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Abstract: In this paper, we provide two computational effective multi sensor fusion filtering algorithms for discrete-
time linear uncertain systems with state and observation time delays. The first algorithm is shaped by 
algebraic forms for multi rate sensor systems, and then we propose a matrix form of filtering equations 
using block matrices. The second algorithm is based on exact cross-covariance equations. These equations 
are useful to compute matrix weights for fusion estimation in a multidimensional-multisensor environment. 
Also, our proposed filtering algorithm is based on the receding horizon strategy in order to achieve high 
estimation accuracy and stability under parametric uncertainties. We demonstrate the low computational 
complexities of the proposed fusion filtering algorithm and how the proposed algorithm robust against 
dynamic model uncertainties comparing with Kalman filter with time delays. 

1 INTRODUCTION 

In the past decades, state estimation problem for 
dynamic systems with time delays has received a 
great deal of research interest. The time delay 
phenomenon in state variables is unavoidable in 
many real systems (Anderson and Moore, 1979), 
such as low earth orbit (LEO) satellite 
communication systems (Glistic et al., 1996). 
Ignorance of the computation of these delays could 
cause unpredictable and unsatisfactory system 
performance with traditional Kalman filters. 

Using finite-memory estimation, we can obtain 
an estimate based on data from the recent past only 
(receding horizon). As a result, finite-memory filters 
such as receding horizon Kalman filters are more 
robust against model uncertainties and numerical 
errors than standard Kalman filters, which utilize all 
measurements (Kim et al., 2006 and Kim et al., 
2007). Thus, a receding horizon filter was chosen in 
this study. 

Based on aforementioned literature, and to the 
best of the authors’ knowledge, there are no existing 
results for the receding horizon filtering for linear 
systems with time delays. Motivated by the above 
problems, we focus on estimating the state of a 
discrete-time linear system with time delays in both 
the state and observation matrices, using a receding 

horizon strategy. The main contribution of the paper 
is to propose a fusion filtering algorithm using fusion 
formulas for the systems with time-delays. Moreover, 
a matrix form of filtering equations using block 
matrices is also discussed, because this form is useful 
to simply the filtering equations and derivation of 
crucial Lyapunov-like equations for receding horizon 
mean and covariance of systems with an arbitrary 
number of time delays. Finally, the obtained results 
are valid for general linear systems having time 
delays in both dynamic and observation models.  

The rest of this paper is organized as follows. In 
Section II, the problem statement and description of 
the Kalman filter with time delays (KFTD) are 
given. In Section III, we present the receding 
horizon filter for discrete-time linear systems with 
time delays. Here, the exact recursive equations for 
determining receding horizon initial conditions 
(mean and covariance) are derived and discussed. In 
Section IV, two computational effective multi sensor 
fusion receding horizon filtering algorithms are 
presented. To achieve the fusion filtering, local 
cross-covariances are required. Thus, the equations 
of the exact cross-covariance are derived using the 
proposed form. In Section V, the effectiveness and 
comparative analysis of the proposed filter with the 
KFTD are then presented. Finally, a brief conclusion 
is given in Section VI. 
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2 PROBLEM STATEMENT 

The discrete-time linear uncertain systems with state 
and observation time-delays considered in this paper 
described by stochastic recursive equation with 
time-delays, 

 ≥∑
M

h=0

x(k + 1) = F(k - h)x(k - h) + w(k), M 0, k = 0,1, ...,  (1) 

where R∈ nx(k) is an unknown state and 
R ×∈ n nF(k - h) , h = 0,1, ,MK are time-varying system 

matrices. It is assumed that ( )
0 0

x(-s) ~ N x , P , 
s = 0,1, ,MK   are initial conditions and a systems noise 

R∈ nw(k)  is a zero-mean white Gaussian noise with 
covariance { } kscov w (k)w (s) = Q(k)δ , and ksδ  is the 
Kronecker function. 

