
SLA NEGOTIATION AND BROKERING FOR SKY COMPUTING

Alba Amato, Loredana Liccardo, Massimiliano Rak and Salvatore Venticinque
Dipartment of Information Engineering, Seconda University of Naples, Aversa, Italy

Keywords: SLA, Negotiation, Cloud, Agents.

Abstract: Cloud computing represents an opportunity for IT users to reduce costs and increase efficiency providing an
alternative way of using IT services. Elastic provisioning plays an important role by giving the possibility
to get the best resources configuration that satisfies the application requirements. Even if there are many
Cloud Providers, with a rich and various offer of technological solutions, above all at IAAS, however there is
neither support of SLA negotiation, nor of SLA management yet. One of the most important issue in such a
context is the lack of negotiation interfaces and mechanisms by current providers for dynamic provisioning,
which instead only make available a configuration form to submit the request for a specific resource among
the available ones. In the following we propose the design of a tool for SLA based dynamic provisioning of
Cloud Resources at IAAS, that offer to the user negotiation and brokering facilities by integrating multiple
models. We present a prototype implementation of our architecture using the mOSAIC framework.

1 INTRODUCTION

Cloud computing represents an opportunity for IT
users to reduce costs and increase efficiency provid-
ing an alternative way of using IT services. In this
scenario elastic provisioning plays an important role
by giving the possibility to get the best resources con-
figuration that satisfies the application requirements.
Even if there are many Cloud Providers, with a rich
and various offer of technological solutions, above all
at IAAS, however there is neither support of SLA ne-
gotiation, nor of SLA management yet. This is due to
two main issues. The first problem concerns a seman-
tic gap between the application requirements at user
side and the service level at IAAS. This gap deals with
the performance parameters that describe the appli-
cation (e.g: memory usage, throughput, turnaround,
...) and the ones which characterize the Cloud re-
source at IAAS (e.g: CPU architecture, main mem-
ory, number of cores, disk space ...). This issue is ad-
dressed by defining a mapping between high level to
low level performance indexes (C Emeakaroha et al.,
2010), but it is out of the scope of this paper. The
second issue is the lack of negotiation interfaces and
mechanisms by current providers for dynamic provi-
sioning, which instead only makes available a config-
uration form to submit the request for a specific re-
source among the available ones. In fact, the absence
of standards for Cloud solutions that ensure portabil-
ity among different vendors’ technologies represents

an additional barrier for the development of such kind
of services. To overcome these problems it is funda-
mental to have a general purpose set of specifications
and facilities for cloud that are vendor independent,
platform neutral. A first proposal of standard in Cloud
is represented by OCCI (Open Cloud Computing In-
terface) that is a protocol and API for management
tasks. This solutions is aimed at the fulfillment of
three requirements: integration, portability and inter-
operability for common tasks including deployment,
autonomic scaling and monitoring still offering a high
degree of extensibility1. Here we focus on a solution
that is ready to work now, for overcoming the cur-
rent limitation of the Cloud offer, that does not allow
the users to access the Cloud market by a business
interface. In the following we propose the design of
a tool for SLA based dynamic provisioning of Cloud
Resources at IAAS, that offer to the user negotiation
and brokering facilities by integrating multiple mod-
els. We present a prototype implementation of our
architecture using the mOSAIC framework.

2 RELATED WORK

In this section, we briefly describe several related
works and classify their approaches for concurrent re-
source negotiation with multiple providers. In par-

1www.occi.org

611Amato A., Liccardo L., Rak M. and Venticinque S..
SLA NEGOTIATION AND BROKERING FOR SKY COMPUTING.
DOI: 10.5220/0003964406110620
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CloudSecGov-2012), pages 611-620
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



