
LIMITING DISCLOSURE FOR DATA STREAMS IN THE CLOUD

Wee Siong Ng, Huayu Wu, Wei Wu and Shili Xiang
Institute for Infocomm Research, A*STAR, Singapore, Singapore

Keywords: Access Control, Limited Disclosure, Cloud Computing, Stream Data Management.

Abstract: The rapidly increasing number of sensors and surveillance devices as well as the coming of age of pervasive
and cloud computing are fostering applications driven by real-time stream data management. As more and
more data stream processing engines (and services) will be deployed in the cloud, we feel it is critical to enable
the data stream owners to control who can access their data streams for what purposes under what conditions.
Therefore, we design an architecture to support data stream management in the cloud with privacy-preserving
capabilities. In this paper, we focus on one of the premier principles of data privacy, limited disclosure. We
design an access control framework, to define privacy policies and efficiently enforce these privacy policy
rules from stream-level to tuple-level granularity.

1 INTRODUCTION

The rapidly increasing number of sensors and surveil-
lance devices are generating tremendous amount of
streaming data to transform our physical world into
computing platform. On the other hand, there is grow-
ing demand for applications from a large variety of
domains to consume these real-time data. This fuels
the need for real-time stream management. However,
data streaming environments are highly-demanding
environments, where issues such as the sheer size of
data, distributed and heterogeneous nature of data,
and dynamic rates of data make it challenging for
data providers and consumers to cope with (Golab and
Özsu, 2003).

We believe that using cloud service (Vaquero
et al., 2008) to manage and process stream data is
promising for many existing and foreseeable appli-
cations thanks to cloud computing’s elasticity. For
example, multiple stream processing engine instances
can be deployed in multiple virtual machines to make
the stream engine’s capacity dynamically scale with
data stream rate (Knauth and Fetzer, 2011).

However, increasing privacy and confidentiality
requirements impose a major obstacle. Very often,
stream data convey information related to individu-
als or information which are critical to organizations.
While companies collecting and processing sensitive
stream data (in the cloud) from users have realized
that they have to cope with privacy issues, what they
do is only showing a privacy policy statement to the

users and promise that they will only use the collected
information according to the privacy policy. The users
do not have real control on how their data are used.

In our project, we endeavor to provide an archi-
tecture that supports data stream management in the
cloud with privacy-preserving capabilities. One focus
of our system is to provide data owners with the abil-
ity to control how their data is managed and used by
a particular organization or individual. Our system is
called HipCloudS, which extends the functionality of
traditional data stream management to satisfy Hippo-
cratic principles (Agrawal et al., 2002).

In the process of realizing the HipCloudS, we fo-
cus on providing limited disclosure. Out of the Hip-
pocratic principles,Limited Disclosure is one of the
most premier principles of data privacy. The limited
disclosure principle is based on the premise that a
stream owner should be given total control over who
is accessing his/her data, under which circumstances
and for what purpose. That is, the system is not al-
lowed to release any information to a user without
the owner’s approval. Limiting disclosure is partic-
ularly critical to ease data owners’ reluctance to pro-
vide their data.

In our system, data stream owner specifies pri-
vacy policies, and these policies are thereafter en-
forced with respect to all data access. Privacy poli-
cies are expressed in high-level privacy specification
languages. Essentially, a privacy policy is comprised
of a set of rules that describe which part of data may
be disclosed to who (the users) and how the data may

574 Ng W., Wu H., Wu W. and Xiang S..
LIMITING DISCLOSURE FOR DATA STREAMS IN THE CLOUD.
DOI: 10.5220/0003927005740579
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 574-579
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



be used (the purposes). Additional conditions may be
specified to govern disclosure as well.

We adopt an approach similar to EPAL (Enter-
prise Privacy Authorization Language) (Ashley et al.,
2003) to design an access control model. However,
our access control model is different from EPAL in
that our model is specifically designed for an open
platform (e.g., cloud) where there are many data
stream owners and many data stream consumers while
EPAL is designed for an individual enterprise. Each
data stream owner manages his/her own access con-
trol policies for his/her own data stream. This work
also differs from EPAL in that we elaborate on the
management of the components in our access control
model and present our strategy of enforcing the access
control policies in a data stream query processing en-
vironment.

2 RELATED WORK

Lindner and Meier (Lindner and Meier, 2006) design
a filtering operator and apply it to the stream query
processing results to filter the output based on relevant
access control policies. Similar to many other post-
processing approaches, performance becomes the ma-
jor problem of this attempt, because a large set of use-
less intermediate result may be generated.