Suppose that the overall discrete measurement 
are composed N measurement sub-vectors (local 
sensors) (1) (N)y (k) y (k), ,K , i.e.,   

( ) ( )

R

R

,

∈

∈

⎡ ⎤⎣ ⎦

≥∑

T T
(i) (N) m

L
m

i
(i) (i) (i) (i) i

1 N

d=0

T

i

Y = y (k) y (k) ,(k)

y (k) = H (k - d)x(k - d) + v (k), y (k) , L 0,

i = 1, ,N m + +m = m ,

L

K L  

(2) 

where R∈(i) imy (k) represents the local i-th sensor 
measurement, R∈(i) miv (k) is the i-th measurement 
matrix, and R∈ m(i) iv (k) is a zero-mean white 
Gaussian noise with covariance 

{ }(i) (i) (i)

kscov v (k)v (s) = R (k)δ  .  
We also assume that the initial states x(-s) ,

s = 0,1, ,MK , system noise w(k) , and measurement 
errors (i) (k), i = 1, , Nv K are mutually uncorrelated, i.e.,   

{ } { }
{ } { }

≠

(i)

(i) (i) (j)

cov x(-s), w(k) = 0 cov x(-s), v (k) = 0

cov w(k), v (k) = 0 cov v (k), v (k) = 0

s = 0, 1, ..., M; i, j = 1, ..., N; i j.

, ,

, ,  (3) 

The main problem associated with such systems 
(1) and (2) is to find the optimal (in mean square 
sense) estimate of the unknown state  based on the 
overall receding horizon sensor measurements k

k -Δ
Y  

with receding horizon time intervals iΔ , i = 1, , N,K  
i.e.,  

{ }
( ){ }

1 N

(i) (i) (i)

i

(1) (N)
[k -Δ [k -Δ

(i)
[k -Δ

k
k-Δ :k] :k]

:k] i i= (k -Δ ), y , ..., y

.

Y = Y , ..., Y ,

Y y k -Δ +1 (k) ,

i = 1, ...,N

 (4) 

There are two multi sensor fusion filtering 
algorithms. The first algorithm represents an optimal 
filtering (OF) algorithm, i.e., a mean-square estimate 

of a state vector using the overall measurement 
vector Y(k)  (2) is calculated by the optimal filtering 
equations presented in Priemer and Vacroux (1969) 
and Mishra and Rajamani (1975). However the OF 
algorithm is computationally expensive and it 
requires big memory sources, especially when the 
number of sensors N >> 1. 

On the other hand, the second multi sensor 
algorithm is referred as fusion filtering (FF) which is 
achieved by combining N local estimates based on 
individual (local) sensor measurements 

(i)y (k), i = 1, , NK  . The FF is suboptimal, but since 
the FF has parallel structure, it can be effectively 
adoptable for multisensory environment with the 
following advantages such as increase data input 
rates, simple fault detection, low computational 
complexity, and so on.  

Therefore, since the FF can be adoptable in a 
multisensory environment, in this paper, the FF is 
considered for the system (1) and (2). To derive the 
FF, the local filtering estimates of a state vector based 
on individual sensor measurements (i)y (k)  are 
required. 

The KFTD’s equations for the system (1) and (2) 
presented by Priemer and Vacroux (1969) and 
Mishra and Rajamani (1975). Using KFTD’s 
equations, we propose their receding horizon version 
for estimation of state x(k) using overall receding 

horizon measurements k

k -Δ
Y in (4). The details of the 

new receding horizon Kalman filter with time-delays 
are given in the next section. 

3 LOCAL RECEDING HORIZON 
KALMAN FILTER WITH 
TIME-DELAYS 

To find ( )ˆ(i)x k |k based on receding horizon 
measurements (i)

[k-Δ :k]i
Y we propose to use KFTD 

equations on the receding horizon interval 
[ ]∈ is k - Δ , k . We obtain  

 

( ) ( )

( ) ( ) ( ) ( )

{ }

ˆ ˆ

ˆ

..., ...

⎡ ⎤
⎢ ⎥⎣ ⎦

∑
iL

(i) (i)
m

d=0

(i) (i)

(i) (i)

i i i i i

x s -m| s = x s -m| s -1

+G s y s - H s-d x s -d | s -1 ,

s = k Δ , k Δ +1, k; m = 1,2, ,M , M = max M,L .- -

(5) 

( ) ( ) ( )ˆ ˆ∑
M

h = 0

(i) (i) (i)x s | s - 1 = F s - h - 1 x s - h - 1 | s - 1 .  (6) 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ⎡ ⎤
⎢ ⎥⎣ ⎦