ticular we focus our attention on protocols that are
the set of rules that govern the interaction defining
the types of entities that can participate in the nego-
tiation, the status, the events that cause the change
in status and the correct actions of the participants
in particular situations. The contributions discussed
propose negotiation protocols, which are extension of
either Contract Net Protocol or Rubstein’s alternat-
ing offers protocol. Aknine et al. (Aknine et al.,
2004) propose an extended version of the contract-
net protocol (CNP) to support concurrent many to
many negotiation processes enabling an agent to man-
age several negotiation processes in parallel. This
approach introduces a two phase negotiation pro-
cess. In the proposal exchange phase both sides ex-
change proposals/counter-proposals until one agent
sends Pre-Accept/Pre-Reject to the other. In the pro-
posal formalization phase an agent sends its formal
proposal if it is pre-accepted, or the counter-proposal
otherwise. Besides this approach optimizes the length
of the negotiation processes among agents, reduces
the contractors’ decommitment situations, enables the
detection of failures of an agent participating in a ne-
gotiation process and prevents a negotiation process
with blocked agents. Chhetri et al. (Chhetri and al.,
2006) present a multi-agent framework with a two-
layered architecture, that combines the alternate offer
and the CNP protocols. In this approach a coordina-
tor agent is used: to decompose the negotiation into
individual service utilities that are forwarded to the
individual negotiation agents that negotiate with mul-
tiple providers iteratively over multiple rounds, to co-
ordinate the negotiation for different services and to
analyze the service composition with the aim of map-
ping the QoS requirements of the user request into the
QoS requirements of all services within the composi-
tion selecting the best combination.

Siebenhaar et al. (Siebenhaar and al., 2011) pro-
pose an extension of CNP approach that combine ser-
vices from multiple providers negotiating individual
QoS parameters across multiple tiers using a two-
phase protocol. The composition of services is co-
ordinated and managed by a Coordinating Entity that
in turn creates several Negotiating Entities according
to the number of services in the composition request
with the task to negotiate concurrently with multi-
ple providers over the QoS parameters of a partic-
ular service. In the second phase of the protocol,
multiple overbidding is allowed and time-dependent
strategies, which stop the overbidding process if nec-
essary, are applied. Sim and Shi (Sim and Shi, 2010)
propose an approach based on Alternate Offers pro-
tocol in which there is a management of multiple
one-to-many concurrent negotiations between a user

and multiple resource providers, and of intermediate
contracts between users and providers that can apply
a time-dependent strategy and can renege on a con-
tract during the negotiation by paying a penalty fee.
Dang and Huhns (Dang and Huhns, 2006) propose
an extension of the alternate offers protocol in order
to support several negotiation processes in parallel in
case of many-to-many negotiations. Sim (Sim, 2010)
proposes an extension of the alternate offers protocol
that supports multiple complex negotiation activities
in interrelated markets between user agents and bro-
ker agents, and between broker agents and provider
agents. In our approach, given the nature of the prob-
lem, the negotiation is one-to-one. In particular we
have two kind negotiations:

� The brokering managed by cloud agency among
the available offer from supported providers;

� The negotiation between users and SLA applica-
tions.

For the management of brokering is used an imple-
mentation of Contract-Net Protocol for a dedicated
cloud application while for the management of SLA
negotiation we develop components that enable us to
implement any model of strategic trading is us. As
an example, in this paper, is used an extension of
Contract-Net Protocol that allows the user to build the
offer by selecting the favourite proposals.

3 SLA NEGOTIATION IN THE
SKY COMPUTING PARADIGM

In order to provide a solution for the SLA negotiation
at IAAS in the current Cloud context we conceived
the architectural model that is shown in Figure 1. The
negotiation problem is addressed here in two steps, by
two independent components, which interact accord-
ing to a well defined protocol:

� A Cloud Application supports the implementation
of many negotiation models. It allows the user to
select the requirements to be negotiated and the
model of negotiation to be used.

� An autonomic Cloud broker (Cloud Agency) ac-
cepts an SLA template and a set of brokering
rules, by which it provides the best proposal for
that request.

The SLA negotiation allows the user to access the
Cloud market by an high level business interface.
The user can choose among the supported negotia-
tion models. The negotiation interface allows to del-
egates a lot of stuff to the application and to focus

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

612



Figure 1: Architectural Model for SLA Negotiation.

