
A Domain Ontology for Software Process Architecture Description

Fadila Aoussat1, Mourad Oussalah1 and Mohamed Ahmed-Nacer2

1LINA Laboratoy, University of Nantes, CNRS UMR 6241, 2, Rue de la Houssinière, BP 92208, 44322, Nantes, France
2LSI Laboratory, Sciences and Technology Houari Boumediene University, BP 32, Bab Ezzouar, Algeria

Keywords: Software Process Reusing, Software Architectures Principles, Domain Ontology, Software and Systems
Process Engineering Metamodel (SPEM), Heterogeneous Knowledge, Ontology Instantiation.

Abstract: This paper presents a part of an approach for software processes reuse based on software architectures. This
solution is proposed after the study of existing work on software process reuse field. Our study focuses on
approaches for reusing based on software architectures and domain ontology.
AoSP (Architecture oriented Software Process) approach exploits the progress of two research fields that
promote reusing for the Software process reusing: Ontology and software architectures.
This article details how the software process architectures are described and discusses the software process
ontology conceptualization and instantiation.

1 INTRODUCTION

The quality of the software product depends on the
quality of the software process models that is used for
the development and the maintenance of this software
product. Software Process (SP) models are complex
structures used to define the steps performed during
the software development. Many kinds of information
must be integrated to describe these steps (resources,
roles, input and output products...). Therefore, an im-
portant number of concepts, paradigms and languages
are developed to cover the different development as-
pects. However, there are always difficulties to model
SPs that deal with the software development preoccu-
pations such as understandability, flexibility and dy-
namicity.

Reuse SPs, is one of the practices used to improve
SPs. The objective is to exploit best practices and
know-how capitalized from the precedent SP model-
ing and execution experiments. However, the diver-
sity and the wide range of SP models make SP model
reusing very difficult. A number of studies are being
conducted nowadays in order to provide better sup-
port regarding SP reuse. Unfortunately, no reusing
method has emerged as reference in the SP reusing
domain.

In order to suggest a solution to cover engineer-
ing ”by” reusing SPs, we focus our researches on SP
reuse approaches based on software architectures. We
think that the reusability, flexibility and abstraction of

software architecture are relevant characteristics that
can be used to provide a pertinent reusing approach to
model high quality SP models.

Moreover, In order to cover the engineering ”for”
reusing SPs, we focus our researches on SP reuse ap-
proaches based on domain ontology. Our aim is to
share common understanding among Stakeholder by
capitalizing the best practices of the SP domain. We
think that using a domain ontology can manage not
only the heterogeneity of the used concepts, but also
the heterogeneity of the used terminology.

This paper presents a part of an approach for
reusing SPs: AoSP (Architecture oriented Software
Process); this approach focuses on the existing ap-
proaches insufficiencies and suggests a pertinent so-
lution to reuse SP models. AoSP exploits software
architectures principles to model reusable SPs. It de-
scribes and deploys SP architectures. On the other
hand, to reuse existing SP models, AoSP exploits a
domain ontology to capitalize the pertinent know-how
extracted from heterogeneous SP models. Our objec-
tive is to:

� Suggest a Generic Solution: that can be applied
for different kinds of SP models.

� Increase the SP Quality: we aim to model
SPs that have the essential characteristics such
as comprehension, modeling and analyzing facil-
ities, agility and execution control.

� Increase the SP Reusing: by exploiting the

128 Aoussat F., Oussalah M. and Ahmed-Nacer M..
A Domain Ontology for Software Process Architecture Description.
DOI: 10.5220/0003973401280133
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 128-133
ISBN: 978-989-8565-13-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

precedent SP modeling and enactment experi-
ences.

� Increase the SP Re-usability: by modeling
reusable SP models and handling SP models com-
plexity.

Our article is organized as follows: section-2-
summarizes the insufficiencies of the studied reusing
approaches. Section-3- presents AoSP approach and
the steps to model reusable SPs. AoSP describes SP
architectures, thus, Section-4- provides the adopted
semantics to describe SP architectures. styles defined
for SP architectures. Section-5- details how our do-
main SP ontology is designed and generated. To al-
low describing SP architectures, our ontology must
capitalize deferent kinds of knowledge, section-6- de-
tails how heterogeneous SP knowledge are capital-
ized. Section -7- concludes the article and announces
the future work.

