
GRAPHICAL SIMULATION OF NUMERICAL ALGORITHMS
An Aproach based on Code Instrumentation and Java Technologies

Carlos Balsa, Luís Alves, Maria J. Pereira, Pedro J. Rodrigues and Rui P. Lopes
Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1134, Bragança, Portugal

Keywords: E-Learning Tool, Numerical Methods, Octave, Code Instrumentation, Inspector Functions, XML, OpenGL,
Website, Servlet, Open Source.

Abstract: We want to create a working tool for mathematics teachers and a corresponding learning tool for students,
namely a graphical simulator of mathematical algorithms (GraSMa). To achieve it we try two different
strategies. We started by annotating manually the original algorithm with inspector functions. Now we are
testing a new approach that aims at automatically annotating the original code with inspector functions. To
achieve this we are developing a language translator module that enables us to comment automatically on
any code written in Octave language. The run of the annotated code gated by one of these two ways, records
in a XML (eXtensible Markup Language) file everything that happened during the execution. Subsequently,
the XML file is parsed by a Java application that graphically represents the mathematic objects and their
behaviour during execution. The final application will be accessed on-line through a website (WebGraSMa)
which is currently under development. In this paper we report and discuss about the procedures followed
and present some intermediate results.

1 INTRODUCTION

The human visual system constitutes a massively
parallel processor that provides the highest
bandwidth channel into human cognitive centers.
Considering this fact, we can easily assume that
visual representations of data amplify cognition,
leveraging perception and understanding of complex
ideas with clarity, precision, and efficiency. As an
extension to this concept, it is clear that geometric
representation of mathematical concepts will provide
a valuable method to help interpret and understand
them. From this perspective, numerical methods can
no longer be seen as a sequence of lines of code, but
a rich set of moving graphical objects.

In this context, we are developing an open source
tool (Graphical Simulator of Mathematical
Algorithms - GraSMA) that can be used by teachers
and students in different mathematical classes.
GraSMA will help to understand concepts as
approximated solution, iteration, convergence, error,
etc.

Currently there are several software modules in
the field of mathematics education. Some are
commercial and other free. Most of them focus on
secondary education. Subjects taught in graduate

education, particularly on the subject of numerical
methods, are scarce. In these series, we highlight the
"Interactive Educational Modules in Scientific
Computing," available online at the site
http://www.cse.illinois.edu/iem/. In this software,
each module is a Java applet that is accessible
through a web browser. For each applet, we can
select, from a list, problem data and algorithm
choices interactively and then receive immediate
feedback on the results, both numerically and
graphically. Our approach differs from this because
it is open source and generic, open to the inclusion
of new mathematical methods that can be illustrated
graphically

In previous work (Balsa et al, 2010), we put out
several important questions namely: How to retrieve
the information about the sequence of algorithm
iterations (data flow and control flow)? How to
represent internally that information? Is the
representation in XML pretty generic? Which
technology should be used to visualize graphically a
mathematical algorithm (Java and OpenGL)?

We begin by addressing these questions in
sections 2, where we describe the main steps that led
to the current GraSMA implementation. After that,
in sections 3, we illustrate the GraSMA utilization

164 Balsa C., Alves L., J. Pereira M., J. Rodrigues P. and P. Lopes R..
GRAPHICAL SIMULATION OF NUMERICAL ALGORITHMS - An Aproach based on Code Instrumentation and Java Technologies.
DOI: 10.5220/0003917601640169
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 164-169
ISBN: 978-989-8565-06-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

with the Newton Raphson’s method. In section 4 we
discuss about GraSMA improvements currently
under development.

2 GRASMA IMPLEMENTATION

To build the information essential to animate
algorithm iterations we choose to instrument the
code (Code Instrumentation). This technique is well
known in the area of program comprehension, see
for instance (Berón et al, 2007) and (Cruz et al,
2009), and usually is adopted when the objective is
to visualize programs written in a specific language.
The main idea is to annotate the source code with
inspector functions. This will allow retrieving static
and dynamic information of the program execution.
To store this information, a Document Type
Definition (DTD) was created in order to generate
an intermediate representation in XML - eXtensible
Markup Language (Ramalho and Henriques, 2002).
That DTD describe how to represent information
about the algorithm execution. One of the first
challenges of this work is to determine the schema
appropriate to describe a large number of different
algorithms.

Finally, in order to visualize the algorithms, the
Java programming language (Cadenhead and
Lemay, 2007) and OpenGL (Shreiner, 2009) are
used.

The software, based on Java and OpenGL, relies
on the GNU Octave engine for numerical
calculations. The visualization section is based on
two predominant classes: the GLRenderer2D and the
GLRenderer3D.