on the desired solution in terms of requirements, ser-
vice levels and business parameters. The application
supplies also to the lack of mechanisms for dynamic
resource provisioning at provider side, by implement-
ing a complex logic, that is reconfigurable and pol-
icy driven. A this level the user is going to define
high level and low level requirements which are nec-
essary for running his Cloud applications. Here we
do not provide high level to low level mapping, hence
only low level parameters can be defined. For this
purpose we identified three sets of information: i)
mandatory requirements, ii) negotiation model and
negotiation parameters, iii) brokering rules and pa-
rameters. The retrieval of proposals and the broker-
ing among them, by the rules defined at iii) is dele-
gated to Cloud Agency. The provisioning service by
Cloud Agency is used to get all proposals, which are
necessary as an input for the SLA negotiation imple-
mented at application level. Cloud agency provides
a vendor-agnostic interface to a number of providers
and technologies available in the Cloud market. It im-
plements a very simple negotiation protocol, charac-
terized by a limited interaction, that is described in
the following section. This means that Cloud Agency
will make a first choice among the retrieved propos-
als which are compliant with the mandatory require-
ments i), and according to some brokering rules and
those parameters, which do not need to be negotiated.
The brokering solution enable to find the best offer-
ings respect to a given set of chosen parameters and
rules, in the context of the negotiation, instead, the
goal is to offer to the final user more than a single
choice, so that it is possible to involve him in the fi-
nal decision about the resources to be acquired. An
example for Cloud negotiation could look for a Vir-
tual Machine with i) specific CPU architecture and a
fixed amount of memory, ii) any number of cores to
be negotiated, iii) brokering the best price among the
proposals which satisfy i) and ii). The cloud appli-
cation has an intermediary role between the user and
the broker, implementing the negotiation protocol to-
ward the users and the brokering protocol toward the
cloud agency and offers both a REST-based interface
for enabling the SLA negotiation and a Web interface
that embeds the REST requests. SLA are represented

trough the WS-Agreement standard, even if the ne-
gotiation protocols are not standard compliant, in fact
Ws-Agreement does not offer big support in terms of
Negotiation protocols and it is Web Services based,
while we need a REST interface. The Cloud Appli-
cation we propose is developed in order to be able to
scale with the number of parallel requests, moreover
it should be able to flexibly support new kind of pro-
tocols.

4 SLA BROKERING: CLOUD
AGENCY

Cloud Agency is a multi agent system (MAS) that
accesses, on behalf of the user, the utility market
of Cloud computing to maintain always the best re-
sources configuration that satisfies the application re-
quirements. This system is being designed and de-
veloped within the research activities of the FP7 mO-
SAIC project. It is in charge to provide the collec-
tion of Cloud resources, from different vendors, that
continuously meets the requirements of users appli-
cations. According to the available offers, it gener-
ates a service level agreement that represents the re-
sult of resource brokering and booking with available
providers. The user is able to delegate to the Agency
the monitoring of resource utilization, the necessary
checks of the agreement fulfillment and eventually
re-negotiations. Cloud Agency will supplement the
common management functionalities which are cur-
rently provided by IAAS Private and Public infras-
tructure with new advanced services, by implement-
ing transparent layer to IAAS Private and Public
Cloud services;

Cloud Agency will support the Cloud user in two
different scenarios:
� Deployment: to discover and buy the available

resources needed to run Cloud applications,
� Execution: to monitor and eventually to recon-

figure Cloud resources according the changed re-
quirements of the Cloud Application.

Here we focus on the first one by which Cloud re-
sources at IAAS are brokered among the available

SLA�NEGOTIATION�AND�BROKERING�FOR�SKY�COMPUTING

613



proposal from many heterogeneous providers.

4.1 An OCCI Extended Model for
Cloud Provisioning

Obtaining a common interface is the focus of the
OCCI group that has defined a model for Cloud man-
agement at IAAS. OCCI defines entities, API and pro-
tocol. The specification of Cloud API is a Resource
Oriented Architecture (ROA) that uses Representa-
tional State Transfer (REST)protocol. The OCCI core
meta-model (Nyr n et al., 2011) provides means of
handling abstract Cloud resources. The heart of the
OCCI Core Model is the Resource type. Any resource
exposed through OCCI is a Resource or a sub-type
thereof. A resource can be e.g. a virtual machine, a
job in a job submission system, a user, etc. The Re-
source type contains a number of common attributes
that Resource sub-types inherits. The Resource type
is complemented by the Link type which associates
one Resource instance with another. The Link type
contains a number of common attributes that Link
sub-types inherit. Entity is an abstract type, which
both Resource and Link inherit. Each sub-type of En-
tity is identified by a unique Kind instance. The Kind
type is the core of the type classification system built
into the OCCI Core Model. Kind is a specialization
of Category and introduces additional resource capa-
bilities in terms of Actions. An Action represents an
invocable operation applicable to a resource instance.
The last type defined by the OCCI Core Model is the
Mixin type. An instance of Mixin can be associated
with a resource instance, i.e. a sub-type of Entity, to
”mixin” additional resource capabilities at run-time.
To be compliant with the OCCI standard it is neces-
sary to extend the core model using inheritance at two
points: mixin: to provide IAAS resources with moni-
toring and provisioning capabilities and entity: to rep-
resent those new concepts, which are introduced by
the services we are going to describe. Cloud Agency
extends the OCCI model by autonomic and dynamic
services, it is necessary that they new functionalities
can be deployed in user’s Cloud. In Figure 2 the
new entities and mixin, an their relationship with the
OCCI core model are shown. Among the entities, a
Call for Proposal (CFP) describes the list of resources
which are necessary to run a Cloud application. A
Cloud customer defines the values of those attributes
of OCCI Compute, Storage and Links which are sig-
nificant for his application requirements. A CFP will
include also the negotiation rules to select the best of-
fer among the ones proposed by providers. A Pro-
posal is a candidate for a Service Level Agreement
(SLA). It includes an instance for each resource in the

