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Abstract: We want to create a working tool for mathematics teachers and a corresponding learning tool for students, 
namely a graphical simulator of mathematical algorithms (GraSMa). To achieve it we try two different 
strategies. We started by annotating manually the original algorithm with inspector functions. Now we are 
testing a new approach that aims at automatically annotating the original code with inspector functions. To 
achieve this we are developing a language translator module that enables us to comment automatically on 
any code written in Octave language. The run of the annotated code gated by one of these two ways, records 
in a XML (eXtensible Markup Language) file everything that happened during the execution. Subsequently, 
the XML file is parsed by a Java application that graphically represents the mathematic objects and their 
behaviour during execution. The final application will be accessed on-line through a website (WebGraSMa) 
which is currently under development. In this paper we report and discuss about the procedures followed 
and present some intermediate results. 

1 INTRODUCTION 

The human visual system constitutes a massively 
parallel processor that provides the highest 
bandwidth channel into human cognitive centers. 
Considering this fact, we can easily assume that 
visual representations of data amplify cognition, 
leveraging perception and understanding of complex 
ideas with clarity, precision, and efficiency. As an 
extension to this concept, it is clear that geometric 
representation of mathematical concepts will provide 
a valuable method to help interpret and understand 
them. From this perspective, numerical methods can 
no longer be seen as a sequence of lines of code, but 
a rich set of moving graphical objects. 

In this context, we are developing an open source 
tool (Graphical Simulator of Mathematical 
Algorithms - GraSMA) that can be used by teachers 
and students in different mathematical classes. 
GraSMA will help to understand concepts as 
approximated solution, iteration, convergence, error, 
etc.  

Currently there are several software modules in 
the field of mathematics education. Some are 
commercial and other free. Most of them focus on 
secondary education. Subjects taught in graduate 

education, particularly on the subject of numerical 
methods, are scarce. In these series, we highlight the 
"Interactive Educational Modules in Scientific 
Computing," available online at the site 
http://www.cse.illinois.edu/iem/. In this software, 
each module is a Java applet that is accessible 
through a web browser. For each applet, we can 
select, from a list, problem data and algorithm 
choices interactively and then receive immediate 
feedback on the results, both numerically and 
graphically. Our approach differs from this because 
it is open source and generic, open to the inclusion 
of new mathematical methods that can be illustrated 
graphically 

In previous work (Balsa et al, 2010), we put out 
several important questions namely:  How to retrieve 
the information about the sequence of algorithm 
iterations (data flow and control flow)? How to 
represent internally that information? Is the 
representation in XML pretty generic? Which 
technology should be used to visualize graphically a 
mathematical algorithm (Java and OpenGL)?  

We begin by addressing these questions in 
sections 2, where we describe the main steps that led 
to the current GraSMA implementation.  After that, 
in sections 3, we illustrate the GraSMA utilization 
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with the Newton Raphson’s method. In section 4 we 
discuss about GraSMA improvements currently 
under development.  

2 GRASMA IMPLEMENTATION  

To build the information essential to animate 
algorithm iterations we choose to instrument the 
code (Code Instrumentation). This technique is well 
known in the area of program comprehension, see 
for instance (Berón et al, 2007) and (Cruz et al, 
2009), and usually is adopted when the objective is 
to visualize programs written in a specific language. 
The main idea is to annotate the source code with 
inspector functions. This will allow retrieving static 
and dynamic information of the program execution. 
To store this information, a Document Type 
Definition (DTD) was created in order to generate 
an intermediate representation in XML - eXtensible 
Markup Language (Ramalho and Henriques, 2002). 
That DTD describe how to represent information 
about the algorithm execution. One of the first 
challenges of this work is to determine the schema 
appropriate to describe a large number of different 
algorithms. 

Finally, in order to visualize the algorithms, the 
Java programming language (Cadenhead and 
Lemay, 2007) and OpenGL (Shreiner, 2009) are 
used. 

The software, based on Java and OpenGL, relies 
on the GNU Octave engine for numerical 
calculations. The visualization section is based on 
two predominant classes: the GLRenderer2D and the 
GLRenderer3D. 

On the other side, the class OctaveCaller 
generates the XML file, based on the execution of 
the algorithm in Octave. The “Renderer” classes 
process and display on screen a series of 
mathematical object representing a step or iteration 
of a numerical method.  

The algorithm is represented, in Java, by the 
class Algorithm, which describes the Octave 
algorithm through a list of iterations (each iteration 
is itself a list of mathematical objects to be 
displayed). This information is stored in a list of 
iterations and is obtained via the Parser class that 
can process an XML file to retrieve the iterations 
data and thus place them in the corresponding field 
in the instance of the Algorithm class. 

