
SOURCE CODE VALIDATION AND PLAGIARISM DETECTION
Technology-rich Course Experiences

Ivana Bosnić, Branko Mihaljević, Marin Orlić and Mario Žagar
Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, Zagreb, Croatia

Keywords: e-Learning, Programming Assignments, Validation, Plagiarism.

Abstract: Learning various programming languages in a short amount of time is a challenging task. To help students
tackle several programming languages during the course of a semester, while reducing the teaching
assistants’ support efforts, a system named ORVViS was implemented and integrated with Moodle
Learning Management System. ORVViS is used to assist students validate assignment solutions, and also to
check for source code plagiarism. This paper presents the course Open computing, our motivation, system
use cases, as well as our results and experiences. These observations helped us improve the assignments to
better suit our teaching goals and help students learn the course concepts more quickly.

1 INTRODUCTION

Higher education computer science courses vary
greatly in the breadth and depth of syllabi, from very
focused courses to the general ones with a broad set
of topics. Deciding how to test students’ knowledge
in broader courses can be a challenge, especially if
the course has practical programming assignments.

The work described in this paper focuses on
helping students with exercises based on various
programming, scripting and markup languages in a
course Open computing. In the course, students are
given an overview of a wide range of concepts and
recent technologies. As the course is quite broad and
attempts to teach a lot of concepts, there is no time
to thoroughly describe the programming languages
and frameworks used, nor is that the course
objective. However, students need to acquaint
themselves with the languages, solve programming
tasks based on their prior programming skills and
quickly adopt new knowledge.

During the process, students encounter different
types of problems, from environment setup and
configuration issues to common problems associated
with learning a new programming language like
Java, PHP, or a descriptive language like XML or
HTML. Solutions for common problems, although
usually quite simple in essence, are either obtained
from the provided code snippets, answers on the
course forum, or by trial-and-error.

To help students overcome most common prob-

lems, automated validation of student assignments
was introduced, using a system called ORVViS1. It
is integrated with an existing LMS (Learning
Management System) where students submit their
assignment solutions. It checks basic code validity
using validators for various languages required by
the assigmnent, tests general exercise requirements
and existence of all parts of solution, and finds the
similarities between the submissions, which helps
reduce plagiarism.

The paper is organized as follows. After the
introduction and related work presented in section 2,
section 3 describes the course where this system is
used. System use cases are described in section 4.
Experiences and results are outlined in section 5.

2 RELATED WORK

Most of modern LMSs (e.g. Moodle, WebCT,
Blackboard) offer functionalities such as course
management and organization, content repositories,
student management and knowledge assessment, but
are limited in some specific areas. One of those
areas is automatic validation of solutions in courses
with programming exercises, where the code,
submitted by the student, is validated and the results
are reported to the students as well as to the teachers.

1 ORVViS is an acronym of ”Open Computing - Validation,

Verification and Simulation“ in Croatian

149Bosnić I., Mihaljević B., Orlić M. and Žagar M..
SOURCE CODE VALIDATION AND PLAGIARISM DETECTION - Technology-rich Course Experiences.
DOI: 10.5220/0003976401490154
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 149-154
ISBN: 978-989-8565-07-5
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

A number of automated assessment approaches
for programming assignments (Ala-Mutka 2005;
Ihantola et al. 2010) can be used in computer science
courses. Some of more popular free/open source
automated assessment systems are CourseMarker
(Higgins et al. 2003), BOSS (Joy et al. 2005), and
Web-CAT (Edwards & Perez-Quinones 2008).
Modern automated assessment systems provide
some level of integration with an LMS. Such
functionalities could be developed as extensions or
as individual systems integrated with LMSs.

Since our Faculty (FER) already extensively uses
a combination of FER e-Campus CMS and Moodle
(Tomić et al. 2006), compatibility with Moodle was
our goal. So far only a few similar systems have
been developed, validating VHDL, Matlab, SQL,
assembly languages and other programming
languages (C, Java etc.) (Ihantola et al. 2010). As
those products do not cover a required set of
programming, scripting and markup languages we
use, and cannot be easily adapted, we found them
not to be a solution to our problem.

Student cheating was always a problem on
computing courses (Wagner 2004) and is becoming
easier with widespread communication devices and
software, which allow simple sharing of solutions
and code in a matter of seconds.

