
SELF-SUPERVISED PRODUCT FEATURE EXTRACTION
USING A KNOWLEDGE BASE AND VISUAL CLUES

Rémi Ferrez1, Clément de Groc1;2 and Javier Couto1;3

1Syllabs, Paris, France
2Univ. Paris Sud & LIMSI-CNRS, Orsay, France

3MoDyCo, UMR 7114, CNRS-Université de Paris Ouest Nanterre La Défense, Nanterre, France

Keywords: Web Mining, Information Extraction, Wrapper Induction.

Abstract: This paper presents a novel approach to extract product features from large e-commerce web sites. Starting
from a small set of rendered product web pages (typically 5 to 10) and a sample of their corresponding features,
the proposed method automatically produces labeled examples. Those examples are then used to induce
extraction rules which are finally applied to extract new product features from unseen web pages. We have
carried out an evaluation on 10 major French e-commerce web sites (roughly 1 000 web pages) and have
reported promising results. Moreover, experiments have shown that our method can handle web site template
changes without human intervention.

1 INTRODUCTION

Product feature extraction is a popular research area
given the vast amount of data available on the Web
and the potential economic implications. In this pa-
per we focus on mining commercial product fea-
tures from large e-commerce web sites, such as best-
buy.com or target.com. Given a product, we want to
extract a set of related pairs (feature name, value). For
example, for the ”Apple MacBook Pro MD311LL/A”
product, we would like to extract the information that
the product color is silver, that its maximal display
resolution is 1920x1200 pixels, its RAM size 4GB
and so forth.

The massive extraction of product features can be
useful to a variety of applications including: product
or price comparison services, product recommenda-
tion, faceted search, or missing product features de-
tection.

Our goal is to develop a method that allows min-
ing product features in a self-supervised way (i.e. a
semi-supervised method that makes use of a labeling
heuristic), with a minimal amount of input. Moreover,
the method should be as domain-independent as pos-
sible. We present in this paper a method that relies
on a small set of web pages, few examples of product
features, and visual clues. The input examples can
be the output of a previous data processing, they may
be given by a human, or they can be chosen from an

existing Knowledge Database such as Icecat 1.
Using visual clues such as spatial position, instead

of relying on HTML tags, brings robustness to the
method and independence from specific HTML struc-
ture. Let’s take tables as an example: various HTML
tags can be used to present information in a tabular
way. On the other hand, the <table> tag is some-
times used to visually organize web pages. Therefore,
relying on the HTML <table> tag to identify tabu-
lar information is unsure. In addition to robustness, a
good degree of domain-independence is achieved, as
our method does not depend on text content, but only
relies on visual clues. This is a major difference with
similar work (see Section 2).

We have evaluated our system on 10 e-commerce
web sites (1 000 web pages). Results show that the
proposed approach offers very high performances.
Further evaluations should be done to validate the
method over e-commerce web sites which are less ho-
mogeneous from a structural point of view. However,
as Gibson et al. pointed out (Gibson et al., 2005),
about 40-50 % of the content of the web is built us-
ing templates. Thus, it seems to us that the results
obtained are promising.

1http://icecat.us is an IT-centered multilingual commer-
cial database created in collaboration with product manu-
facturers. Part of this database, Open Icecat is freely avail-
able but very incomplete.

643Ferrez R., de Groc C. and Couto J..
SELF-SUPERVISED PRODUCT FEATURE EXTRACTION USING A KNOWLEDGE BASE AND VISUAL CLUES.
DOI: 10.5220/0003936706430652
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 643-652
ISBN: 978-989-8565-08-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

The article is structured as follows: in Section
2, we survey existing methods regarding wrapper in-
duction and product feature extraction. In Section
3, we describe the proposed approach. In Section 4,
we evaluate our approach on a panel of 10 web sites
(1 000 web pages). We conclude in Section 5.

2 RELATED WORK

The proposed method is close to two research fields in
web mining: Wrapper Induction and Product Feature
Extraction.

Wrapper Induction refers to the generation of ex-
traction rules for HTML web pages. Introduced by
Kushmerick (Kushmerick, 1997), wrapper induction
methods rely on the regularity of web pages from the
same web site, mostly due to the use of Content Man-
agement Systems (CMS).

