kitchenham, B. (2004). Procedures for Performing Sys-
tematic Reviews. Keele university. technical report

tr/se-0401, Department of Computer Science, Keele
University, UK.

Kouskouras, K. G., Chatzigeorgiou, A., and Stephanides, G.
(2008). Facilitating Software Extension with Design
Patterns and Aspect-Oriented Programming.Journal
of Systems and Software, 81:1725–1737.

Laddad, R. (2003).AspectJ in Action. Manning, USA, 1
edition.

Madeyski, L. and Szala, L. (2007). Impact of Aspect-
Oriented Programming on Software Development Ef-
ficiency and Design Quality: an Empirical Study.IET
Software, 1(5):180–187.

Malta, M. N. and Valente, M. T. O. (2009). Object-Oriented
Transformations for Extracting Aspects.Information
and Software Technology, 51(1):138–149.

Mortensen, M., Ghosh, S., and Bieman, J. M. (2012).
Aspect-Oriented Refactoring of Legacy Applications:
An Evaluation.IEEE Transactions on Software Engi-
neering, 38:118–140.

Przybylek, A. (2010). What is Wrong with AOP? InIC-
SOFT (2), pages 125–130.

Przybylek, A. (2011). Impact of Aspect-Oriented Program-
ming on Software Modularity. InProc. of the 15th
European Conference on Software Maintenance and
Reengineering, pages 369–372.

Ramirez, A. J., Jensen, A. C., and Cheng, B. H. (2011).
An Aspect-Oriented Approach for Implementing Evo-
lutionary Computation Applications. InProc. of the
Tenth International Conference on Aspect-Oriented
Software Development, pages 153–164.

Tizzei, L. P., Dias, M. O., Rubira, C. M. F., Garcia, A., and
Lee, J. (2011). Components Meet Aspects: Assessing
Design Stability of a Software Product Line.Informa-
tion & Software Technology, 53(2):121–136.

A�Systematic�Review�on�Evaluation�of�Aspect�Oriented�Programming�using�Software�Metrics

83