Nehme et al. (Nehme et al., 2008) embed secu-
rity policies into data stream, by security punctuations
(SPs). Their query processor analyzes the SPs in each
data stream, and enforces the policies during query
processing. This framework is further improved by
supporting dynamic access authorization of query is-
suers (Nehme et al., 2010; Nehme et al., 2009). Com-
pared to the filtering approach, the punctuation-based
framework has better performance, as useless inter-
mediate result can be avoided.

Carminati et al. (Carminati et al., 2010) propose
another framework to enforce access control policies
for stream query processing. They model continu-
ous queries as graph of algebraic operators, and focus
on query rewriting to incorporate policies into query
graphs. Finally, the rewritten query graph can be
translated into different query languages according to
different stream query processors (Cao et al., 2009).
The difference between (Carminati et al., 2010) and
our system is that we use a different model for access
control policies, in which user roles, data categories
and query purposes are all modeled as hierarchies.
Our model is more comprehensive to cope with most
general cases in applications.

Recently, Raman and Thomas (Adaikkalavan and
Perez, 2011) argue that enforcing security checking

during continuous query processing, such as query
plan re-generation in (Nehme et al., 2008) and query
rewriting in (Carminati et al., 2010), may affect the
sharing of similar query execution. However, they
only offer a simple solution for sharing exactly the
same query, rather than sharing the same operator
across different queries. The latter is more general
for multi-query processing.

This work differs from existing work in that our
system focus on access control on data streams con-
tributed by many stream owners in an open (i.e.,
cloud) environment. In our access control model each
data stream owner can manage his/her own data cate-
gory and set access control policies at stream level, at-
tribute level, and tuple level. The way we enforce ac-
cess control policies is also unique: we check stream
level and attribute level access control conditions be-
fore a query is admitted to the system while enforcing
tuple-level conditions during query processing.

3 SYSTEM OVERVIEW

The design paradigm of the HipCloudS system is
based on Cloud Computing. Our system deploys the
SaaS (Software as a Service) paradigm and runs on
top of existing cloud provider’s PaaS (Platform as a
Service) or IaaS (Infrastructure as a Service) service
offerings. This approach enables the development of
Hippocratic data stream applications by providing a
set of Hippocratic Data Stream Service APIs to allow
data to be queried or analytic algorithms to be exe-
cuted (as indicated in Figure 1).

Due to space limit, we will only briefly describe
the components that are closely related to access con-
trol in our system.

TheStream Producer andStream Consumer com-
municate with the HipCloudS through Web Service
interfaces: Stream Producer Service and Stream Con-
sumer Service. While invoking a Stream Producer
Service, a user is allowed to use the Stream Defini-
tion Language (SDL) statements to define the schema
of a new stream along with the privacy preferences
of the stream owner. On the other hand, a stream
consumer can invoke a Stream Consumer Service to
submit queries in the Stream Manipulation Language
(SML), e.g., an SQL query.

The Privacy Controller is the core of the privacy
policy enforcement unit to assure the compliance of
limited disclosure, and to enforce access control. Ba-
sically, it examines the set of queries for each purpose
in order to determine if any information is being dis-
closed violating the stream providers’ privacy policy.

LIMITING�DISCLOSURE�FOR�DATA�STREAMS�IN�THE�CLOUD

575



Application Layer

Hippocratic Data Stream Platform Core

Stream Manager Privacy Controller

Query Management

Fault Torelance

Cloud

Database

Service

API

Audit Unit

Catalogs

Summary Pool

Other Data Sources

Massive cloud data sources

available through common

interfaces

This layer executes against

the Cloud Service and calls

also algorithm against

propriety data or other cloud

data

These services allow data to

be queries or algorithms to

be executed

Multiple run-time instances

allow developers to use

common tools and reuse

existing algorithms

Stream Producer

Services

Stream Consumer

Services

Data Analytics Services

Hippocratic Data Stream Service API

Security and Privacy

Preference

Core Service API

Figure 1: HipCloudS – A logical design.

4 PRIVACY CONTROLLER

In this section we describe the privacy controller in
our HipCloudS. In particular, we present the access
control model that we designed forlimited disclo-
sure andprivacy protection in HipCloudS, and briefly
present how the access control policies are enforced
during query processing.