Another problem is the lack of ethics, since a
large number of students do not perceive some
actions (e.g. unsolicited collaboration on
assignments, public posting of solutions, reuse of
past year solutions) as serious offences ((Dick et al.
2001; Sheard & Dick 2003; Cosma & Joy 2006),
even if these are explicitly prohibited by the Student
code of conduct. Detection of similarities between
student assignment solutions can be used to prevent
cheating (Dick et al. 2003). The presence of such a
system, publicly announced, discourages cheating.
The presentation of validation results is a reminder
that the solutions are validated and similarities are
going to be detected.

Since most of computer science assignments use
scripting, markup and programming languages, it is
necessary that the anti-plagiarism solution can
analyze source code written in such languages to
detect similarities. Most of the code comparison
tools process only code written in the most common
languages (Java, C, C++, and C#). In addition, the
tool should be easily configurable to support other
languages, and also to compare code structure with
string tokenizing and similar techniques.

A number of free/open source comparison tools
can be used to detect plagiarism (Goel & Rao 2005)

(Lancaster & Culwin 2004), including Sherlock2,
BOSS – Sherlock3, CtCompare4, JPlag5, Plaggie6,
MOSS7, PMD CPD8, and Comparator9, but only
some of them could be easily integrated with
ORVViS and Moodle. Two tools - both named
Sherlock - a simple application with a command-line
interface, and another, a standalone Java application
that supports languages within the C syntax family,
but can also detect similarities in other markup and
scripting languages, were selected as an appropriate
mix of usability and features.

3 COURSE OVERVIEW AND
MOTIVATION

The Open computing course is taught to 50 - 100
third-year students of computing at our faculty. It
gives a broad overview of various aspects of
openness in hardware, software and user experience,
with an emphasis on standards, their purpose,
utilization, and means of establishing them in the
world of distributed and interactive information
services. It also includes topics like concepts of open
systems, open technologies and their importance, as
well as the nature of open culture and open licenses.

The course is designed as a blended e-learning
course. Bi-weekly assignments are the main course
activity, described in detail in the following chapter.

3.1 Course Assignments

The objective of assignments is to illustrate the
presented concepts in exercises focused on practical
use of open internet protocols and web technologies.
In this way the students get a short hands-on
experience by integrating various open technologies.

There are six assignments in the course. Each
assignment builds on previous ones, until students
complete a simple, but fully functional, web
site/application with search capabilities. Although
students share the same assignment topic, there are
eight topic instances, e.g., a DVD store, a library, a
document management system or a phone book.

The assignment descriptions include detailed

2 Sherlock - sydney.edu.au/engineering/it/~scilect/sherlock
3 BOSS - www.dcs.warwick.ac.uk/boss
4 CtCompare - minnie.tuhs.org/Programs/Ctcompare
5 JPlag - www.ipd.uni-karlsruhe.de/jplag
6 Plaggie - www.cs.hut.fi/Software/Plaggie
7 MOSS - theory.stanford.edu/~aiken/moss
8 PMD CPD - pmd.sourceforge.net
9 Comparator - www.catb.org/~esr/comparator

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

150

instructions, assignment set-up and example code
snippets. Students work individually and may
iteratively upload their code to Moodle before a final
solution. They present solutions to the assistants to
discuss their approach, code, and functionality.

Here are the short assignment descriptions:
1. HTML and CSS – in the first assignment the

students should create a skeleton of two web
pages using standardized and validated
HTML code with CSS design;

2. XML, XSL and DTD or XSD – the second
assignment demonstrates structuring a data
model in an XML file, using Document Type
Definition or XML Schema Definition for
data validation, and transforming XML data
to XHTML with XSL;

3. PHP and DOM – in the third assignment
HTML mock-up previously created is now
extended with logic and search functionality
of a simple web application, implemented in
PHP using DOM to read XML data;

4. Java and XML – in the fourth assignment
students create a Java application that parses
data from a text file and creates a structured
XML data file using SAX or DOM;

5. Java Servlets – in the fifth assignment, the
Java application is converted to a Java Servlet
and deployed on an application server to
produce XML input data for PHP;

6. JavaScript and AJAX – the final assignment
integrates all parts of the application, and
enhances the client-side web page with
detailed information fetched from the
application server using AJAX, presented in
JavaScript tooltips.

Over the course of the years, we have identified
some issues related to student work:

• lack of student experience in object-oriented
programming, especially in languages like
Java, PHP and JavaScript;

• dispersion of information on fast-changing
technologies on the web;

• lack of detailed step-by-step instructions
required to configure the work environment;

• inexperienced students lacking time to finish
the assignment.