∑
iL

(i) (i)
0

d=0

(i) (i) (i) (i)x s | s = x s | s-1 +G s y s - H s-d x s-d | s -1 ,
 

 (7) 
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where the receding horizon filter gains 
( ) ...(i)

m iG s , m = 0,1, , M  and error auto-covariances  

           ( ) ( ) ( ){ }
( ) ( ) ( )ˆ ≤

(ii) (i) (i)
1 2 1 2

(i) (i)
1 1 1 2

P s ,s | s = cov e s | s ,e s | s ,

e s | s = x s - x s | s , s ,s s.
      (8) 

are described by  

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )⎡ ⎤
×⎢ ⎥
⎣ ⎦

∑

∑

i

i

1 2

L T(i) (ii) (i)
m

d=0
-1L T(i) (i) (ii) (i)

1 1 2 2
d ,d =0

G s = P s-m,s-d| s-1 H s-d

R s + H s-d P s-d ,s-d |s-1 H s-d .

 (9) 

 
( ) ( )

( ) ( ) ( )∑
i

1

(ii) (ii)
1 2 1 2

L
(i) (i) (ii)
h 2

d=0

P s-h ,s-h |s =P s-h ,s-h | s-1

-G s H s-d P s-d,s-h | s-1 ,
(10) 

( ) ( ) ( ) ( ) ( )∑
1 2

M
(ii) (ii) T

1 1 2 2
h ,h =0

P s+1,s+1|s = F s-h P s-h ,s-h |s F s-h +Q s .  (11) 

In contrast to KFTD filtering, the local receding 
horizon Kalman filtering with time delay 
(LRHKFTD) (5)-(11) needs to initialize (M+1) 
receding horizon initial conditions at is = k - Δ  
which represent an unconditional means and 
covariances, i.e., 

( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

ˆ

ˆ

ˆ

(i)
def

def

def

i i i i i i i

i i i i i i i

i i i i

x k-Δ -M +1k-Δ =E x k-Δ -M +1 = m k-Δ -M +1 ,

x k-Δ -M +2 k-Δ =E x k-Δ -M +2 = m k-Δ -M +2 ,

....................................

x k-Δ +1k-Δ =E x k-Δ +1 = m k-Δ +1 .

(12) 

and 

 ( ) ( ) ( ){ } ( )(ii)
def

1 2 1 2 1 2

1 2

i

i i i

P h , h k -Δ  = cov x h , x h = P h ,h  ,

h , h = k Δ M + 1, , k Δ + 1.- - -K

 (13) 

Remark 1. The horizon initial means (12) are 
described by 

( ) ( ) ( ) ...,∑
M

h=0

im t + 1 = F t - h m t - h , t = 0,1, 2, k Δ + 1-  (14) 

with initial conditions  
       ( ) ( ) ( ) ( ) 0m 0 = m -1 = m -2 = ... = m -M = x .      (15) 

Remark 2. The receding horizon initial covariances 
(13) satisfy Lyapunov-like recursive equations  

( ) ( ) ( ) ( ) ( )

...

∑
1 2

M
(ii) (ii) T

1 1 2 2

h ,h =0

i

P t +1,t +1 = F t -h P t -h ,t -h F t -h +Q t ,

t = 0,1,2, ,k Δ +1,-

(16) 

( ) ( ) ( )

( )

( ) ( ) <

<

∑
1

1 2

(ii) (ii)

(ii) (ii)

M

1 2 1 1 1 1 2
l =0

1 t-h ,t-h 1 2

T
1 2 2 1 1 2

P t -h +1,t -h +1 = F t -h - l P t -h - l ,t -h +1

+Q t -h δ , k h k h ,

P t -h ,t -h = P t -h ,t -h , t h t h

- -

- -

(17) 

with initial conditions 

         ( ) ... .(ii) (ii)
01 2 1 2P -s , -s = P , s , s = 0,1, , M          (18) 

Derivation of Lyapunov-like equations for mean 
and covariance (14)-(18) is given in Appendix. 

4 TWO COMPUTATIONALLY 
EFFICIENT MULTI SENSOR 
FUSION ALGORITHMS 

To apply the receding horizon Kalman filtering with 
time delay (5)-(11) to the real computation with 
MATLAB, using the repetition of (5)-(11) is less 
effective than direct matrix multiplications because 
the matrix operations, i.e., multiplications, divisions, 
and inversions take many optimized computational 
algorithms in MATLAB. Therefore, we change the 
filtering equation (5)-(11) into a matrix form for the 
computational benefits on MATLAB. 