On the other side, the class OctaveCaller
generates the XML file, based on the execution of
the algorithm in Octave. The “Renderer” classes
process and display on screen a series of
mathematical object representing a step or iteration
of a numerical method.

The algorithm is represented, in Java, by the
class Algorithm, which describes the Octave
algorithm through a list of iterations (each iteration
is itself a list of mathematical objects to be
displayed). This information is stored in a list of
iterations and is obtained via the Parser class that
can process an XML file to retrieve the iterations
data and thus place them in the corresponding field
in the instance of the Algorithm class.

To visualize the algorithm execution two
different panels are displayed: the first displays
some standard elements that are always on the
screen (named the “global” elements). The second

draws some elements that are visible only for the
iteration that is currently on display. These elements
will be replaced at the next iteration. That is why
one is able to see on the class diagram that the
Algorithm class is linked to the MathObject
interface by two different links: an iterationList (that
is to mean a list of iteration where an iteration is a
list of MathObject), and a global list is just a list of
MathObject. A generic schema of all software
components can be seen in Fig. 1.

Figure 1: Generic scheme of all software components.

2.1 Annotation with Inspector
Functions

The software can display on the screen any type of
mathematical algorithm that uses some type of
mathematical objects that will be detailed in section
2.3. For this, the algorithm coded in Octave
language, must be changed a second time to allow
record data by each iteration. This data is
encapsulated in an XML file.

Two Octave functions, already defined, are
added to the Octave code: init_global() and
end_global()

These functions are to generate the early part of
“global” algorithm, i.e., all elements that appear on
the screen from iteration to iteration. For each
iteration, other functions are used: init_data(),
end_data(), init_iteration(),
init_iteration_with_information(),
end_iteration() and end_data().

The init_data is called on the beginning of a
list of iterations. This function will be followed by a
series of successive calls of init_iteration
function (with or without information) to declare the
beginning of a new iteration and a call of
end_iteration function to complete the
annotation. When all the iterations have been
reported with their mathematical objects inside, we

GRAPHICAL�SIMULATION�OF�NUMERICAL�ALGORITHMS�-�An�Aproach�based�on�Code�Instrumentation�and�Java
Technologies

165

can call the end_data function to close the
iterations list.

Finishing the iteration annotation it is time to
declare the mathematical objects that appear in this
iteration. To do this, the following functions are
available in Octave:

 new_curve
 new_ellipse
 new_circle
 new_curve_with_parameters
 new_integral
 new_integral with parameters
 new_parameter
 new_point2d
 new_point3d
 new_vector
 end_curve_with_parameters
 end_integral_with_parameters

The Octave basic function should be amended to
bring up a parameter file_id as the first parameter
of the function. This file_id is the file identifier
for the XML backup of the execution of the
algorithm. This file identifier is created
automatically by GraSMA that will itself launch
Octave script with this parameter.

The Octave basic function should be amended to
bring up a parameter file_id as the first parameter of
the function. This file_id is the file identifier for the
XML backup of the execution of the algorithm. This
file identifier is created automatically by GraSMA
that will itself launch Octave script with this
parameter.

If we wish to run the script manually in Octave,
you must have an identifier file.

All these Octave functions simply write lines of
XML in a file. Finally the XML file follows the
document type definition (DTD), allowing a valid
XML file to be correctly parsed by the Java code.

2.1.1 Example of Code Instrumentation

We present below the sequence of procedures done
for the graphical representation of the Newton-
Raphson’s method.

The end users (students and teachers) are not
concerned with code annotation; they just chose the
algorithm and watch the generated visualizations.

In this approach, code instrumentation is
performed by us in each Octave algorithm. It occurs
only once throughout the software lifetime. Octave
inspector function calls are added to code in order to
register in the XML file “what is happening”.

We start first by changing the header function to
add a new argument file_id.

As an example, we are going to present the basic
Newton-Raphson in Octave. The original
implementation of this method is:

function[x, res,
nbit]=nle_newtraph(f, df, x0, itmax,
tol, varargin)

x=x0;
nbit = 0;
err=tol+1;
fx= feval(f,x,varargin{ : });
if fx==0;
 x=x0; res=0; nbit=0;
 return
end
while err > tol & nbit <= itmax
 aux = x;
 fx = feval(f,x,varargin{ : });
 dfx = feval(df,x,varargin{ : });
 x = x−fx/dfx;
 err = abs(aux−x);
 nbit = nbit+1;
end
res = feval(f,x,varargin{ : });
if nbit > itmax
 printf([”nle_newtraph stopped

without converging, maximum number of
iteration was reached .\n”]);

end
endfunction
The programming user must decide what he

wants to display on the screen. Let’s imagine that he
wants to show the target function ()f x and to
display different tangent lines representing the
evolution of the algorithm in each iteration.