In addition to these issues, the teaching staff has
worked on reducing the efforts to answer relatively
simple recurring (beginners’) questions, not
allowing or preventing invalid submission solution
files, ensuring the submitted solutions follow some
basic structure, requirements and standards, as well
as reducing plagiarism. As Moodle lacks tools to
tackle these problems, resolving assignment
validation and plagiarism issues were our major
motivators in development of the ORVViS system.

4 ORVVIS SYSTEM OVERVIEW

ORVViS is an assignment validation system
integrated with Moodle, designed to help the
students resolve problems with their programming
assignments. ORVViS provides separate validation
for each technology required by the assignment.

The tool consists of two main units: validation
core and Moodle LMS integration module. In order
to seamlessly introduce ORVViS to students,
validation was integrated with LMS using Moodle
APIs to fetch student submissions. It works in the
background, with web-based administrative interface
for managing the submissions. To use ORVViS,
students do not need to make any additional actions
other than submitting their work on Moodle.

ORVViS was designed as a modular system, and
new plugins can be developed based on future
course needs. At this moment, available validation
plugins, developed using freely available validators
(such as HTML Tidy10, Cssutils11, DOM, Matra12,
Lint13, and PMD14) can be used to validate HTML,
CSS, XML, XSL, DTD, PHP, Java and JavaScript.

4.1 Use Cases

Assignment Setup
To use the system, the assignment should be created
in Moodle. The teacher then creates a new task in
ORVViS, and configures it with the Moodle
assignment ID, submission start and finish dates
(can be different from the ones in Moodle), Moodle
server URL, file names (or file extensions) expected
in submissions, and the associated validation plugin.

Validation
Students use ORVViS transparently on each
submission to Moodle. Using the Moodle API,
ORVViS will check the file structure of all
submitted files, and run the validation using the
associated plugins. After the validation is complete,
a detailed report will be sent to the student’s e-mail
address, with the validation results and possible
errors. Students can upload their solutions
iteratively, which triggers the validation and mails
the report on each submission. Students should
finalize the submission once it is complete.

When the assignment deadline is reached,

10 HTML Tidy Library Project - tidy.sourceforge.net
11 CSS Parser and Library for Python - cthedot.de/cssutils
12 XML DTD Parser Utility - matra.sourceforge.net
13 JavaScript Lint - www.javascriptlint.com
14 PMD - pmd.sourceforge.net

SOURCE�CODE�VALIDATION�AND�PLAGIARISM�DETECTION�-�Technology-rich�Course�Experiences

151

ORVViS creates a cumulative report and sends it to
the course administrators. This report contains an
overview of the received submissions (number of
submitted solutions, number of successfully
validated solutions, etc.), as well as a collection of
submitted files prepared for further analysis.

Plagiarism
After the deadline, ORVViS compares all submitted
files using an external plagiarism detection tool
Sherlock15 to check for similarities between
submissions over a similarity threshold. The final
assignment report sent to the teaching assistants
includes warnings of submissions crossing the
threshold. Sherlock program used here has a reduced
feature set, and this is only the first step of
plagiarism detection. ORVViS prepares the
submitted files for analysis with another plagiarism
detection tool Sherlock from the BOSS package16,
with graphical view of similarities.

Depending on threshold level setup, it can report
false positive results, especially for assignments
where code templates were given. As a final step,
the course staff manually reviews all of the detected
submission pairs to confirm the similarity.

5 RESULTS AND EXPERIENCES

We group our experiences around two topics:
plagiarism detection and assignment validation.

5.1 Plagiarism Detection

In the pilot period (academic year 2006/07), students
were testing the system on some of the assignments,
and helping to find bugs. In the academic year
2007/08, we started with the plagiarism component,
motivated by a big issue of copying assignment
solutions the year before. In that year, 113 students
were enrolled in the course.

At the course start, students were informed that
assignments have to be done independently, the
solution files uploaded to the server will be
compared for potential plagiarism, and every
suspicious case will be thoroughly analyzed and
submitted to the Faculty’s ethical committee.

After analyzing the first assignment submission,
we found two similar solutions and presented the
graphical results of the comparison to the students.
In the third assignment, another pair of similarities

15 Sherlock - sydney.edu.au/engineering/it/~scilect/sherlock
16 BOSS - www.dcs.warwick.ac.uk/boss

was observed, students were cautioned and this was
reported to Faculty ethical committee. The solution
pair detected in the first assignment was virtually
identical (and thus easily detected). The similarity of
the pair detected in the second assignment was
above 80%, as demonstrated in the Figure 1. The
detection process detected two false positives, our
own submissions used to test the system.