While early work relied on human-labeled exam-
ples (Kushmerick, 1997), recent approaches, known
as unsupervised wrapper induction, have been pro-
posed in order to avoid this step. Those new ap-
proaches rely on two types of web pages: list-
structured web pages displaying information about
multiple products (Chang and Lui, 2001; Liu and
Grossman, 2003; Wang and Lochovsky, 2002; Zhao
et al., 2005) and product web pages (Arasu et al.,
2003; Chang and Kuo, 2007; Crescenzi et al.,
2001). However, unsupervised methods require a
post-processing step, as attribute names are usually
unknown (Crescenzi et al., 2001).

The use of prior knowledge to improve wrapper
induction has been little studied compared to other
approaches. Knowledge is provided to the system
using different formalisms such as concepts (Rosen-
feld and Feldman, 2007; Senellart et al., 2008) or
facts/values (Wong and Lam, 2007; Zhao and Betz,
2007). Moreover, such methods usually aim at ex-
tracting a small number of specific features about a
particular type of product (i.e. camera, computer,
books).

On the other hand, Product Feature Extraction
methods directly extract product features, without
generating wrappers.

Wong et al.’s work (Wong et al., 2009) focuses
on three structural contexts: two-column tables, re-
lational tables and colon-delimited pairs. Once the
structural context of their data has been heuristically
identified, they apply a set of rules in order to handle
the variable length of the data structures. Part of our
method was inspired by this article, however the use
of visual hypotheses instead of heuristics, allows us
to handle more HTML structures displayed with the

same appearance.
Wong et al. (Wong et al., 2008) propose a method

that considers each page individually and can retrieve
an unlimited number of features. The probabilistic
graphical model used in their paper considers content
and layout information. Therefore, relying on textual
content implies that their model is domain-dependant.

Our work is closely related to that of Wu et al. (Wu
et al., 2009). The main idea of their work is to first
discover the part of the web page which contains all
features, and then to extract them. The first step is
performed using a classifier, and each NVP (Name
Value Pair) discovered by this classifier receives a
confidence score. The complete data structure is then
located by taking the subtree with the best confidence
score according to heuristic rules. A tree alignment
is used to discover the remaining NVPs. This method
can discover an unlimited number of features, but the
initial classifier still needs to be trained on human-
labeled examples. Moreover, as the previously dis-
cussed method (Wong et al., 2008), the classifier is
trained for only one kind of product.

Our method inherits some ideas from these previ-
ous works, while investigating a different path based
on visual information and an external knowledge
base:

� A minimal knowledge base is provided to the sys-
tem instead of human-labeled examples

� Visual clues avoid making assumptions about the
HTML structure. As a result, features formatted
with any kind of HTML structure but displayed as
a table can be extracted

� The number of features extracted for one product
is unlimited

� The extraction rules induced by our method can
be applied to any type of product provided that
the web site is built using templates

3 OUR METHOD

3.1 Overview

The different aspects of template-generated web
pages used in the whole process include content re-
dundancy (site invariant features), visual/rendering
features and structural regularities. All these aspects
lead to different steps applied to a set of web pages
in two different approaches: page-level (local) and
site-level (global) analyses (the site is represented by
a sample of web pages, ”site-level” is used instead of
”page-set-level” for clarity). Page-level analyses refer

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

644

to algorithms that consider each page taken individu-
ally, whereas site-level analyses benefit from having
multiple pages from the same site.

The whole process (summarized in figure 1) is it-
erative, and alternates steps at page- and site-level.

Taking as input a small set of web pages:

1. Product specifications are located using a combi-
nation of page- and site-level information (section
3.2)

(a) content redundancy is evaluated using site-level
information

(b) an estimation of known feature coverage is
computed per page

(c) according to a) and b), every part of the pages
is scored and ranked

(d) features are located using a site-level vote

2. On each page, product feature names and values
are automatically annotated (section 3.3)

(a) a partial feature matching is performed to iden-
tify examples of feature names and values

(b) more examples are inferred by relying on their
layout

3. As a last step, extraction rules are induced using
all annotated features (section 3.4)

3.2 Specification Block Detection

The first step of our method is to detect the block con-
taining all the product features (which we call ”prod-
uct specification” block) that we would like to extract.

Web pages generated from a particular template
share common blocks of HTML. These parts are con-
sidered site-invariant. On the contrary, some elements
depend on the product presented in the page, like fea-
ture table, description, prices, related products, ads,
etc... Those site-variant features will give us a clue
to identify the specification block. A distinction be-
tween the specification block and other variable parts
of the pages is later achieved by crossing information
with the external knowledge base.