4.1 Matrix Form of Filtering Equations 

The equations (5)-(11) can be represented by block 
matrices. Let us assume the following block 
matrices 

( )
( )

{ }

( ) ( )
×

×

≤ ≤

< ≤

≤ ≤

< ≤

⎧⎪
⎨
⎪⎩
⎧⎪
⎨
⎪⎩

n n i i i

(i)
i(i)

n n i i

=

=

M

M

F s - h , 0 h M,
F s - h

0 , M h , M = max M,L ,

H s - j , 0 j L ,
H s - j

0 , L j .

 (19) 

( ) ( )( ) ( )( ) ( )( )
( ) ( )[ ]
( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( )

( )

ˆ ˆ ˆ ˆ

,

⎡ ⎤
⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤
⎣ ⎦i

i

i

TT T T(i) (i) (i) (i)
i

i

(i) (i) (i) (i)
i

TTT T(i) (i) (i) (i)
0 1 M

(ii) (ii)

(ii)

(ii) (ii)

X s | s = x s | s x s -1 | s x s -M | s

s

s

s

s,s | s s,s - M | s

s | s

s - M ,s | s

L ,

F = F(s) F(s-1) F s-M

H = H (s) H (s-1) H s-M ,

G = G (s) G (s) G (s)

P P

Ω =

P P

,

L

L

L

L

M O M

L ( )
( )

( ) ( )
( ) ( )

( )
R R× ×

× ×∈ ∈

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤⎣ ⎦

i i i

i i i

i i

n n M +1 n M +1 n M +2
n n nM n M +1 n M +1 n

0 jh jh 0 i

s -M ,s - M | s

,

A = I 0 , B = I 0 ,

Ω = P , P = P , j,h =1, , M +1 ,K
 

(20)

where 
n

I is an ×n n  indent matrix,
×n n

0 is an ×n n  zero 
matrix, and ( )(ii)

0Ω 0 0 = Ω . 
Then, based on (5)-(11), the filtering 

equations are rewritten using (19), (20): 
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( )
( )

( )

( )

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ
ˆ

ˆ

ˆ ˆ ˆ

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

(i)
(i)

(i)

(ii)

T(ii) T (ii)
T

(ii) T (ii)

(i) (i) (i) (i) (i) (i)

X s-1| s-1
X s | s-1 =

X s-1| s-1

s | s-1

s-1| s-1 s-1| s-1

s-1| s-1 s-1| s-1

X s | s = X s | s-1 s s s X s | s-1

F(s-1)
B ,

Ω

F(s-1)Ω F (s-1)+Q(s-1) F(s-1) Ω
=B B ,

Ω F (s-1) Ω

+G y -H

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

⎡ ⎤⎣ ⎦

⎡ ⎤
⎣ ⎦

i

-1T T(i) (ii) (i) (i) (ii) (i) (i)

(ii) (i) (i) (ii)
n M +1

s s | s-1 s s s | s-1 s s

s | s s s s | s-1

,

G =Ω H H Ω H +R ,

Ω = I -G H Ω .
 

(21) 

Finally, the local estimate ( )ˆ (i)x k | k  and error-
covariance ( )(ii)P k,k | k at current time k are 
described as 

   ( ) ( ) ( ) ( )ˆˆ (i) (i) (ii) (ii) Tx k | k = X k | k k,k | k k | kA , P = AΩ A .  (22) 

Differently from (5)-(11), the local estimate ( )ˆ (i)x k | k  
is directly calculated using (22). Moreover, (21) is 
shaped like the Kalman filter as well as more simple 
(5)-(11) on MATLAB. 

4.2 Distributed Fusion Form of 
Filtering Equations 

Through (20)-(22) for i = 1, , NK , we obtain N 
LRHKFTDs ( ) ( )ˆ ˆ(1) (N)x k | k , ,x k | kK with the 
corresponding local error-covariance  ( )(11)P k,k | k  

( )(NN), ,P k,k | kK . Then, the distributed fusion estimate   

( )ˆFFx k | k is determined using the following fusion 
formula presented by Shin et al. (2006). 