The fourth, Java-related assignment, with a
steeper learning curve, was an unpleasant surprise.
ORVViS isolated 6 suspicious cases of plagiarism
with 17 students involved. This assignment was
harder than previous and more time consuming, but
considering that the students were made aware of
that beforehand, this had to be addressed again.

Figure 1: Graphical report on similarities – 0% and 80%
similarity threshold.

These analyses were consistently conducted
during the semester. From the next year onwards,
regular ORVViS usage didn’t find any cases of
similarities higher than what was expected, given
that code excerpts and examples were provided.
Based on our experiences, we concluded the
following:

• students should be explicitly informed in
advance that such a system will be used;

• comparison technology and results should be
shown to students, to persuade them that
teachers use these regularly, instead of just
having the possibility of checking (although
demonstrating the system could lead to more
“creative” ways to bypass it, we find this
method to be more fair);

• perseverance in decisions is needed, as
students wouldn’t get used to completely
independent work all at once, after the first
recognition of plagiarism.

5.2 Assignment Validation

To perform assignment validation and plagiarism
detection, exact assignment submission structure had
to be enforced. During the first testing year,
2007/08, the system reported the following structure
errors in first assignment submissions:

• 52% of solutions were incorrectly named;

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

152

• 10% of submissions were packaged as RAR
instead of ZIP archives;

• 25% of archives had incorrect file structure;
• 4% submissions had incorrectly named files

in the archive.
After initial testing and improvements, we

started using all ORVViS features in year 2009/10.
Here we present statistics and observances from two
years we used the system. In 2009/10, 70 students
enrolled, and in 2010/11, 53 students enrolled.

As stated, students can upload the assignment
solution more than once and receive a new
validation report for each submission. We compared
the total number of submissions per assignment to
the number of final submissions, shown in Figure 2.

Figure 2: Number of submission instances per assignment.

The number of final submissions is always
similar to the number of students in the course (the
difference is due to some students’ late upload). The
total number of submissions shows the following:

• in the first two assignments, the students have
a high number of submissions – around 5 per
student. Students use the validation service a
lot, to solve submission structure issues, and
to check conformance to HTML&CSS or
XML&DTD formats, which is a tedious
process if done manually;

• the third assignment (PHP) is usually
straightforward with one new technology to
learn. By that time the students got used to
the system, so the ratio of total/final
submissions drops to ~2.4 per student;

• the fourth assignment introduces Java, which
presents the students with a completely new
environment, so there is an increase in the
number of submissions;

• the final assignments become easier again,
with the submission ratio of about 2.

There is a similarity between chart trends for
2010 and 2011. Teaching staff can focus on the
issues demonstrated in these charts (e.g. the Java
assignment), and work on resolving them.

The second set of charts (Figures 3 and 4) shows
the validation results per assignment, for years 2010
and 2011, respectively. The lowest part of bars

shows the percentage of fully correct submissions –
the ones where all submitted files have passed the
validation. The middle part shows the percentage of
the solutions where at least one file was validated
correctly. The upper part shows fully incorrect ones
– where no files have passed the validation.

Figure 3: Level of validation correctness – year 2010.

Figure 4: Level of validation correctness – year 2011.

The results included in Figures 3 and 4 can be
compared to the chart of total/final submissions
(Figure 2). In the first three assignments, the number
of fully correct submissions increases, while the
total number of submissions per student decreases.
The fourth and fifth assignments (Java-related) show
a big decrease in fully correct submissions, due to a
steep learning curve and the environment setup.

Based on this data and observances during the
course, here are our experiences and lessons learned:

• ratio of correctness charts, combined with
detailed error logs, can help the staff to
analyze the particular assignments, and give
students greater attention when needed;

• this system helps the staff to ensure the
student did in fact write the solution, instead
of just submitting something random, and
discussing the fellow student’s work;

• staff can view a detailed report on each
submission before they meet, so they can
help where mistakes were made;

• the number of forum messages related to
simple problems regarding environment setup
and configuration, has been reduced, which

SOURCE�CODE�VALIDATION�AND�PLAGIARISM�DETECTION�-�Technology-rich�Course�Experiences

153

helps both students and teaching staff focus
on more relevant discussions;

• due to a number of technologies used in these
assignments, a set of validators integrated
with LMS makes it easier for students to
check their assignments, instead of using
validation services one by one;

• validations can help create a successful
environment configuration (for instance,
validation of XML configuration files for the
application server);

• some validators have been set to be more
sensitive and report more detailed warnings
than a typical compiler would. This was
effective in cases where students used newer
compiler and runtime versions (e.g. Java)
than those available on our servers, as
additional warnings would give students a
hint where to start looking for problems.