2 INSUFFICIENCIES OF THE
APPROACHES FOR REUSING
SOFTWARE PROCESSES

2.1 Insufficiencies of the Reusing
Approaches based on Software
Architectures

In most reusing approaches based on components
(Coulette et al., 2000) (Dai et al., 2008) the central
concept is the ”Process Component”. A SP compo-
nent in an activity (Works Unit) or an activities se-
quence. SP Component is explicit in most approaches
and can be adapted to be reused except for (Dai et al.,
2008) where the SP component is considered as black
box components and cannot be modified. In general
the SP component interface is the Work Product re-
quired or given by the SP component (OMG-SPEM,
2008).

The configuration is used in the approaches based
on software architectures (Alloui and Oquendo, 2001)
(Choi and Scacchi, 2001), however formal rules that
describe the assembling of the SP component are not
defined explicitly.

For the connector concept there is no consensus
on its interpretation (Aoussat et al., 2011), the idea
that emerges is that the connector is a dependency be-
tween activities, it can be a precedence link or a del-
egation link, which often depends on the used PML
(Process Modeling Language). Each approach de-
fines its own SP connector vision. We resume the
insufficiencies of these approaches as follows:

� Limited Reuse: The reusable elements such as SP
Component, SP connector are defined to the inter-
nal use.

� Under exploitation of architectural elements:
Configuration and assembling constraints are
not exploited; architectural styles and explicit
reusable connectors are not proposed.

� No General Solution: Every approach deals with
a particular problem and uses a particular PML.

� No SP Architecture Deployment: No process de-
ployment is proposed.

2.2 Insufficiencies of the Reusing
Approaches based on Domain
Ontlogy

Table 1: Approaches for reusing SPs based on domain on-
tology.

Appoach objective Ontology
OnSSPKR
Framework (He
et al., 2007)

Deal with
CMM, CMMI,
ISO/IEC15504,
ISO9001 models.

Three different
ontologies

SPO (Software
Process Ontolo-
gie)(Liao et al.,
2005)

Mapping between
CMMI model and
the ISO/IEC 15504
model

SP basic con-
cepts

PCE based ontol-
ogy (Tomohiko
et al., 1996)

Generate SP plans Two ontologies
(artifacts and ac-
tivities)

Approach based
descriptive logic
(Rilling et al.,
2007)

Framework for soft-
ware maintenance

Concepts
that affect
the software
maintenance

Flexible PML
based ontology
(Shen and Chen,
2006)

Flexible SP model Process ele-
ments

To suggest a domain ontology one of the first steps
is to study the existing ones and consider there exten-
sion, fusion, adaptation or reuse.

Many SP modeling approach based on domain
ontology are defined (He et al., 2007)(Liao et al.,
2005)these approaches use one or many ontologies to
represent the SP model. However these solutions are
specific and deal with particular SP models and do not
suggest a general solution that can applied for a large
range of SPs.

Table 1- resumes the objectives and the ontologies
structures of the studied approaches.

A�Domain�Ontology�for�Software�Process�Architecture�Description

129

3 AoSP APPROACH
DESCRIPTION

AoSP (Architecture oriented Software Process) ap-
proach is an approach that gives a solution to increase
the SPs reuse. AoSP covers the engineering for and
by reusing:

� For Reusing: By capitalizing the SP best prac-
tices and know-how extracted from existing SP
models.

� By Reusing: By describing and deploying the ex-
tracted software processes knowledge as software
architectures.

According to software architectures specificities,
AoSP suggests a particular SP modeling approach:
SP modeling is decomposed of two steps:

� Pre Modeling: Model the different SP preoccu-
pations separately (structure, interaction and treat-
ment). This step increases SP model comprehen-
sion and has a direct impact on SP modeling, an-
alyzing and execution control facility.

� Final Modeling: Deploy the SP architecture that
can be done with different PMLs specific to differ-
ent SP kinds. The deployment must be in an auto-
matic way by developing deployment programs.
This possibility gives to our approach a generic
aspect and increases the modeling facility.