Then, before the first iteration of the algorithm,
we declare the elements that will be global, i.e. the
mathematical elements that will be continuously
displayed on the screen. The functions
init_global and end_global must imperatively
be called even if the list of elements inside is empty:

After the declaration of global elements,
init_data function is called in order to prepare the
annotation of the iterations. Next, at each iteration
we will find at first the init_iteration call (or
init_iteration_with_parameter, which can
also take a string that represents the additional
information to be displayed by the application) and,
at the end, the end_iteration function call.

All these functions (which records data in an
XML file) have always as first parameter file_id.
After the end of the list of iterations, a call to
end_data function is necessary.

Finally, it remains only to make a call to
init_error and end_error before closing the data
tag (end_data). One can put a list of errors
(new_error_point) after the call to init_error.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

166

2.2 Document Type Definition

Document Type Definition (DTD) is a structure of
mark-up declarations that defines a document type
for SGML-family languages (SGML, XML,
HTML). A DTD is a kind of XML schema.

DTDs use a brief formal syntax that declares the
structure and the elements and its attributes of one
type of document. Each case of the DTD will follow
the same organization and it has the same elements.

2.3 Plotting Mathematical Objects

The fundamental mathematical objects that we can
visualize are: vectors, lines, curves (functions),
integrals, circles, ellipses and 3D surfaces. Each of
these objects corresponds to a Java class that
implements the interface MathObject.

For instance, the semantic representation in the
XML file that matches with the mathematical object
Integral is:

<integral value=”@(x) sin(x)”
 color=”green” lowerbound=”−2”
 upperbound=”8”> </integral>

The display of integrals was necessary to see the
evolution of the Simpson method (Fig. 2), used in
numerical analysis, for numerical integration. The
first attempt to draw the integrals was based on
polygons (because the polygons are one of the basic
designs of OpenGL). This was not conclusive
because the full draw on the basis of a polygon is
possible only if, on the interval over which the
integral is calculated, the function does not change
its sign. So we used even more basic integrals: using
only lines, and different colours that work in all
cases. Use 15-point type for the title, aligned to the
center, linespace exactly at 17-point with a bold font
style and all letters capitalized. No formulas or
special characters of any form or language are
allowed in the title.

Figure 2: Visualization of the Simpson’s method.

3 GRASMA UTILIZATION

At the opening of GraSMA system we select Files,

then New, and it simply shows the steps on a new
window. In step 1 we must choose an annotated
Octave algorithm a give it a name in step 2. Finally,
in step 3 we indicate the input parameters of the
numerical method. If we need to refer a function, we
must think about writing this function in Octave
format (for example @(x) sin(x) for the sinus
function).

The Fig. 3 illustrates the case of the call to
Newton-Raphson’s method to find the zero of the
function 2() 1f x x= − , with initial approximation

0 2x = .

Figure 3: Example of a call to Newton-Raphson method.

Once this information is supplied, the algorithm
visual representation appears on the application left
side.
The user interface is very simple with icons for:
 -Go to the next iteration
 -Go to the previous iteration
 -Make the animation of the algorithm
The progression of the algorithm is shown on the
application right frame and if any information has
been filled for a particular iteration in the modified
Octave file, then it will be displayed on the list box.

Fig. 4 and Fig. 5 correspond to the two first
iterations of the Newton-Raphson method with setup
parameters shown in Fig. 3. The dashed line corres-
ponds to the approximate solution obtained by the
tangent function (straight pink) in the previous
iteration.

GRAPHICAL�SIMULATION�OF�NUMERICAL�ALGORITHMS�-�An�Aproach�based�on�Code�Instrumentation�and�Java
Technologies

167

Figure 4: First iteration of Newton-Raphson method.

Figure 5: Second iteration of Newton-Raphson method.

We can increase or decrease the zoom level of
the visualization by clicking with the left button of
the mouse.

4 GRASMA IMPROVEMENTS

We are planning to add new functionalities to
GrasSMa. Currently we are working in the
automatic annotation of Octave code by means of a
compiler that generates annotated code. Other
current issue is the development of a website that
enables the online access to GrasSMa.

4.1 Automatic Code Instrumentation

The main idea is to turn GrasSMa easily adaptable to
other algorithms. As these algorithms are
implemented in Octave language and we can extract
information in run-time in order to visualize the
execution process. For that, a language processor
will be used to automatically annotate Octave
programs with inspector functions. Until now, this

task was performed manually for each algorithm but
with this new frontend, GrasSMa can generate
visualizations of any algorithm coded in Octave
without modifying manually the source code.

To implement code instrumentation (Cruz et al,
2009) we insert inspection functions (or inspectors)
in strategic places of a program to capture its
execution flow. The information extracted along this
inspection can be used to show different views to
help understanding program behaviour. This is a
well known technique for Program Comprehension.