Figure 2: OCCI Extended model.

CFP with all the attribute specified, including other
information such as the cost and service levels. It
can be accepted or refused by the customer. An SLA
is an accepted proposal, it is agreed by the customer
with one provider. Among the new mixin, a Vendor
is committed to get an offer for resource provision-
ing, to accept or refuse that offer, to get information
about a resource or to perform an action on it against
a specific Cloud provider or technology. A Broker is
an intermediary that provides information and assists
in finding the right cloud-based solution. It receives a
CFP, asks to vendors for available offers, brokers the
proposal that best serves the user and allows to close
the transaction. The Meter is a mixin that monitors
some parameters chosen by user and gives the mea-
sure of performance indexes for those parameters. It
can be deployed into the Cloud, within a Virtual Ma-
chines, to dynamically complement the user’s Cloud
resource with this new capability. We need to run
Meter instances on any resource to perform locally
specialized algorithm to take measures. An Archiver
collects measures from Meters and stores them in a
knowledge base. It provides metrics and performance
statistics computed on the knowledge base. A Tier is
a mixin that use statistics provided by the Archiver, it
detects critical conditions such as SLA violations, re-
source saturation or underutilization and then informs
the user or autonomically performs required reaction
as new provisioning or management.

4.2 Cloud Agency: Static View

According to our extended OCCI model Cloud
Agency is both a mixin itself and a collection of those
mixins presented before. It can run anywhere, also
in an user’s Resource, if it has been implemented as
a deployable software component. Cloud Agency
has been implemented as a Multi Agent systems. The
different components of the agency architecture is

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

614



Figure 4: Sequence diagram to start a call for proposal.

Figure 3: Cloud Agency Components Diagram.

shown in Figure 3. Execution environment for agents
and communication facilities are provided by the Jade
agent platform(Bellifemine et al., 2003). Jade has
been chosen as a platform to provide an execution en-
vironment of software agents, an Agent Communica-
tion Channel (ACC) and some protocol implementa-
tion to support communication. AMS and DF provide
standard services of FIPA compliant agent platforms:
a name server for agents and a yellow pages registry
for publication and discovery of agent base services.
Blue components represent agents, which implement
the new OCCI MIX-INs. They embed the interaction
protocols of the deployment and execution scenarios.
Agents will communicate among them via standard
ACL (Agent Communication Language) over HTTP,
or over other transport protocols if it is necessary.
In order to allow a straightforward specialization of
agents’ behaviors we defined abstract interfaces for
brokering, monitoring, reconfiguration and resource
management. These abstract interfaces can be im-
plemented by developers who want to extend Cloud
Agency by new brokering algorithm, new monitor-
ing technologies, new reconfiguration models or by
supporting more Cloud provider. These implementa-
tion become plug-ins of CA, which are automatically
used by agents through their general interfaces. The
OCCI/RESTFull Message Transfer Protocol (MTP)
extends the OCCI HTTP rendering (Metsch and Ed-
monds, 2011).

The call for proposal template includes a list of
OCCI resources whose parameters can be initialize
with a value, a wildcard or can be associate to a bro-
kering rule.