After explaining how we generate candidate spec-
ification blocks (section 3.2.1, section 3.2.2), we de-
scribe a method for scoring and ranking each block
(section 3.2.3) and a voting algorithm to select a final
candidate (section 3.2.4).

3.2.1 Web Page Segmentation

Web pages can be cut into multiple parts of different
sizes. These parts are called segments or blocks, and
all correspond to a subtree in the DOM (Document
Object Model) tree of the whole page. We studied

segments instead of all displayed elements in the page
(which is the trivial case of segmentation when every
leaf in the DOM tree is a segment) in order to identify
whole data structure blocks.

Web page segmentation is another field of re-
search and advanced methods are not necessary in our
case. We simply want to preserve a relative coher-
ence for each block, which can be achieved by using
node CSS (Cascading Style Sheets) properties. One
of them, called ”display”, gives a good hint of how
content placed under the node is rendered by a web
browser. This way, we can exclude every element
rendered as ”inline” or as a table part (”table-row”,
”table-cell”, ”table-column-group”, etc...). More pre-
cisely, we only keep nodes with ”display” property
as ”block” or ”table”. Taking these two values guar-
antees that we don’t restrain the method and we can
potentially extract well structured data formatted with
other HTML tags. Strictly speaking, this method is
not a web page segmentation method, mostly because
the segments obtained are nested. In fact, this is not a
problem because our scoring algorithm will cope with
this aspect.

3.2.2 Block Identification

A major issue when trying to evaluate any variable as-
pect of segments from different web pages, is how to
identify these segments and how to locate them within
each page. Two considerations should be taken:

1. Each identifier should locate a unique segment (a
sub-tree of the whole DOM tree) of the web page,
for every page in the set

2. The same segment in each web page of the set
should share the same identifier regardless of
HTML optional elements

An example of the second item is when we can
clearly see that a table displayed in every page of the
set is the same, but the strict path (from the root of
the DOM tree to the table) is not the same in all web
pages. We refer to ”strict path” as the concatenation
of HTML tags from root to any node, with the posi-
tion of each tag specified at every level. The position
is computed as follows: the first occurrence of a tag
under a node has the first position and for every sib-
ling node with the same tag, we increment the posi-
tion by 1. On the other hand, we call a ”lazy path” the
concatenation of HTML tags from root to an element
without positional information.

A softer path can be computed without any po-
sition information. However such path cannot cope
with condition 1 and thus may identify multiple seg-
ments on the web page.

SELF-SUPERVISED�PRODUCT�FEATURE�EXTRACTION�USING�A�KNOWLEDGE�BASE�AND�VISUAL�CLUES

645

Extraction

Rules

Product

Specification

Identification

Automatic Feature

Annotation

Extraction Rule

Induction

Web Pages
Machine-labeled

Web Pages

Knowledge

Base

Extracted Data

Unseen

Web Pages

Extraction rules

Wrapper Induction
Product Feature

Extraction

Figure 1: Complete product feature extraction framework.

These considerations led us to use a more flexible
path, based on the XPath formalism.

At this point, we want each path to be robust
against optional DOM nodes but strict enough to lo-
cate candidate blocks in all pages of the set. Hence,
we start with a lazy path, and progressively add
HTML attributes (”class”, ”id”) or position informa-
tion so that each path locates a unique node in the
page set. Usually pointing to CSS classes, HTML at-
tributes such as class and id often refer to the visual
or functional purpose of DOM nodes (”blue-link”,
”feature-name”, ”page-body”, . . .). Using such infor-
mation in our formalism generates more ”semantic”
or interpretable paths.

3.2.3 Block Scoring and Ranking

In this section, we describe how the simultaneous use
of content redundancy and of a knowledge base can
help to distinguish which block contains the features
regardless of how they are displayed.

We first analyze how text fragments are distributed
within the set of pages, aiming at separating variable
from invariable content. We later cross information
between our knowledge base and pages in the set to
isolate the variable part we want to extract.

Entropy-based Redundancy Analysis. There are
different methods to evaluate content variability for
the segments we have created. We used an entropy-
based approach as proposed by Wong and Lam (Wong
and Lam, 2007).

In the following, we refer to each segment by the
node in the DOM tree corresponding to the root of the
sub-tree. W is the set of words of this block. We first
define the probability to find word w 2W in the text
content located under node N as:

P(w;N) =
occ(w;N)

åwi2W occ(wi;N)
(1)

where occ(w;N) is the number of occurrences of word
w in the text content located under node N.