To visualize the algorithm execution two 
different panels are displayed: the first displays 
some standard elements that are always on the 
screen (named the “global” elements). The second 

draws some elements that are visible only for the 
iteration that is currently on display. These elements 
will be replaced at the next iteration. That is why 
one is able to see on the class diagram that the 
Algorithm class is linked to the MathObject 
interface by two different links: an iterationList (that 
is to mean a list of iteration where an iteration is a 
list of MathObject), and a global list is just a list of 
MathObject. A generic schema of all software 
components can be seen in Fig. 1. 

 
Figure 1: Generic scheme of all software components. 

2.1 Annotation with Inspector 
Functions 

The software can display on the screen any type of 
mathematical algorithm that uses some type of 
mathematical objects that will be detailed in section 
2.3. For this, the algorithm coded in Octave 
language, must be changed a second time to allow 
record data by each iteration. This data is 
encapsulated in an XML file. 

Two Octave functions, already defined, are 
added to the Octave code: init_global() and 
end_global() 

These functions are to generate the early part of 
“global” algorithm, i.e., all elements that appear on 
the screen from iteration to iteration. For each 
iteration, other functions are used: init_data(), 
end_data(), init_iteration(), 
init_iteration_with_information(), 
end_iteration() and end_data(). 

The init_data is called on the beginning of a 
list of iterations. This function will be followed by a 
series of successive calls of init_iteration 
function (with or without information) to declare the 
beginning of a new iteration and a call of 
end_iteration function to complete the 
annotation. When all the iterations have been 
reported with their mathematical objects inside, we 
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can call the end_data function to close the 
iterations list. 

Finishing the iteration annotation it is time to 
declare the mathematical objects that appear in this 
iteration. To do this, the following functions are 
available in Octave: 

 new_curve  
 new_ellipse  
 new_circle  
 new_curve_with_parameters  
 new_integral  
 new_integral with parameters  
 new_parameter  
 new_point2d  
 new_point3d  
 new_vector  
 end_curve_with_parameters  
 end_integral_with_parameters 

The Octave basic function should be amended to 
bring up a parameter file_id as the first parameter 
of the function. This file_id is the file identifier 
for the XML backup of the execution of the 
algorithm. This file identifier is created 
automatically by GraSMA that will itself launch 
Octave script with this parameter.  

The Octave basic function should be amended to 
bring up a parameter file_id as the first parameter of 
the function. This file_id is the file identifier for the 
XML backup of the execution of the algorithm. This 
file identifier is created automatically by GraSMA 
that will itself launch Octave script with this 
parameter.  

If we wish to run the script manually in Octave, 
you must have an identifier file. 

All these Octave functions simply write lines of 
XML in a file. Finally the XML file follows the 
document type definition (DTD), allowing a valid 
XML file to be correctly parsed by the Java code. 

2.1.1 Example of Code Instrumentation 

We present below the sequence of procedures done 
for the graphical representation of the Newton-
Raphson’s method.  

The end users (students and teachers) are not 
concerned with code annotation; they just chose the 
algorithm and watch the generated visualizations. 

In this approach, code instrumentation is 
performed by us in each Octave algorithm. It occurs 
only once throughout the software lifetime. Octave 
inspector function calls are added to code in order to 
register in the XML file “what is happening”.  

We start first by changing the header function to 
add a new argument file_id. 

As an example, we are going to present the basic 
Newton-Raphson in Octave. The original 
implementation of this method is: 

function[x, res, 
nbit]=nle_newtraph(f, df, x0, itmax, 
tol, varargin) 

x=x0; 
nbit = 0; 
err=tol+1; 
fx= feval(f,x,varargin{ : }); 
if  fx==0; 
    x=x0;  res=0; nbit=0; 
    return 
end 
while err > tol & nbit <= itmax 
    aux = x; 
    fx = feval(f,x,varargin{ : }); 
    dfx = feval(df,x,varargin{ : }); 
    x = x−fx/dfx; 
    err = abs(aux−x); 
    nbit = nbit+1; 
end 
res = feval(f,x,varargin{ : }); 
if nbit > itmax 
    printf( [”nle_newtraph stopped 

without converging, maximum number of 
iteration was reached .\n”] );  

end 
endfunction 
The programming user must decide what he 

wants to display on the screen. Let’s imagine that he 
wants to show the target function ( )f x  and to 
display different tangent lines representing the 
evolution of the algorithm in each iteration. 

Then, before the first iteration of the algorithm, 
we declare the elements that will be global, i.e. the 
mathematical elements that will be continuously 
displayed on the screen. The functions 
init_global and end_global must imperatively 
be called even if the list of elements inside is empty: 

After the declaration of global elements, 
init_data function is called in order to prepare the 
annotation of the iterations. Next, at each iteration 
we will find at first the init_iteration call (or 
init_iteration_with_parameter, which can 
also take a string that represents the additional 
information to be displayed by the application) and, 
at the end, the end_iteration function call. 

All these functions (which records data in an 
XML file) have always as first parameter file_id. 
After the end of the list of iterations, a call to 
end_data function is necessary.  