4.3 Cloud Agency: Dynamic View

The Provisioning service of Cloud Agency im-
plements the FIPA Contract-Net protocol(FIPA TC
Communication, 2002). It is a minor modification
of the original contract net IP pattern in that it adds
rejection and confirmation communicative acts. In
the contract net IP, one agent (the Initiator) takes the
role of manager which wishes to have some task per-
formed by one or more other agents (the Participants)
and further wishes to optimize a function that char-
acterizes the task. This characteristic is commonly
expressed as the price, in some domain specific way,
but could also be soonest time to completion, fair dis-
tribution of tasks, etc. For a given task, any num-
ber of the Participants may respond with a proposal;
the rest must refuse. Negotiations then continue with
the Participants that proposed. Cloud Agency uses
asynchronous messages RESTfull messages to start
a transaction, to notify a Proposal and to agree or
refuse. The message encoding is an extension of the
OCCI HTTP rendering model described in (Metsch
and Edmonds, 2011). The message body is a CFP
document. This message triggers the interaction di-
agram of Figure 4. In Figure 4 the Cloud user pre-
pares a CFP to be sent to the Cloud Agency. The ac-
knowledge of Cloud Agency confirms the correctness
of the request and its acceptance for being processed.
Cloud Agency contacts all vendors, which provide a
bid for that kind of resource. When the available bids
have been connected from the Vendor Agents, Cloud
Agency returns asynchronously the best proposal that
satisfies the CFP requirements. In particular the bro-
ker choose the best proposal among the received ones

SLA�NEGOTIATION�AND�BROKERING�FOR�SKY�COMPUTING

615



Figure 6: Sequence diagram to notify the availability of a new SLA.

Figure 5: Sequence diagram to notify a new proposal.

and notify the availability of the result to the client
5. When the client has been notified, it can use the
location URL from the notification of the available
proposal to get the content of the proposal and, by the
same message, it can add a query string to the HTTP
request to agree or refuse the proposal. The client
sends an HTTP GET request to the Cloud Agency.
The message is forwarded to the right agent broker
that fulfills the request by forwarding the message to
the right Vendor Agent. An acceptance or a refuse of
the proposal terminates the transaction, and the broker
agent itself. In case of agreement the Vendor Agent
allocates the related resources and returns a notifica-
tion about the agreed SLA to the client according to
the sequence diagram of Figure 6. After that the re-
sources are available for the application deployment.

5 SLA NEGOTIATION: THE
mOSAIC APPLICATION

As outlined in section 3, while the cloud agency has
the role of managing the brokering, offering it trough
a Contract-Net Protocol, implementation of the Nego-
tiation Protocol is delegated to a dedicated cloud ap-

plication. Such an application has the following main
requirements:
� it has an intermediary role between the user and

Cloud Agency, implementing the negotiation pro-
tocol toward the users.

� it is able to flexibly support many negotiation
models.

� it offers a Web interface to its Final Users.

� it is based on SLA negotiation, implementing a
complex logic, which is reconfigurable.
We implemented such solution using the mOSAIC

framework, which is perfectly integrated with the
cloud agency (they were born together), whose details
will be described in the following sections, for what
is strictly necessary to understand the application.

5.1 Flexible Negotiation Models

The cloud application manages a negotiation instance
for each user, negotiation steps are modelled trough a
finite-state machine (FSM). The solution adopted in
order to implement the FSM model in mosaic will
be based on already existing components that can
be easily adapted to support different kind of FSMs.
Changing Negotiation models implies only the need-
ing of sending set of configuration information to al-
ready available components. Thanks to the services
offered by mOSAIC it is possible to implement such
an approach by a little development effort: state in-
formation will be stored in cloud-based storage sys-
tem (this is typical of mOSAIC as it will be shown
later), the FSM events will be represented trough mes-
sages, while the FSM advances will be defined trough
a set of Policies. Policy evaluation identifies the ad-
vances in the negotiation FSM model. The proposed
approach is flexible, in fact it is possible to change the

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

616



Negotiation Model, just changing the set of policies
stored in the dedicated component.

It would be possible to support a different Ne-
gotiation Model for each different user. As already
said, our SLA management solution use two finite-
state machines: the finite-state machine related to
the negotiation model and necessary for the negotia-
tion implementation and the finite-state machine WS-
Agreement standard. This model defines the states
assumed by an SLA during its management. The
WS-Agreement FSM is managed independently by a
dedicated mOSAIC component (SLAstore, described
later), from now on when we refer to an FSM we refer
to negotiation FSM.