We will use the following taxi data stream in our
writing as a user case. CompanyX is a taxi service
provider. The taxis of this company are all equipped
with GPS devices. They periodically send their status
information including time, longitude, latitude, speed,
and occupancy-status to our system as a data stream.
In this case, the stream is “taxi”, and we use “t”, “x”,
“y”, “v”, and “s” to refer to the the stream attributes.
The taxi company wants to share the taxi data stream
(since it is very useful in many applications) but at
the same time limit the disclosure of data to avoid po-
tential privacy problems. For example, they want to
make the data stream only available to traffic man-
agement authority and to researchers in a specific de-
partment of a specific research institute.

4.1 Access Control Model

In our access control model, users and data are or-
ganized in hierarchical structures. The hierarchical
structures of users is called theuser-category. The
hierarchical structures of data, including streams and
stream attributes, is called thedata-category. Basi-
cally, the access control model enables a data stream
owner to specify who can access which part of his/her

data stream.
The other two important concepts in our data ac-

cess model arepurpose-category andconditions. The
purpose-category is a classification of data access pur-
poses. A stream owner can specify that a user can
access the data stream only for a specific purpose.
For example, the owner of the taxi stream can specify
that users from TrafficAuthority can access this data
stream only for Traffic-Management purpose. Condi-
tions are provided for data stream owners to set tuple-
level access control which is discussed below.

Our access control model supports three levels of
access control, namelystream-level, attribute-level,
and tuple-level access control. The stream-level ac-
cess control enables a stream provider (a.k.a. stream
owner) to grant the access to the stream to a group of
users or a specific user. The attribute-level access con-
trol empowers a stream owner to control the access to
stream attributes. The tuple-level access control lets a
stream provider grant access to specific stream tuples
satisfying certain conditions to a group of users or a
specific user. For example, the owner of the taxi data
stream can specify that user A can access the whole
taxi data stream, user B can access the latitude, longi-
tude and speed attributes of the taxi stream, and user C
can access the tuples in the taxi stream if the status of
the taxi is FREE. They are examples of stream-level,
attribute-level, and tuple-level access control respec-
tively.

4.1.1 Access Control Policies

In our access control model, a data stream owner con-

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

576



All

Transport

Authority
RoadUser Researcher

InstituteA UniversityN

DepartmentB DepartmentC

TaxiDriver

User categoryLegends:

CompanyX

UserX1

DriverA DriverB

Staff1 Staff2 Staff3 Staff4

user

Figure 2: An example of a User-Category hierarchy.

trols the access to his/her stream data by setting access
control policies.

An access control policy is represented as:

User-category, data-category,
purpose-category, conditions

It means the users under the specifieduser-
category can access the data under the specifieddata-
category for the specifiedpurpose-category if the
specifiedconditions on stream tuples are satisfied.

While the user-category, data-category, and
purpose-category are necessary for an access control
policy, the conditions are optional. In our current data
access model, we require that the conditions (if given)
to be represented in SQL selection conditions syn-
tax, i.e., the expressions used in SQL WHERE clause.
For example, if the owner of taxi stream wants to set
a condition to only allow a user to access tuples in
which the speed of the taxi is less than 80km per hour,
he/she would write “taxi.v< 80” as the condition in
his/her access control policy.

Now we describe the user-category, data-category,
and purpose-category hierarchical structures. We will
also elaborate on who can manage these hierarchical
structures in our HipCloudS.

4.1.2 User Category

User category is modeled as a tree.

• Nodes of the tree are categories.

• Leaves of the tree are users.

• The root of the user-category tree is “All”.

Figure 2 shows an example of the user-category
hierarchical structure. Note that users are the leaves of
the tree. A user has the access privileges of all its an-
cestors. For example, if a stream owner specifies that

CompanyXdata

by UserX1

taxi bus

t x y v t x y

MyGPS

by Staff2

t x y

Maritime

by userS

cruise container

Merry

t x y

Data category

created by user
stream attributeLegends:

s

Figure 3: An example of Data-Category hierarchies.

“Researcher” category can access his/her stream, then
user “Staff1” is allowed to access the data stream be-
cause “Staff1” is under the “Research” category. If a
stream owner wants to make her stream open to all the
users of the system, she can set “All” as user-category
in her access control policy.

The user-category is managed by HipCloudSsys-
tem administrator. When a user registers in the sys-
tem, its category is “All”. A user can request to
join a specific user-category. A user can also re-
quest the system administrator to create a new cate-
gory (e.g., “CompanyX”). The system administrator
can accept/reject the request. The system administra-
tor can assign a user to a specific category.