To define a strategy to annotate the source code
we have to know: which information we need to
extract; and what are the strategic points in the
source code.

To answer these questions we conceptualize the
program execution process as a state machine (SM).
The input values represent the initial state and the
final state can be represented by the variable values
after execution. The intermediate states are
represented by the variable values reached during
the program execution.

The transition between states is carried out
through the Octave program functions. The values
reached in each algorithm step with be saved
internally to produce evolution graphical
visualizations.

To implement this strategy we are building a
parser for the source language extended with
semantic actions. These actions insert into the
program new statements that will allow tracing the
state and the transitions.

The parser relies on several compiler
constructions (Aho et al, 1986) tools: Lex&Yacc
(Levine et al, 1992), AntLR (Parr, 1999) or LISA
(Henriques et al, 2005).

These tools are based on the language grammar
and they allow specifying the automatic recognition
and transformation of the program written in that
language. In our case the language to be recognized
is Octave and the transformation consists in adding
the inspector functions.

4.2 WebGRASMA

The GrasSMa prototype is a desktop application,
running in a Java Virtual Machine installed in the
user workstation. This approach limits the possibility
to update the existing algorithms as well as the
possibility to deploy new algorithms. Moreover, the
use of the software requires that each student installs
the software on his own PC or laptop, making the
tool unpractical to use in lectures.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

168

To deal with these limitations, we are developing
a Web based application able of displaying the
algorithms directly on a web browser.

The web application is structured in two main
sections: the server and the client. We are making
the effort to use standard HTML, to allow using
regular web browsers as the client.

The server side concentrates the application
logic, responsible for storing the algorithms, execut-
ing them on demand on the Octave engine,
retrieving the execution resulting XML file and
producing the visualization, which will be sent to the
client.

In the desktop version, a single instance of the
Octave engine is sufficient to respond to the user
operation. However, in the Web based version, each
user has, potentially, allocated a different instance.
This can pose scalability and stability issues.

To prevent, as much as possible, these problems,
we are considering a server side cache mechanism,
to allow responding to user operations without
requiring on-the-fly interpretation of algorithms.

To leverage the code already developed for the
desktop operation, we are building the Web
application in Java Servlets, for the “hardcore” logic,
and JSF (Java Server Faces) and HTML for the
complementary website structure, such as forms and
documentation pages.

Figure 6: Snapshot of the web-based GraSMa.

5 CONCLUSIONS

This paper described GRASMA implementation.
The approach followed by this graphical simulation
tool was semi-automatic because it implied the
manual insertion of code inspector functions.

Here a big improvement is presented: the
numerical algorithm is automatically instrumented
and the algorithm visualization is generated with any
effort from the user.

The process is based in language processing
techniques and it allows simultaneously the
generation of XML code for further application
domains.

REFERENCES

Balsa, C., Alves, L., Pereira, M. J., Rodrigues, P.J. 2010.
Graphical Simulator of Mathematical Algorithm
(GraSMA). In Teaching and Learning 2010, Advances
in Teaching and Learning Research. IASK.

Berón M., Henriques P. R., Pereira M. J. V., Uzal R.,
2007. Static and Dynamic Strategies to Understand C
Programs by Code Annotation, In OpenCert'07, 1st
Int. Workshop on Fundations and Techniques for
Open Source Software Certification.

Cruz D., Béron M., Henriques P. R, Pereira M. J. V.,2009.
In Code Inspection Approaches for Program
Visualization, Editor Linus Michaeli, Faculty of
Electrical Engineering and Informatics, Technical
University of Kosice.

Ramalho J. C, Henriques P. R, 2002. XML & XSL: da
teoria à prática. FCA Editor. Lisbon, 1st Ed.

Cadenhead R. and Lemay L., 2007. Teach Yourself Java 6
in 21 Days. Sams, 5th Edition.

Shreiner D., 2009. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Versions 3.0 and
3.1. Addison-Wesley Professional, 7th Edition.

Aho A. V., Sethi R., and Ullman J. D., 1986. Compilers
Principles, Techniques and Tools. Addison-Wesley.

Levine J. R., Mason T., and Brown D., 1992. Lex & Yacc.
Ed. Dale Dougherty. O’Reilly & Associates Inc.

Parr T., 1999. Practical computer language recognition
and translation – a guide for building source-to-
source translators with antlr and java. http://
www.antlr.org/ book/index.html.

Henriques P., Varanda M. J., Mernik M., Lenic M., Gray
J., and Wu H., 2005. Automatic generation of
language-based tools using lisa system. IEE Software
Journal, 152(2):54–70, ISSN: 1462-5970.

GRAPHICAL�SIMULATION�OF�NUMERICAL�ALGORITHMS�-�An�Aproach�based�on�Code�Instrumentation�and�Java
Technologies

169