5.2 mOSAIC Application and mOSAIC
Services

In order to illustrate and motivate the way, by which
we developed the application, we briefly illustrate
what are the features that mOSAIC offers. The inter-
ested reader can find detailed description of the mO-
SAIC Solution in (Rak et al., 2011), (Int, ), (Craciun
et al., 2011). In mOSAIC a Cloud application is
modeled as a collection of components that are able
to communicate each other and that consumes/uses
Cloud resources (i:e:, resources offered as a service
from a Cloud Provider). Components may be of-
fered by the mOSAIC Platform (i) as COTS (Com-
mercial off-the Shelf) solutions, i:e:, common tech-
nologies embedded in a mOSAIC Component, (ii) as
Core Components, i:e:, tools which enable applica-
tion execution and composing the mOSAIC platform,
(iii), as Service Components, i:e:, tools offered by
mOSAIC Platform in order to perform predefined op-
erations , or (iv) as new components that can be devel-
oped using mOSAIC API. In last case a component is
a Cloudlet running in a Cloudlet Container (Craciun
et al., 2011), (Int, ). mOSAIC Components are inter-
connected trough communication resources, such as
queues. The mOSAIC Platform offers some queu-
ing system (rabbitmq and zeroMQ) as COTS com-
ponents, in order to enable component communica-
tions. Moreover, mOSAIC Platform offers some Ser-
vice Components in order to help Cloud application to
offer their functionalities as a service, like an HTTP
gateway, which accepts HTTP requests and forwards
them on application queues.

5.3 Negotiation Application mOSAIC
Components

As anticipated we built up our applications as a mO-

SAIC Application, which directly communicates with
the Cloud Agency. It is a component-based applica-
tion, in which each component has a different well
defined role. Communication between components
will take place through messages. In Figure 7 there is
the application architecture in terms of interconnected
components, which will be described in detail in the
following subsection. Each component implements a
well-defined functionality:

� SLAgw and SLAstore, which provides SLA man-
agement.

� TradeProtocolState and SLApolicy, which
implements the negotiation model.

� CAgw, which interacts with Cloud Agency and as-
sumes decisions on agreement.

In the following we propose a brief description of the
behavior of each component, while next subsection
tries to outline how they interoperate for the negoti-
ation application. The SLAgw has both the role of
offering the application as a Web application and im-
plements a REST-based interface. The SLAgw REST
API, accepts essentially the following methods: i)
submit, with which a Customer submits the agree-
ment or template to Provider, ii) check, with which a
Customer requests the status of SLA agreement, iii)
sign, with which a Customer accepts the agreement,
iiii) terminate, with which a Customer requests the
termination of SLA agreement.

Through these methods SLAgw-based applica-
tions are able to implement many different negotia-
tion models: the submit method will be used to im-
plement many different kind of requests to the un-
derlying application. Moreover check, sign and
terminate represent the mandatory operations for
SLA management protocols. SLAstore is the compo-
nent that stores an agreement or template with related
timeout. It is a component that manages features such
as: the capability of taking trace of the signed SLAs
and the status of all the exchanged SLAs. In fact,
as anticipated, during a SLA management, a SLA
can assume several states, defined by WS-Agreement
standard. SLAPolicy is a component that acts as a Pol-
icy Decision Point. It retrieves information, on which
performs a policy evaluation and if the evaluation is
positive, generates the resulting action, correspond-
ing to the policy. A policy is represented in JSON
as a triple of Parameter, Expression, Action lists.
The first one contains the parameters to be used for
evaluation of the policy, the second one is a logical
expression whose variables are the parameters defined
before, and action represents the message to be sent if
the policy evaluation results true. TradeProtocolState
has the role of taking track of the states of the negotia-

SLA�NEGOTIATION�AND�BROKERING�FOR�SKY�COMPUTING

617



tion (storing them in the Key Value cloud storage) and
acting consequently to the action requests generated
by the SLApolicy component. During the negotiation
process, it communicates with SLApolicy, requiring
an evaluation policy operation and with CA which
interacts with the Cloud Agency. Moreover it sends
out messages to the SLAstorage, both forwarding the
new message request sent by the SLAgw and gen-
erating new ones in order to update WS-Agreement
SLA states. CAgw has the role of Cloud Agency
Client or gateway: it receives messages from the other
components, containing information needed to imple-
ment the Contract-Net protocol, then it invokes Cloud
Agency APIs.