We directly define an entropy measure for node N
on page p as:

Ep(N) =� å
wi2W

P(wi;N)logP(wi;N) (2)

Taking one of the pages as a reference, we com-
pute the difference of entropies between this page and
other pages from the set in order to evaluate the con-
tent variability for all segments.

Actually, the measure defined in equation 2 can
be computed for a unique page, or for multiple pages.
In this case, the text content under the node N is not
taken on one page but on all pages. The set of words
is directly computed as the union of all sets.

Wong and Lam took as reference one of the pages
from the set. We believe that it is hard to find the most
representative page of the set. Moreover, we won’t
be able to evaluate all paths since the reference page
only contains a limited number of paths. However, a
complete scoring can be achieved by taking each page
as the reference page once.

Formally, we define a measure of word dispersion,
the information I for node N, computed by:

I(N) =
1
jPj åp2P

jEp(N)�E8p02P
p0 6=p

(N)j (3)

where P is the set of pages.
For every node which contains invariant text con-

tent, I will be null. On the contrary, when the text
content varies a lot (the set of words located under
node N is very large), I will be high.

Because we are interested in segments which con-
tain a lot of informative nodes (feature values are ex-
pected to be very different from one product to an-
other), this measure gives a good hint for identifying
potential specification block.

At this point, we could use a threshold to differen-
tiate variable blocks from invariable ones. However,
identifying the specification block by solely relying
on the variability criterion I proved difficult. For in-
stance the specification block was often blended with
other variable segments, like customer reviews.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

646

Feature Matching and Final Score. The easiest
way to differentiate feature-rich sections from other
variant sections is to look at the coverage of a refer-
ence feature set.

The advantage of the knowledge base we used is
that it does not require a human effort. Moreover, this
knowledge base can be completed when new data are
extracted. During our test we used a free product fea-
ture database, Icecat which provides a large multilin-
gual product feature source.

The feature coverage FC can be computed using a
standard bag-of-words model, defined as:

FC(N) =
jwN \w f j
jw f j

(4)

where w f is the set of words computed on feature val-
ues in the reference set, and wN is the set of words in
the text content of node N.

Finally, we can combine equations (3) and (4) to
compute a final Specification Block Score SBS:

SBS(N) = (1�l)I(N)+lFC(N) (5)

where l 2 [0;1] is automatically computed according
to the feature coverage in the text of the whole page
FCp. The fewer FCp is, the bigger l is for every node.
In fact, feature coverage should be a strong indica-
tion of where the specification block is located. A
small value of FCp indicates differences on presenta-
tion text for a lot of features, and FC should be more
weighted than I. On the contrary, if this value is too
high, this may indicate either lots of matching in other
parts of the page or less differences in how presenta-
tion text is written. In this case, weights of FC and I
are balanced because FC value is less reliable.

3.2.4 Candidate Block Selection

At this stage, we have a ranked list of blocks for each
page in the set. We now want to decide which block
designates the specification one.

Instead of averaging values of the SBS score for
each block over all web pages, we use a voting
method, more robust to the fact that SBS scores are
simultaneously very small and close.

For example, a typical case we try to overcome is
when one page contains a product description written
in plain text and composed of many product features.
Using an average SBS value usually leads to a wrong
final ranking.

Therefore, we have evaluated two preferential vot-
ing methods: Borda count and Nanson’s method. The
difference between those two is that Nanson elimi-
nates choices that are below the average Borda count
score at every ballot. Initial tests show Nanson’s

method yields better results and is robust enough to
deal with our most ambiguous cases.

The final result of the product specification block
detection is illustrated in figure 2. The specification
block is colored in light grey.

Figure 2: First step - specification block identification.

3.3 Data Structure Inference

After locating the product specification block, we
need to find how features are presented in order to
annotate them. Recall that each feature we want to
extract is composed of two elements. The first part
of each feature is its name and the second part is its
corresponding value.