4 SOFTWARE PROCESS
ARCHITECTURE
DESCRIPTION

Based on existing SP reusing approaches insufficien-
cies, combining with ADL (Architecture Description
Language) approaches, AoSP approach suggests a
complete semantic to describe and deploy SP archi-
tectures.

Our objective is to describe the SP model as soft-
ware architecture and exploit the advantages offered
by the software architecture domain. The interac-
tions have a central place in the SP model (Alloui and
Oquendo, 2001), moreover, the SP is human centered;
thus, it is important to manage the different kinds of
the SP interactions. Our analysis is oriented to give
a solution to handle the different kinds of SP interac-
tions. Defining generic explicit reusable SP connec-
tors that can adapt and facilitate the SP interactions is
the adopted solution.

We define our SP connector as an activity (Work
Unit) that ”facilitate and control” data and control

Table 2: Adopted semantics for Architecture oriented Soft-
ware Process (AoSP) approach.

Software Process Concepts. SP architectural
concepts.

Activity that creates new products. SP Component
Input or output flow of a creation
Activity .

SP Port (given or
required)

Activity that adapts or controles
the flow.

SP Connector

Input or output flow of an adapta-
tion Activity .

SP Connector Role

Precedence link between a creation
Activity and an adaptation Activity.

Attachement

Delegation link between two activi-
ties (adaptation or creation).

Binding

Process structure. SP Configuration
Recurrent structure or recurrent ex-
ecution policy.

SP style

transmissions between SP activities. SP Connec-
tors do not create new products, but adapt, evalu-
ate and control existing products. The distinction
between ”creation” activities (SP components) and
”adaptation and control” Activities (SP connectors) is
the basis of the SP architectural concepts interpreta-
tion. Table–2 resumes the architectural intrperation
for SPs.

5 SOFTWARE PROCESS
DOMAIN ONTOLOGY

To capitalize the SP knowledge we use a domain on-
tology, in addition, our aim is to offer a tool to will
allow the reasoning and the emergence of new solu-
tions. Thus our ontology must:

� Be coherent, not ambiguous and commonly ac-
cepted.

� Offer a conceptualization to store and retrieve SP
architectures knowledge.

� Manage the heterogeneity of the conceptual of the
different SPs: offer a conceptualization that can
be exploited for different SP models, without fo-
cusing on a particular SP kind.

� Manage the heterogeneity at the instance level:
Capitalize knowledge from various SP models can
create ambiguities, indeed, even if there is consen-
sus on the used terminology for SP modeling, the
developers can use their own vocabulary.

� Restore a comprehensible knowledge: A vocab-
ulary reference that represents the vocabulary of
the final user must be defined and stored.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

130

5.1 Software Process Ontology
Conceptualization

Heterogeneity on the concept level is handled by ex-
ploiting the SPEM conceptualization. SPEM (System
and Software Process Engineering Metamodel) is a
UML profile adopted by the OMG to describe large
range system and software processes (OMG-SPEM,
2008). We adopt SPEM as basic conceptualization as
it is a standard metamodel accepted by the commu-
nity, it regroups all the important concepts used on the
SP engineering independently from the kind or a con-
cerned domain. The majority of the SP models are
conform to the SPEM, or at least, their metamodels
can be mapped with SPEM.

SPEM introduces the reusing based process com-
ponents through the Method Plugin profile; however,
to describe SP architectures, SPEM lacks important
architectural concepts. In fact, the lack of ”SP Con-
figuration”, ”SP Style” and ”explicit Connector” con-
cepts disallow describing and deploying SP architec-
tures (Aoussat et al., 2011). Having a complete se-
mantic to describe a SP architecture, we had extended
Method Plugin profile, for this purpose, we had intro-
duced new stereotypes to describe the architectural el-
ements of the SP architectures (Aoussat et al., 2011).

SPEM profile extension is not the subject of the ar-
ticle, we resumes only the architectural elements that
describe SP architectures integrated on SPEM. Thus,
two kinds of classes are added:
� Classes that Describe the SP Architecture: A

SP Configuration is composed from SP Compo-
nents and SP Connectors. the assembling is done
via attachments.