5.4 mOSAIC Application Global
Architecture

The application behaviour can be briefly summarized
on the base of the messages exchanged by the compo-
nents which have been described above and connected
as in Figure 7. The SLAgw receives the messages
from the final users trough its SLA-oriented API. All
the negotiation messages are sent trough the submit
REST call, except the ones needed to effectively sign
the SLA. By a web interface the user can interactively
send request and check responses. Each message sub-
mitted by the SLAgw is intercepted by the Trade-
ProtocolState component, which forwards to the SLA
storage all the messages containing a new or updated
WS-Agreement. Moreover it sends a message to the
SLApolicy in order to know how to update the lo-
cal storage. On the basis of the policy evaluation,
which generates Action messages, the TradeProtocol-
State updates the local storage with the new negotia-
tion state and, eventually, it sends out messages to the
SLAstorage, in order to update the WS-Agreement
state and/or sends messages to the CAgw in order to
starts up requests for the negotiations.

6 NEGOTIATION MODEL
IMPLEMENTATION

As outlined above, the application is flexible re-
spect to complex negotiation models, but to make
it easier to understand, we will focus on a simple
proposal-based negotiation model. It is an exten-
sion of Contract-Net Protocol that allows the user to
choose the best offer by selecting the favourite pro-
posals among a set of available one. It is realized
performing many parallel Contract-Net and adding a
step for booking the proposal that best fit the user’s

Figure 7: Application architecture.

Figure 8: Negotiation Model.

need, without locking the other choices. The con-
sidered negotiation model is shown in 8. It is im-
plemented by several steps. The customer submits a
CallForProposal (that consists of several features) to
the provider by an agreement template. The provider,
once received the template, performs a check and he
can reject it or send a template with the supported
options . The customer, once received the template,
decides to reserve a proposal or to refuse it. If he
submits a proposal (that is a SLA), it can be reserved
or refused. If a reservation is performed, a time out
is set for a SLA agreement. A timeout is a spec-
ified period of time that will be allowed to elapse
before an customer sign event occurs. If this event
takes place before a timeout, the sign operation is per-
formed otherwise not. Such a model is associated to
the FSM shown in 9, before offering a detailed de-
scription of the FSM implementation few considera-
tion are needed. All the events are labelled with mes-
sages, note that messages from users (submit, sign)
are explicitly expressed, while the others are labeled
as internals (just to do not overload this picture of con-

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

618



Figure 9: Finite-State machine.

cepts). Internal message names are reported in the
table 10, which describe the SLApolicies defined, as
actions to be performed. SLA policy evaluation fol-
lows the simple rule of getting the State, getting the
request and sending out an action message which con-
tains the next state and the actions to be performed.
Policies are represented in table 10, first column con-
tain the parameters to be retrieved from the KV store
(always the same), the second column the expres-
sion to be checked, third column the message to be
sent if the expression is true. Note that when a pol-
icy is true all the others are false. The FSM works
as follows: when the final user submits a template
the first time (the black point) a new ID is created
in the KV store by both TradeState and SLAstorage,
in order to maintain state information and startup the
procedure. The TradeState component, when a sub-
mit message of a new WS-Agreement has been re-
ceived, updates the KV store with a new key (using
the Ws-Agreement ID) and a value which contains
state information (null at start) and the submitted re-
quest, then it sends an evaluation message to SLApol-
icy. As shown in the FSM and in the policy table, in
case of null state SLApolicy emits a message which
says that the next state is NewCFP and the action
is CAcfps. As a consequences TradeState updates
the KVstore with NewCFP, forwards the message to
SLAstore (that now creates the WS-Agreement state)
and prepares the messages to the Cloud Agency. This
step strictly depends on the resources to be negoti-

ated: for each possible value of the WS-Agreement
template to be independently negotiated, TradeState
creates a CFP and sends a request to the CAgw. As
a result multiple parallel negotiation will take place
trough the Cloud Agency. Note that from now on each
tie a new CFP will be submitted by the Final User, it
will be discarded, until the FSM arrives to the avail-
ability of new options. For each result obtained (i:e: a
proposal of the Cloud Agency Contract Net protocol)
a new message is sent to the TradeState component
by CAgw. As shown in the FSM and in the policy ta-
ble, after the receiving of the first proposal the FSM
moves in the OptionsAvailable. TradeState creates a
Ws-Agreement template which has as an option the
Proposal received. Each new proposal received by the
CAgw is added to the WS-Agreement template, en-
riching it. Note that it is up to the user, that can look
at the options available trough the check REST call,
to wait for other proposals, or cleanup the procedure,
submitting a new CFP. In the latter case new proposals
will be discarded by TradeState. When the Final User
accepts a Proposal, he submits the proposal to the sys-
tem and Tradestate receives the WS-Agreement an,
verifying that it is not a template, but a SLA, moves
to the reserve steps. Since now the procedure is com-
pletely locked, the only actions allowed are accept or
refusal by each of the two parts, as can be seen look-
ing at both FSM and policy list. Note that, in order to
have a limited dimension of the policy list, only the
main policies are written in the table, while some of
them (the most part of the ones that lead to just dis-
card the message) are simply skipped.