For each page of our set, we first use the knowl-
edge base to identify both elements for each feature
in the data structure. We obtain a partial matching
due to the fact that our knowledge base is incomplete.
Moreover, due to language variability, several fea-
ture names and values will mismatch or not match at
all. Consider for instance matching a camera’s sensor
resolution (”Canon EOS 600D”). Our database con-
tains a ”Megapixel” feature name and a correspond-
ing value of ”18 MP”. However, depending on the
web site, this same value may be written as ”18 MP”,
”18 Mpx”, ”18 million px”, ”18 million pixels”, ”18
mega pixels” or even ”18 000 000 pixels”. Matching
such values from our knowledge base without using
normalization rules is a difficult task. In this work,
we rely on a simple edit distance to match our knowl-
edge base entries to web page elements which means
we will have to handle a lot of mismatches.

SELF-SUPERVISED�PRODUCT�FEATURE�EXTRACTION�USING�A�KNOWLEDGE�BASE�AND�VISUAL�CLUES

647

Figure 3: Second step - partial feature matching.

To cope with silence and errors, we use visual
clues and hypotheses about how these features are
displayed. We finally obtain a valid and large set of
machine-labeled examples.

3.3.1 Partial Feature Matching

If we consider a product web page and a reference
set of features for this product, we can assume to find
known features in the web page, even if there is a lot
of variation about how feature names and values are
written.

We use a simple string edit distance to match each
text fragment (corresponding to a leaf in the DOM
tree) with reference feature names and values. Each
text fragment is assigned to the feature name or value
that minimizes the distance. An empirically fixed
threshold is used to avoid matching unrelated text
fragments and reference features.

This partial feature matching is illustrated in fig-
ure 3. feature names and values are respectively col-
ored in dark grey and light grey.

3.3.2 Data Structure Generalization

The current machine-labeled examples (both feature
names and values) are incomplete and noisy, for mul-
tiple reasons:

� Some values in the web page are considered as
feature names in the reference feature set

� Some text fragments are neither a feature name
nor a value

� Some text fragments have been mismatched

Thus, we need to clean these examples in order to:

1. Remove as much noise as possible

2. Maximize the number of examples without
adding extra web pages

We can achieve these goals by making hypothe-
ses about how features are displayed. We use visual-
based hypotheses (after rendering the page) instead of
tree-based ones because it gives us a complete inde-
pendence towards the underlying HTML structure.

We distinguish between two kinds of practices
used when presenting data in a table-like structure that
justify the use of visual-based hypothesis.

First, we find every method used for displaying
each feature:

� Different formatting tags (, <i>, <big>,
...) for cells of the same table

� Some of the values or feature names are links

� Images are used to clarify some features (typically
for features that take few values and are key fea-
tures for selling the product, for example sensor
resolution of a camera)

Web developers can employ other formatting
methods (non-table tags combined with CSS proper-
ties) to display features as a table. Moreover, W3C
recommendations are not always followed when us-
ing proper table tags. All those facts lead us to various
situations:

� Each table row contains another table structure,
giving a nested table tree

� Labeling cells (namely our feature names) should
be encoded using the ”TH” tag, but are more often
seen with the ”TD” tag

� The entire table is formatted using nested ”DIV”
tags or HTML definition lists (”DL”/”DT” tags)

Having the DOM tree after rendering instead of
the usual DOM tree based only on the HTML file,
gives direct access to geometric and HTML specific
attributes. Every node of the HTML tree is rendered
as a box and geometric attributes can be retrieved as
absolute positions and sizes. This process is quite ex-
pensive in time, because we need to fetch images and
run scripts on every page. However, we conceived
our framework to limit the rendering process to input
pages only, thus making the resulting cost acceptable.

The two hypotheses that we made are:

1. Features should be displayed in a table-like struc-
ture

2. Based on the first hypothesis, feature names and
values should be aligned vertically or horizontally

We applied theses hypotheses on name and value
rendered box center coordinates. Experiments show
that they are robust enough to tackle real life issues.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

648

Figure 4: Third step - visual alignment.

Based on the same previously shown example in
figure 2 and 3, we applied this method and present the
result in figure 4. As before, feature names and values
are respectively colored in dark and light grey.

3.3.3 Name-value Association

The last step of our method is to associate each
marked feature name with its corresponding value.

We use again visual clues instead of tree-based
clues to avoid issues described in the previous section
(formatting tags, improper HTML table tags, . . .). We
believe that visually closest names/value pairs should
be associated together. We resort to a euclidean dis-
tance between the coordinates of the box centers.

3.4 Extraction Rule Induction

All previous steps consist only in the generation of
machine-labeled examples, and replace the laborious
manual work of human labeling.