6 CONCLUSIONS

The experiences presented here give us a good
starting point to continue using and upgrading
ORVViS. The students are satisfied with provided
help, while the staff can obtain relevant information
on the students’ behavior in solving the assignment
problems. Whenever we have asked the students for
some kind of help related to the system, such as
testing, they did it enthusiastically, as they consider
it to be beneficial and time-saving.

The downside is that students start to depend on
it, and stop validating their solutions by themselves,
which was observed in our initial experience report
(Bosnic et al. 2010): the number of successful
submissions dropped significantly after a few days
the system was unavailable. Even with such systems
in place, the students should be capable of creating
valid solutions without help from the system.

It should be noted that ORVViS currently does
not support grading nor checking the most of the
assignment’s complex semantic requirements (posed
in a natural language), and currently focuses mainly
on syntax. Such features are a well-worth asset and
we plan to extend the system in the future. However,
concerning the main course objective, the
complexity of content taught, and focus on
understanding the underlying open processes, we
feel the need to discuss the solutions face-to-face.

Additional future work consists of integrating the
staff / administrator interface with Moodle LMS as
well. We expect that the additional APIs and plugin
tools, available in new Moodle 2.x version, would
simplify the task of integrating two systems.

ACKNOWLEDGEMENTS

This work is supported by the Croatian Ministry of
Science, Education and Sport, under the research
project ZP0361965 “Software Engineering in
Ubiquitous Computing”.

We would like to thank our former student Darko
Ronić and other students under his supervision for
their work on ORVViS application.

REFERENCES

Ala-Mutka, K.M., 2005. A Survey of Automated Assess-
ment Approaches for Programming Assignments.
Computer Science Education, 15(2), p.83-102.

Auffarth, B. et al., 2008. System for Automated Assis-
tance in Correction of Programming Exercises (SAC)

Bosnic, I., Orlic, M. & Zagar, M., 2010. Beyond LMS:
Expanding Course Experience with Content
Collaboration and Smart Assignment Feedback.
International Journal of Emerging Technologies in
Learning iJET, 5(4).

Cosma, G. & Joy, M., 2006. Source-code plagiarism: A
UK academic perspective. I Can, (422), p.74.

Dick, M. et al., 2003. Addressing student cheating. ACM
SIGCSE Bulletin, 35(2), p.172.

Edwards, S.H. & Perez-Quinones, M.A., 2008. Web-CAT:
automatically grading programming assignments.
ITiCSE 08 Proceedings of the 13th annual conference
on Innovation and technology in computer science
education, 3(3), p.60558-60558.

Goel, S. & Rao, D., 2005. Plagiarism and its Detection in
Programming Languages. Environment.

Higgins, C. et al., 2003. The CourseMarker CBA system:
Improvements over Ceilidh. Education and
Information Technologies, 8(3), p.287–304.

Ihantola, P. et al., 2010. Review of recent systems for
automatic assessment of programming assignments. In
Proceedings of the 10th Koli Calling International
Conference on Computing Education Research Koli
Calling 10. ACM Press, pp. 86-93.

Joy, M., Griffiths, N. & Boyatt, R., 2005. The BOSS
online submission and assessment system. Journal on
Educational Resources in Computing, 5(3), p.2.

Lancaster, T. & Culwin, F., 2004. A Comparison of
Source Code Plagiarism Detection Engines. Computer
Science Education, 14(2), p.101-112.

Sheard, J. & Dick, M., 2003. Influences on cheating
practice of graduate students in IT courses: what are
the factors? In Proceedings of the 8th annual
conference on Innovation and technology in computer
science education. ACM, p. 49.

Tomić, S. et al., 2006. Living The E-Campus Dream. In A.
Szucs & I. Bo, eds. Proceedings of the EDEN
Conference. Vienna, Austria: European Distance and
E-Learning Network, pp. 644-650.

Wagner, N., 2004. Plagiarism by student programmers.
San Antonio, TX, USA.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

154