( ) ( )ˆ ˆ∑ ∑
N N

FF (i) (i) (i)
n

i =1 i =1

x k | k = k | kC (k)x , C (k) = I ,
  

(23) 

where ...(i)C (k), i, j = 1, , N is ×n n  matrix weights 
which are defined as 

     ( ) [ ]-1 TT -1 T -1
e e n nC(k) = D P (k)D D P (k), D = I I ,K     (24) 

where 
[ ]

{ }

R

R

ˆ

×

×

∈

⎡ ⎤ ∈⎣ ⎦

≠

(1) (N) n nN

N(ij) nN nN
e i, j=1

(ij) (i) (j)

(i) (i)

C(k) = C (k), ,C (k) ,

P (k) = P (k,k k) ,

P (k,k k) = cov e (k k) ,e (k k) ,

e (k k) = x(k) - x (k k) , i, j = 1, ,N, i j.

K

K    

 (25) 

In order to compute the matrix weights 
...(i)C (k), i, j = 1, , N , the local cross-covariances 

(ij)P (k, k k) , ...i, j = 1, , N , ≠i j  are required. Derivation 
of (23)-(25) is given in Shin et al. (2006). In the next 
section, the effectiveness of the fusion filtering is 
presented. 

5 NUMERICAL EXAMPLE 

In this section, an example for discrete-time 
dynamic systems with parametric model uncertainty   
is presented. We compare the accuracies and 
implementation time between two fusion algorithms: 
the first is OF algorithm (see section 4.1) and the 
second is the FF algorithm (see section 4.2). The 
example demonstrates the robustness and 
effectiveness of our proposed LRHKFTD (5)-(11) in 
terms of mean square errors (MSEs).   

We now consider the following LEO satellite 
communication system with multiple time delay and 
uncertainty (Glistic et al., 1996). LEO satellite 
channels impart severe spreading in delay and 
Doppler on the transmitted signal. The state vector   
represents the received signal level [dB].   

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

⎧⎪
⎨
⎪⎩

1 2 3xk+1 = 0.995+δ k xk +0.190+δ k xk-1+0.107+δ k xk-2 +wk ,

y k =0.4xk +0.1xk-1+0.4xk-2 +vk ,  
(26) 

where ( ) ( )( )w k ~ N 0, Q k and ( ) ( )( )v k ~ N 0, R k are 
uncorrelated white Gaussian system and 
measurement noises, respectively, ( ) 2Q k = 0.02 ,    

( )R k = 0.5.  The initial values are ( ) ( ) ( )( )x 0 ~ N x 0 , P 0 ,  

( )x 0 = 1  [dB] and ( )P 0 = 1; ( ) ( ) ( ) ( ){ }1 2 3δ k = δ k , δ k , δ k    
are uncertain model parameters which is assumed to 
satisfy 

( ) ( ) ( ) ( )⎧ ≤ ≤ ≤ ∈⎪
⎨
⎪⎩

1 2 3 UIδ k 0.05, δ k 0.1, δ k 0.01, k T ,
δ k =

0, otherwise,
 (27) 

where [ ]UIT = 40; 60  is the uncertainty interval (UI). 
The common receding horizon length Δ of the 
LRHKFTDs is taken as comΔ = 5 . Finally, two fusion 
receding horizon filters: OF and FF with the 
LRHKFTDs (5)-(11) and two fusion non-receding 
horizon filters: OF and FF with KFTD for the 
system model (26) with the uncertainty ( )δ k  which 
takes the form (27) are compared.  

We now present model (26) to show robustness of 
the proposed RHKFTD against the uncertainty. All 
simulations were evaluated in terms of MSEs of 
1000 Monte Carlo runs. We compare the MSEs of 
OF with KFTD (“OFKF”), FF with KFTD (“FFKF”), 
OF with RHKFTD (“OFRHF”) and FF with 
RHKFTD (“FFRHF”) with common receding 
horizon length comΔ , i.e., 

(A) OF with KFTD (“OFKF”):  

( ) ( ) ( )ˆ⎡ ⎤⎣ ⎦
2OFKF OFKFP k,k k = E x k - x k k ,  

(B) FF with KFTD (“FFKF”): 
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APPENDIX 

Derivation of Equation for Receding Horizon 
Initial Mean (14). Taking expectation on both sides 
of (1) and using ( )[ ]E w t = 0  we immediately obtain 
recursive equation (14) for mean ( ) ( )[ ]m t = E x t . 