The data structure recognition process yields a
large set of samples (pairs of feature names and val-
ues) from a small set of pages. The major drawback
is that all visual clues are given by a rendering engine.
In practice, we don’t want to use this kind of method
for the extraction of a complete web site, so we used
another format for the extraction rules, more flexible
and which can be used in other systems.

Different methods have been employed for the in-
duction of wrappers based on labeled examples, in-
cluding string-based extraction rules (Muslea et al.,
2001), regular-expressions (Crescenzi et al., 2001), or
tree automata (Kosala et al., 2006). We prefered to
use XPath rules instead because of its wide use in web
information systems as well as its flexibility.

Based on previously machine-labeled examples

we can automatically induce extraction rules in three
parts:

1. XPath 1: Path to the product specification block

2. XPath 2: Path to all feature pairs, relative to
XPath 1

3. XPath 3: Path to feature name and value for each
feature pair, relative to XPath 2

Instead of building a strict XPath as described in
section 3.2.2, we can take advantage of the flexibility
of the XPath language which can handle HTML at-
tributes for node localization. The failure of a strict
XPath rule caused by the existence of optional ele-
ments can be avoided in most cases with this method.
Thus, if a node has a unique ”id” or ”class” attribute,
we use this information and use strict position num-
bers as a last resort.

Although the formalism is the same, the method
used for the automatic induction of these rules is dif-
ferent from the one we used in the section 3.2.2,
where each path should locate only one segment per
page, which was mandatory for the correct evaluation
of content variability. In fact, at this stage, the XPath
is not restricted for the same purpose (identifying a
unique node) because we want more genericity for
two reasons:

1. Extracting an unlimited number of features. In
particular the XPath 2 can match multiple nodes
in each page

2. Being able to handle unseen pages

For these reasons, for each rule, we try to induce an
XPath which can validate as much machine-labeled
examples as possible. This can be achieved by using
disjunction over HTML attributes usually used for
CSS classes.
Example: .../TABLE/TR[@class=’allparams
even’ OR @class=’allparams odd’]

Using one of these attributes is not always possi-
ble. The worst case in when we have a different strict
XPath for each node. In this case, the system builds
multiple rules. However, this case never happened on
the web sites from our evaluation set.

4 EVALUATION

4.1 Corpus

To the best of our knowledge, there is no annotated
data to evaluate product feature extraction.

We have considered evaluating the proposed ap-
proach using a cross-validation method and the Icecat

SELF-SUPERVISED�PRODUCT�FEATURE�EXTRACTION�USING�A�KNOWLEDGE�BASE�AND�VISUAL�CLUES

649

knowledge base. However due to text variability (as
discussed in section 3.3), this proved difficult, leading
us to produce our own manual annotations.

We have created a novel collection of product
features by downloading a sample of 9 different
French major e-commerce web sites: boulanger.fr,
materiel.net, ldlc.fr, fnac.com, rueducommerce.fr,
surcouf.com, darty.fr, cdiscount.com and digit-
photo.com. The ldlc.fr web site changed its page
template during our experiments so we evaluated our
method on the first and second version of this web site
(resp. ldlc.fr (v1) and ldlc.fr (v2)). This emphasizes
an interesting aspect of our method which is its ro-
bustness to structure changes: even if extraction rules
change, product features are usually kept as is. Thus,
our method can readily induce new rules without hu-
man intervention.

For each web site, a gold standard was produced
by randomly selecting 100 web pages which did not
belong to any category in particular (Movies & TV,
Camera & Photo, . . .) and annotating product features
(name and corresponding value). Finally the corpus
is composed of 1 022 web pages containing 19 402
feature pairs.

4.2 Experimental Settings

For each web site, we ran our method as follows:

� We randomly chose 5-10 unseen web pages from
randomly chosen categories

� We retrieved the corresponding feature sets from
the Icecat knowledge base. Association between
a web page and a feature set was achieved auto-
matically by looking at the product name and the
page title

� We applied the proposed method and induced
XPath extraction rules

� Finally, we applied those rules to our gold stan-
dard web pages in order to extract product features

We have used standard metrics to assess the qual-
ity of our extractions:

� Precision, defined as the ratio of correct features
extracted to the total number of features extracted

� Recall, defined as the ratio of correct features ex-
tracted to the total number of all available fea-
tures.