4.1.3 Data Category

Data-categories are modeled as aforest where the
stream owners can manage their own trees in the for-
est.

• A tree in the forest is a data-category.

• A stream itself can form a data-category, i.e., a
tree.

• A leaf of a tree is a stream attribute.

• Parent of a leaf is a stream.

• Parent of a stream, if applicable, is a category.

Data categories are created and managed by
stream providers. A stream owner can only set access
control policies for her own data-categories.

Figure 3 shows an example of data-categories.
In this example, three stream providers “UserX1”,
“Staff2”, and “userS” have created their own data-
categories. UserX1 created data categories for her
company’s data streams including taxi data stream
and bus data stream. The attributes in the taxi stream
include time (t), longitude (x), latitude (y), and speed
(v), and status (s).

Before a stream provider registers a stream in the
system, she can create data-categories and sub data-
categories. A stream provider can also choose not to

LIMITING�DISCLOSURE�FOR�DATA�STREAMS�IN�THE�CLOUD

577



 
All 

TrafficManagement Navigation Research 

Figure 4: An example of Purpose-Category hierarchy.

create data categories for her streams. In this case,
his/her streams are independent trees (in the forest)
and each tree forms its own data-category.

A data access policy specified on a node in a data-
category is applicable to all the nodes and leaves in
its subtree. For example, if user “UserX1” spec-
ifies that Researcher can access “CompanyXdata”,
then Researcher can access all the data under the
“CompanyXdata” category including taxi and bus
data streams and their attributes.

4.1.4 Purpose Category

The main objective of having the purpose category is
to record the purpose of each data access query so
that this information can be logged and audited when
necessary.

Purpose category is modeled as a Tree.

• Nodes of the tree are categories.

• The root of the purpose-category tree is “All”.

The purpose-category is managed by system ad-
ministrator. Figure 4 shows an example of a purpose-
category.

4.1.5 Specifying Access Control Policy

Access control policies are managed by stream
providers. A stream provider can only specify access
control policies for her own data-categories, streams,
and stream-fields. For example, user UserX1 (and
owner of data category CompanyXdata in Figure 3)
can specify the following access control policies:

DepartmentB, taxi, research, taxi.v <

80

TransportAuthority, CompanyXdata,
traffic-management

The first access control policy means that users
under the “DepartmentB” user category can access
the tuples in the “taxi” stream where speed (attribute
v) is less than 80km per hour for “research” pur-
pose. The second access control policy means that
users under the “TransportAuthority” can access all
the data under “CompanyXdata” category for “traffic-
management” purpose.

As another example, user “Staff2” (i.e., owner of
data category MyGPS) can specify the following poli-
cies:

All, MyGPS, All, (hour(t)>8 AND
hour(t)<18)

This access control policy means that all users can
access the “MyGPS” stream for all purposes if the
time in data stream tuple if between 8am to 6pm. Note
that this condition is specified with the condition ex-
pression (hour(t)>8 AND hour(t)<18).

4.2 Enforcing the Access Control
Policies

Our system will enforce all the access control policies
set by the data stream owners. Here we briefly present
our design for access control policies enforcement.

We differentiatestream-level access control and
attribute-level access control fromtuple-level access
control. We enforce stream-level and attribute-level
conditions when a query is submitted to our sys-
tem for running. For tuple-level access conditions,
we combine the conditions with the original query
through query rewriting.

When a query (together with its purpose) is sub-
mitted to the system by a user for processing, a query
parser will first check syntax and extract the stream
and stream attributes that the query will access. These
information together with the query will be passed on
to do stream-level (and attribute level) checking. This
phase of checking looks at the category of the user
who submitted the query, the data the query wants to
access, and the purpose of the query (given by the
query owner) and checks whether there is an access
control policy (specified by the stream owner) that al-
lows the query to be executed. If so, the query passes
the stream-level and attribute level checking.

The query rewriting function will check whether
the applicable access control policy has tuple-level
conditions. If so, they will be combined with the orig-
inal query to form a new query. Since the rewritten
query contains the tuple-level access control condi-
tions, the query engine will enforce these conditions
during query processing.

For example, user “Staff2” may submit the follow-
ing query to the system and select “Research” as the
purpose.