Derivation of Equation for Receding Horizon 
Initial Covariance (16).  Subtracting (14) from (1) 
we obtain time propagation of the centered state,

 

 

( ) ( ) ( ) ( )∑
M

h

h=0

x t + 1 = F t - h x t - h + w t , t = 0,1, 2, ,% % K

   

 (A.1) 

Next we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )+

∑

∑ ∑

1

1 2

1 2

1 2

M
T T TT

hh 1 1 2 22
h ,h =0

M M
T T T

h 1 1 2 h 2

h =0 h =0

x t+1 x t+1 = F t-h x t-h x t-h F t-h +w t w t

F t-h x t-h w t + w t x t-h F t-h .

% % % %

% %

(A.2) 

Taking expectation on both sides of (A.2) and using 
the fact that current noise ( )w t does not depend on 
current and past states ( ) ( )1 2x t - h , x t - h% %  we obtain 
recursive equation for covariance (16), 

( ) ( ) ( ) ( ) ( )∑ 1 2

1 2

M
T

h 1 1 2 h 2

h ,h =0

P t +1,t +1 = F t -h P t -h ,t -h F t -h +Q t .

 

(A.3) 

Note that equation (A.3) contains auto-covariance, 
( ) ( ) ( )
( ) ( ) ( )

⎡ ⎤⎣ ⎦
T

1 2 1 2

1 2

P t - h , t - h = E x t - h x t - h ,

x t - h = x t - h - m t - h ,

h , h = 0, 1, , M.

% %

%

K

   (A.4)  

Derivation of Equation for Auto-covariance (17). 
Using “symmetric” property of auto-covariance   
( ) ( )T

2 1 1 2P t - h , t - h = P t - h , t - h and without loss of 

generality we can assume that ≥ 21k - h k - h . 
Substituting → 1t t - h  in (A.1) we obtain 

 ( ) ( ) ( ) ( )∑ 1

1

M

1 l 1 1 1 1 1

l =0

x t -h +1 = F t -h - l x t -h - l + w t -h .% %  (A.5) 

Multiplying both sides of (A.5) by ( )T
2x t - h + 1%  and 

using (A.4) we obtain  

 
( ) ( ) ( ) ( ) ( )

( ) ( )

∑ 1

1

M
T T

1 2 l 1 1 1 1 2

l =0

T
1 2

x t-h +1 x t-h +1 = F t-h -l x t-h -l x t-h +1

+w t-h x t-h +1 ,

% % % %

%

(A.6) 

and 

 
( ) ( ) ( )

( ) ( )⎡ ⎤⎣ ⎦

∑ 1

1

M

1 2 l 1 1 1 1 2

l =0

T
1 2 1 2

P t -h +1,t -h +1 = F t -h - l P t -h - l ,t -h +1

+E w t -h x t -h +1 , h ,h = 0,1,. ,M.% K

(A.7) 

It’s remain to calculate expectation in (A.7), i.e., 
   ( ) ( ) for ≥⎡ ⎤⎣ ⎦

T
1 2 1 2E w t - h x t - h + 1 t - h t - h .%

 
(A.8) 

Calculating product ( ) ( )T
1 2w t - h x t - h + 1% using (A.5) 

and after that taking expectation we get 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤⎣ ⎦

∑
2

M
T T T

l1 2 1 2 2 2 22
l =0

T
1 2

E w t-h x t-h +1 = E w t-h x t-h -l F t-h -l

+E w t-h w t-h .

% %

 (A.9) 

According to assumption ≥1 2t - h t - h , “future” noise   
( )1w t - h does not depend on current and past states   
( )2 2x t - h - l%  therefore ( ) ( )⎡ ⎤⎣ ⎦

T
1 2 2E w t - h x t - h - l = 0.%    

Next using property of white noise we obtain 

       ( ) ( ) ( )⎡ ⎤⎣ ⎦ 1 2

T
1 2 1 t-h ,t-hE w t - h w t - h = Q t - h δ .   (A.10) 

Finally using (A.7), (A.9) and (A.10) we get 
equation for auto-covariance (17). 

This completes the derivation Lyapunov-like 
equations for receding horizon mean and 
covariances. 
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