4.3 Results

As shown in table 1, our method offers very high per-
formance. Most of the time, the system gives a per-
fect extraction, due to a good templateness and little

variability in the whole web site. This proves that our
initial hypotheses and the choice of the XPath formal-
ism were relevant. Actually, our custom formalism
derived from XPath correctly captures what is regular
in templated web pages: HTML structure (tags) and
attributes (such as the “class” attribute which provides
rendering clues sometimes). Moreover, dividing our
extraction rules in three parts (see section 3.4) allows
us to extract features precisely and robustely which
leads to high precision. Our sequential approach is a
major difference with previous methods that consid-
ered all text fragments in web pages. However, as it
is clearly iterative, failure of one step of the method
is irrecoverable which is exactly why extractions on
web sites 8 and 10 failed.

More interestingly, we observe mixed results on
web sites 6 and 7. The lower recall for web site 6
can be explained by a misrepresentative sample. The
extraction rules do not cover all existing HTML at-
tributes that locate the specification block due to the
absence of examples while inducing the rules. The
noise extracted for web site 7 is due to the alignment
hypothesis. In-depth analysis reveal that several ta-
ble cells, aligned with product feature names or val-
ues, are mislabeled. For instance, features relative to
a computer screen are preceded by a ”Screen” cell er-
roneously labeled as a feature name.

We tried to overcome some of those problems by
providing more input pages for these sites. We de-
cided to limit the number of input pages to 10 in or-
der to respect our initial goal to use few input pages.
In fact, we made the hypothesis that SBS scores on
these sites were wrong due to a lot of differences in
the DOM trees. The use of more pages gives a more
precise evaluation of text variability and increases the
probability of crossing known features on web pages.
Results shown in table 2 and in-depth analyses con-
firm this hypothesis.

On site 8, when providing only 5 pages as input,
a block containing a lot of features written in plain
text was selected instead of the specification block.
This problem was avoided when more pages were
provided. On site 6, recall did not increase which
means that there are still unseen cases in the test set.

Results for site 10 show another issue, which can-
not be handled by our method regardless of how many
pages we use as input. The main context which leads
to the failure of the specification block detection is
when we cannot compare the same segments on all
pages. Manual analysis of each step for this web site
show that this case happened here. In fact, we don’t
have any specific HTML attributes (the usual ”id” and
”class”) for locating web page segments, and there
are different optional elements on each page too. The

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

650

Table 1: Evaluation of product feature extraction.

Input pages Pages Features Precision Recall
1 boulanger.fr 5 100 1 390 1.00 1.00
2 materiel.net 5 100 2 960 1.00 1.00
3 ldlc.fr (v1) 5 102 1 324 1.00 1.00
4 ldlc.fr (v2) 5 102 1 498 1.00 1.00
5 fnac.com 5 101 1 856 1.00 1.00
6 rueducommerce.fr 5 140 2 190 1.00 0.723
7 surcouf.com 5 102 2 125 0.76 1.00
8 darty.fr 5 127 2 917 # 0.00
9 cdiscount.com 5 48 1 271 1.00 1.00
10 digit-photo.com 5 100 1 871 # 0.00

Total # 1 022 19 402 0.97 0.77

Table 2: Impact on recall of increasing the number of input pages.

Input pages Pages Features Precision Recall
6 rueducommerce.fr 10 140 2 190 1.00 0.723
8 darty.fr 9 127 2 917 1.00 0.94

10 digit-photo.com 10 100 1 871 # 0.00
Total (for all sites) # 1 022 19 402 0.97 0.87

combination of both leads to the comparison of differ-
ent parts of the web pages, thus giving a wrong mea-
sure of content variability. Moreover, the vote can-
not be done because equivalent blocks don’t have the
same identifier on all web pages. Even if this case
shows a clear disadvantage of our pipeline approach,
average results indicate that the idea behind the con-
struction of a path based on the XPath formalism is
still relevant.

5 CONCLUSIONS

In this paper, we have tackled the problem of product
feature extraction from e-commerce web sites. Start-
ing from a small set of rendered product web pages
(typically 5 to 10), our novel method makes use of
a small external knowledge base and visual hypothe-
ses to automatically produce feature annotations. The
proposed method, designed as a pipeline, is composed
of three sub-tasks: product specification identifica-
tion, feature matching and data structure recognition,
and, finally, extraction rule induction. Those extrac-
tion rules are then applied to extract new product fea-
tures on unseen web pages.

We have carried out an evaluation on 10 major
French e-commerce web sites (roughly 1 000 web
pages) and have reported interesting results.