SELECT t, x, y FROM taxi WHERE
x>103.81 AND x<103.86

Our access control policy enforcement component
will find out the the query wants to access stream

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

578



“taxi” and its attributes “t”, “x”, and “y”. Dur-
ing stream-level and attribute-level checking, our sys-
tem will find out that the access control policy “De-
partmentB, taxi, research, taxi.v< 80” allows the
query to be executed, because user “Staff2” is under
user-category “DepartmentB”, and the stream and at-
tributes are under data-category “taxi”, and the pur-
pose is also allowed. The query rewriting function
then will transform the query to the following query
for execution.

SELECT t, x, y FROM taxi WHERE
x>103.81 AND x<103.86 AND v<80

Note that the condition “taxi.v< 80” in the access
control policy is attached to the query as another se-
lection condition. This makes the query processing
engine to help enforce the tuple-level access control
during query processing time.

The overhead on policy enforcement in our sys-
tem is acceptable. Based on our evaluation, the time
of stream/attribute-level policy checking, i.e., search-
ing user, data and purpose categories, is linear to the
number policies and is constant to the size (fanout and
height) of each category. For the tuple-level access
control enforcement, i.e., query rewriting to incorpo-
rate policy constraints, if the selectivity of original
query is high, policy checking will not bring in any
obvious overhead; if the query selectivity is not high,
the overhead of checking access control policy could
be either positive or negative, depending on the se-
lectivity of the policy. Due to space limit, we do not
describe our prototype implementation and detailed
performance evaluation result in this paper.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we propose a framework to provide lim-
ited disclosure to data stream management systems
deployed in cloud. The key concept of our design is to
incorporate a privacy policy enforcement component,
which is called privacy controller, into the normal
stream system. In our access control model, users,
data, and data access purposes are organized into hi-
erarchies. The access control model enables each
stream owner to specify who can access what data
for what purpose under what condition. All stream
level, attribute level, and tuple level access controls
are possible. The privacy controller enforces stream-
level and attribute-level access control immediately
when a query is registered into the system. By this
way, unauthorized access to particular streams and at-

tributes can be prevented at the very first time. Then
tuple-level access control is achieved by query rewrit-
ing, i.e., adding tuple-level access control constraints
to original queries.

Another focus of our project is to make our Hip-
pocratic data stream system cloud friendly, i.e., make
it able to scale with elastic computing resources. To
this end, we are investigating the problem of deploy-
ing multiple instances of our Hippocratic data stream
system on multiple (virtual or physical) machines and
making them collaborate with each other to scale with
the dynamic stream rate and query processing load.

ACKNOWLEDGEMENTS

This work was supported by A*STAR Grant No. 102
158 0037.

REFERENCES

Adaikkalavan, R. and Perez, T. (2011). Secure shared con-
tinuous query processing. InSAC, pages 1000–1005.

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2002).
Hippocratic databases. InVLDB, pages 143–154.

Ashley, P., Hada, S., Karjoth, G., Powers, C., and Schunter,
M. (2003). Enterprise Privacy Authorization Lan-
guage (EPAL 1.2). Technical report, IBM.

Cao, J., Carminati, B., Ferrari, E., and Tan, K.-L.
(2009). ACStream: Enforcing access control over data
streams. InICDE, pages 1495–1498.

Carminati, B., Ferrari, E., Cao, J., and Tan, K. L. (2010).
A framework to enforce access control over data
streams.ACM Trans. Inf. Syst. Secur., 13:28:1–28:31.

Golab, L. andÖzsu, M. T. (2003). Issues in data stream
management.SIGMOD Record, 32(2):5–14.

Knauth, T. and Fetzer, C. (2011). Scaling non-elastic ap-
plications using virtual machines. InIEEE CLOUD,
pages 468–475.

Lindner, W. and Meier, J. (2006). Securing the borealis data
stream engine. InIDEAS, pages 137–147.

Nehme, R. V., Lim, H.-S., and Bertino, E. (2010). FENCE:
Continuous access control enforcement in dynamic
data stream environments. InICDE, pages 940–943.

Nehme, R. V., Lim, H.-S., Bertino, E., and Rundensteiner,
E. A. (2009). StreamShield: a stream-centric ap-
proach towards security and privacy in data stream en-
vironments. InSIGMOD, pages 1027–1030.

Nehme, R. V., Rundensteiner, E. A., and Bertino, E. (2008).
A security punctuation framework for enforcing ac-
cess control on streaming data. InICDE, pages 406–
415.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lind-
ner, M. (2008). A break in the clouds: towards a
cloud definition.SIGCOMM Comput. Commun. Rev.,
39:50–55.

LIMITING�DISCLOSURE�FOR�DATA�STREAMS�IN�THE�CLOUD

579