� Classes that Describe the SP Style: The SP style
is composed of Activity Definitions. As SP com-
ponent and SP connector are activities, an Activity
Definition describes the type of the SP connector
and the SP component. In the same manner, Work
Product Definition describes the types of SP ports
and the types of SP connector roles.

5.2 SPEMOntology Structure

SPEMOntology is the result of successive ATL trans-
formations applyed on SPEM. It is constitute from 56
concepts and an important number of data and object
properties. In order to facilitate its understanding, it is
important to describe its organization. SPEM is struc-
tured into seven packages (OMG-SPEM, 2008). By
analyzing the SPEM packages (after the extension),
we notice that every SPEM package has its abstract
class that regroups the common behavior of the pack-
ages classes.

Figure 1: Main abstract SPEMOntology concepts.

After the ATL transformations we can identify this
organization (figure -1-). The SPEM packages view
can be identified through the main abstract concepts
of SPEMOntology. The concepts of our ontology
have kept the same name as the SPEM classes; how-
ever, we have added the prefix ”pro” to identify the
stereotyped elements. This prefix is added during the
execution of ”applySPEMprofile2SPEMmodel” mod-
ule.

6 SPEMOntology INSTANTIATION

The concepts heterogeneity finds solution by exploit-
ing a standard metamodel. The heterogeneity at
instance level deals with separating every kind of
knowledge. Indeed, our ontology must store four
kinds of knowledge:

� The SP Architecture Knowledge: The knowl-
edge concerns SP configuration and SP styles.

� The used Knowledge: The knowledge concerns
the know-how of existing SP models:

� The Reference Vocabulary: The knowledge
concerns the vocabulary used by the final stake-
holders.

� The Instance Heterogeneity Management: our
ontology must manage the heterogeneous vocab-
ulary.

Our ontology respects SPEM metamodel concept-

A�Domain�Ontology�for�Software�Process�Architecture�Description

131

ualization and has the same packages structure. We
exploit this structure to deal with the instance hetero-
geneity. Every SPEM package is used to store a kind
of knowledge. We detail the adopted solution in the
next paragraphs.

6.1 The SP Architectures Knowledge
Capitalization

The SP expert stores the SP configurations and the SP
styles of the company. This step is very important as it
allows describing formally the company development
strategies and practices.

The instantiation is done on the Process Architec-
tural Element concepts that describe the SP configu-
ration behavior and the SP style knowledge is capital-
ized by using the Method Content architectural con-
cepts (figure-2-).This step is done manually by a SP
expert of the company. However, the advantage is that
it is done once and it will be reused independently
from the SP expert intervention.

Figure 2: SP architectural concepts of SPEMOntology.

6.2 The used Knowledge Capitalization

We instantiate the concepts of ”Process with Method”
and ”Process Structure” packages. We use these con-
cepts to capitalize the used knowhow that are col-
lected from the existing SP models. This step is done
automatically; we apply a reverse engineering on ev-
ery SP model that will be reused. For each PML we
develop an instantiation program that identifies the
pertinent concepts and allows the extraction of the
pertinent knowledge.

6.3 The Reference Vocabulary
Capitalization

In SPEM the ”Method Content” package is dedicated
to describe development methods independently from
their use (OMG-SPEM, 2008). We use these con-
cepts, to describe the vocabulary reference.

The Method content concepts are solicited to de-
scribe many kinds of knowledge: Method Content
Elements, Vocabulary Reference and Architectural
Types. To distinguish between these kinds of knowl-
edge, for each Method Content concept we add a data
type property ”concept role” that can have the next
values: ”MC” for method content knowledge, ”VR”
for vocabulary reference and ”AT” for architectural
type.

The weakness of this step is that the instantiation
is done manually.

However, the advantage of this manual step is that
allow to define ”formally” the glossary of the com-
pany. It allows not only a better comprehension of
the SP models, but also, constitutes a contribution to
capitalize company know-how, that will be used and
reused formally independently from the SP experts
and its tacit knowledge.

6.4 The Correspondence between the
Vocabulary Reference and the used
Knowledge

This correspondence is done by using existing asso-
ciations between Method Content Concepts and Pro-
cess With Method concepts, these associations are
used to define the correspondence between the Used
Knowledge and the Reference Vocabulary.