Figure 10: Negotiation Model Implementation Policies.

7 CONCLUSIONS

Support for negotiation of Service level Agreement is
a weakness in cloud market nowadays. In fact, at the
state of art only few providers are able to offer dynam-
ically configurable SLA services. In this paper, which
includes results of the mOSAIC project, we have

SLA�NEGOTIATION�AND�BROKERING�FOR�SKY�COMPUTING

619



shown how it is possible to build a complex negoti-
ation system, which is independent from the cloud
provider technologies and allows the user to negoti-
ate the best Cloud service, that is compliant with his
requirements. The solution proposed adopts a broker-
ing system, the Cloud Agency, in order to acquire au-
tonomically resources from providers on the basis of
SLA evaluation rules. Moreover a dedicated applica-
tion offer to the user negotiation facilities by an inter-
active interface and according several policies, which
can be configured in a flexible way. The application
offers a REST-based interface to final users that im-
plements a console for the management of SLAs com-
pliant with the WS-Agreement model.

ACKNOWLEDGEMENTS

This work has been supported by the FP7-ICT-2009-
5-256910 (mOSAIC) EU project and by the MIUR-
PRIN 2008 Cloud@Home: a New Enhanced Com-
puting Paradigm.

REFERENCES

Aknine, S., Pinson, S., and Shakun, M. (2004). An extended
multi-agent negotiation protocol. Autonomous Agents
and Multi-Agents Systems, 8(1):5–45.

Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G.
(2003). JADE: A White Paper. EXP in search of in-
novation, 3(3):6–19.

C Emeakaroha, V., Brandic, I., Michael, M., and Dust-
dar, S. (2010). Low level metrics to high level slas -
lom2his framework : Bridging the gap between mon-
itored metrics and sla parameters in cloud environ-
ments. Information Systems Journal, 2:48–54.

Chhetri, M. and al. (2006). A coordinated architecture for
the agent-based service level agreement negotiation of
web service compositions. In The Australian Software
Engineering Conference. Springer.

Craciun, C., Rak, M., and Petcu, D. (2011). Towards a cross
platform cloud api. components for cloud federation.
In van Sinderen F. Leymann, I. I. M. and Shishkov, B.,
editors, Procs. CLOSER 2011 - 1st International Con-
ference on Cloud Computing and Services Science,
pages 166–169. SciTePress – Science and Technology
Publications.

Dang, J. and Huhns, M. (2006). Concurrent multiple-issue
negotiation for internet-based services. IEEE Internet
Computing, 10(6):42–49.

FIPA TC Communication (2002). Fipa contract net interac-
tion protocol. Available at http://www.fipa.org.

Metsch, T. and Edmonds, A. (2011). Open cloud computing
interface - http rendering. http://ogf.org/documents/
GFD.185.pdf.

Nyr n, R., Edmonds, A., Papaspyrou, A., and Metsch,
T. (2011). Open cloud computing interface - core.
http://ogf.org/documents/GFD.183.pdf.

Rak, M., Venticinque, S., Aversa, R., and Di Martino, B.
(2011). User centric service level management in mo-
saic application. In Europar 2011 Workshop. IEEE.

Siebenhaar, M. and al. (2011). Concurrent negotiations in
cloud-based systems. In Proceedings of the 8th Inter-
national Workshop on Economics of Grids, Clouds,
Systems, and Services (GECON2011).

Sim, K. and Shi, B. (2010). Concurrent negotiation and co-
ordination for grid resource coallocation. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 40(3):753–766.

Sim, K. M. (2010). Towards complex negotiation for cloud
economy. In 5th International Conference on Ad-
vances in Grid and Pervasive Computing (GPC 2010),
pages 395–406.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

620