We are considering several leads for future work.
First, as the proposed approach is built as a pipeline,
it offers high precision and no noise but a single
failure leads to a complete failure of the method.

Thus, we will explore more global approaches which
could avoid such effect. In particular, as results show
the importance of having a representative set of web
pages for inducing the extraction rules, we will de-
velop a method for building such sets. Secondly, we
will extend the proposed approach to handle more
data structures such as colon-separated product fea-
tures. Finally, while the method is domain indepen-
dent, which is an interesting property for large and
cross-domain web sites, we will focus our work on
small web sites such as small specialized portals.

ACKNOWLEDGEMENTS

We would like to thank Mickaël Mounier for his
contribution on the rendering engine and the an-
notation tool. We also gratefully acknowledge
Marie Guégan for her helpful comments on this pa-
per. This work was partially funded by the DGCIS
(French institution) as part of the Feed-ID project (no.
09.2.93.0593).

REFERENCES

Arasu, A., Garcia-Molina, H., and University, S. (2003).
Extracting structured data from Web pages. Proceed-
ings of SIGMOD ’03, page 337.

Chang, C.-h. and Kuo, S.-c. (2007). Annotation Free Infor-
mation Extraction from Semi-structured Documents.
Engineering, pages 1–26.

SELF-SUPERVISED�PRODUCT�FEATURE�EXTRACTION�USING�A�KNOWLEDGE�BASE�AND�VISUAL�CLUES

651

Chang, C.-H. and Lui, S.-C. (2001). IEPAD: information
extraction based on pattern discovery. Proceedings of
WWW’ 01.

Crescenzi, V., Mecca, G., and Merialdo, P. (2001). Road-
Runner: Towards Automatic Data Extraction from
Large Web Sites. Very Large Data Bases.

Gibson, D., Punera, K., and Tomkins, A. (2005). The vol-
ume and evolution of web page templates. In Special
interest tracks and posters of the WWW’ 05.

Kosala, R., Blockeel, H., Bruynooghe, M., and Vandenbuss-
che, J. (2006). Information extraction from structured
documents using k-testable tree automaton inference.
Data & Knowledge Engineering, 58(2):129–158.

Kushmerick, N. (1997). Wrapper induction for information
extraction. PhD thesis, University of Washington.

Liu, B. and Grossman, R. (2003). Mining data records in
Web pages. Proceedings of SIGKDD’ 03, page 601.

Muslea, I., Minton, S., and Knoblock, C. A. (2001). Hier-
archical Wrapper Induction for Semistructured Infor-
mation Sources. Autonomous Agents and MultiAgent
Systems, 4(1):93–114.

Rosenfeld, B. and Feldman, R. (2007). Using Corpus Statis-
tics on Entities to Improve Semi-supervised Relation
Extraction from the Web. In Proceedings of ACL’ 07,
pages 600–607.

Senellart, P., Mittal, A., Muschick, D., Gilleron, R., and
Tommasi, M. (2008). Automatic wrapper induction
from hidden-web sources with domain knowledge.
Proceeding of WIDM ’08, page 9.

Wang, J. and Lochovsky, F. (2002). Wrapper induction
based on nested pattern discovery. World Wide Web
Internet And Web Information Systems, pages 1–29.

Wong, T.-L. and Lam, W. (2007). Adapting Web infor-
mation extraction knowledge via mining site-invariant
and site-dependent features. ACM Transactions on In-
ternet Technology, 7(1):6–es.

Wong, T.-L., Lam, W., and Wong, T.-S. (2008). An un-
supervised framework for extracting and normalizing
product attributes from multiple web sites. Proceed-
ings of SIGIR’ 08, page 35.

Wong, Y. W., Widdows, D., Lokovic, T., and Nigam,
K. (2009). Scalable Attribute-Value Extraction from
Semi-structured Text. 2009 IEEE International Con-
ference on Data Mining Workshops, pages 302–307.

Wu, B., Cheng, X., Wang, Y., Guo, Y., and Song, L. (2009).
Simultaneous Product Attribute Name and Value Ex-
traction from Web Pages. 2009 IEEE/WIC/ACM In-
ternational Joint Conference on Web Intelligence and
Intelligent Agent Technology, pages 295–298.

Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C.
(2005). Fully automatic wrapper generation for search
engines. In Proceedings of WWW’ 05.

Zhao, S. and Betz, J. (2007). Corroborate and learn facts
from the web. Proceedings of SIGKDD’ 07, page 995.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

652