7 CONCLUSIONS

This paper presents a partial view of AoSP (Architec-
ture oriented software Process) approach to reuse SP
models. The objective of AoSP is to suggest a stan-
dard solution to increase the reuse and the reusability
of the SP models.

AoSP offers an innovative vision of the SP mod-
eling by separating the SP modeling preoccupations:
Work Product treatments (Components), Work Prod-
uct transmissions (Data Flow connectors) and execu-
tion control (Control Flow connectors). This new vi-
sion is possible by exploiting software architectures
characteristics; it allows modeling more comprehen-
sible, flexible and controllable SP models. On the
other hand, AoSP exploits the precedent good model-
ing and enactment experiments to model high quality
SP models. AoSP uses a domain ontology to capi-
talize the best practices of the software development
domain. It exploits the capitalized knowledge to re-
trieve and deploy SP architectures.

The ontology conceptualization is discussed, it is
based on SPEM; however, SPEM architectural con-

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

132

cepts disallow describing SP architectures,thus, we
had extended SPEM metamodel by introducing the
required architectural concepts. The ontology was
generated by transformation model techniques; to
achieve this aim, we use ATL (Atlantique Transfor-
mation Language).

SPEMOntology must store different kinds of
knowledge: The used know-how, the SP architec-
ture knowledge and a reference vocabulary, in addi-
tion, it must do a correspondence between these kinds
of knowledge. To this aim, we exploit the SPEM
structure (organized into packages) to store separately
these kinds of knowledge. We add adequate proper-
ties to have to keep the knowledge coherence.

Actually we are working on defining inference
rules to infer tow kinds of knowledge: ”equivalent SP
configuration” to identify the SP configurations that
can replace the required configuration and ”equiva-
lent SP components” to identify the components that
can replace the required SP component. We are also
working on retrieving SP architectures, the hole algo-
rithm is defined, good results are obtained but must
refined before their publishing.

REFERENCES

Alloui, I. and Oquendo, F. (2001). Supporting decentralised
software-intensive processes using zeta component-
based architecture description language. In ICEIS,
pages 207–215.

Aoussat, F., Oussalah, M., and Nacer, M. A. (2011). Spem
extension with software process architectural con-
cepts. Computer Software and Applications Confer-
ence, 0:215–223.

Choi, S. J. and Scacchi, W. (2001). Modeling and simulat-
ing software acquisition process architectures. Jour-
nal of Systems and Software, 59(3):343–354.

Coulette, B., Thu, T. D., Crgut, X., and Thuy, D. T. B.
(2000). Rhodes, a process component centered soft-
ware engineering environment. In ICEIS, pages 253–
260.

Dai, F., Li, T., Zhao, N., Yu, Y., and Huang, B. (2008).
Evolution process component composition based on
process architecture. In International Symposium on
Intelligent Information Technology Application Work-
shops, pages 1097–1100.

He, J., Yan, H., Liu, C., and Jin, M. (2007). A
framework of ontology-supported knowledge repre-
sentation in software process. http://www.atlantis-
press.com/php/download paper.php?id=1180.

Liao, L., Qu, Y., and Leung, H. K. N. (2005). A soft-
ware process ontology and its application. In Work-
shop on Semantic Web Enabled Software Engineer-
ing(SWESE).

OMG-SPEM (2008). SPEM:Software & Sys-

tems Process Engineering Metamodel, v2.0.
http://www.omg.org/cgi-bin/doc?Formal/2008-04-01.

Rilling, J., Zhang, Y., Meng, W. J., Witte, R., Haarslev,
V., and Charland, P. (2007). A Unified Ontology-
Based Process Model for Software Maintenance and
Comprehension. In Models in Software Engineering:
Workshops at MoDELS, volume 4364, pages 56–65.

Shen, B. and Chen, C. (2006). The design of a flexible soft-
ware process language. In SPW/ProSim, pages 186–
194.

Tomohiko, K. M., Mori, K., and Shiozawa, T. (1996).
Process-centered software engineering environment
using process and object ontologies. In the Second
Joint Conference on KnowledgeBased Software Engi-
neering, pages 226–229.

A�Domain�Ontology�for�Software�Process�Architecture�Description

133