Finally, it remains only to make a call to 
init_error and end_error before closing the data 
tag (end_data). One can put a list of errors 
(new_error_point) after the call to init_error.  
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2.2 Document Type Definition 

Document Type Definition (DTD) is a structure of 
mark-up declarations that defines a document type 
for SGML-family languages (SGML, XML, 
HTML). A DTD is a kind of XML schema.  

DTDs use a brief formal syntax that declares the 
structure and the elements and its attributes of one 
type of document. Each case of the DTD will follow 
the same organization and it has the same elements.  

2.3 Plotting Mathematical Objects 

The fundamental mathematical objects that we can 
visualize are: vectors, lines, curves (functions), 
integrals, circles, ellipses and 3D surfaces. Each of 
these objects corresponds to a Java class that 
implements the interface MathObject.  

For instance, the semantic representation in the 
XML file that matches with the mathematical object 
Integral is: 

<integral value=”@(x) sin(x)”    
 color=”green” lowerbound=”−2” 
 upperbound=”8”> </integral> 

The display of integrals was necessary to see the 
evolution of the Simpson method (Fig. 2), used in 
numerical analysis, for numerical integration. The 
first attempt to draw the integrals was based on 
polygons (because the polygons are one of the basic 
designs of OpenGL). This was not conclusive 
because the full draw on the basis of a polygon is 
possible only if, on the interval over which the 
integral is calculated, the function does not change 
its sign. So we used even more basic integrals: using 
only lines, and different colours that work in all 
cases. Use 15-point type for the title, aligned to the 
center, linespace exactly at 17-point with a bold font 
style and all letters capitalized. No formulas or 
special characters of any form or language are 
allowed in the title. 

 
Figure 2: Visualization of the Simpson’s method. 

3 GRASMA UTILIZATION  

At the opening of GraSMA system we select Files, 

then New, and it simply shows the steps on a new 
window. In step 1 we must choose an annotated 
Octave algorithm a give it a name in step 2. Finally, 
in step 3 we indicate the input parameters of the 
numerical method. If we need to refer a function, we 
must think about writing this function in Octave 
format (for example @(x) sin(x) for the sinus 
function). 

The Fig. 3 illustrates the case of the call to 
Newton-Raphson’s method to find the zero of the 
function 2( ) 1f x x= − , with initial approximation 

0 2x = . 

 
Figure 3: Example of a call to Newton-Raphson method. 

Once this information is supplied, the algorithm 
visual representation appears on the application left 
side. 
The user interface is very simple with icons for:  
 -Go to the next iteration  
 -Go to the previous iteration  
 -Make the animation of the algorithm 
The progression of the algorithm is shown on the 
application right frame and if any information has 
been filled for a particular iteration in the modified 
Octave file, then it will be displayed on the list box.  

Fig. 4 and Fig. 5 correspond to the two first 
iterations of the Newton-Raphson method with setup 
parameters shown in Fig. 3. The dashed line corres- 
ponds to the approximate solution obtained by the 
tangent function (straight pink) in the previous 
iteration. 
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Figure 4: First iteration of Newton-Raphson method. 

 
Figure 5: Second iteration of Newton-Raphson method. 

We can increase or decrease the zoom level of 
the visualization by clicking with the left button of 
the mouse. 

4 GRASMA IMPROVEMENTS  

We are planning to add new functionalities to 
GrasSMa. Currently we are working in the 
automatic annotation of Octave code by means of a 
compiler that generates annotated code. Other 
current issue is the development of a website that 
enables the online access to GrasSMa. 

4.1 Automatic Code Instrumentation 

The main idea is to turn GrasSMa easily adaptable to 
other algorithms. As these algorithms are 
implemented in Octave language and we can extract 
information in run-time in order to visualize the 
execution process. For that, a language processor 
will be used to automatically annotate Octave 
programs with inspector functions. Until now, this 

task was performed manually for each algorithm but 
with this new frontend, GrasSMa can generate 
visualizations of any algorithm coded in Octave 
without modifying manually the source code. 

To implement code instrumentation (Cruz et al, 
2009) we insert inspection functions (or inspectors) 
in strategic places of a program to capture its 
execution flow. The information extracted along this 
inspection can be used to show different views to 
help understanding program behaviour. This is a 
well known technique for Program Comprehension. 

To define a strategy to annotate the source code 
we have to know: which information we need to 
extract; and what are the strategic points in the 
source code. 

To answer these questions we conceptualize the 
program execution process as a state machine (SM). 
The input values represent the initial state and the 
final state can be represented by the variable values 
after execution. The intermediate states are 
represented by the variable values reached during 
the program execution. 

The transition between states is carried out 
through the Octave program functions.  The values 
reached in each algorithm step with be saved 
internally to produce evolution graphical 
visualizations. 

To implement this strategy we are building a 
parser for the source language extended with 
semantic actions. These actions insert into the 
program new statements that will allow tracing the 
state and the transitions. 

The parser relies on several compiler 
constructions (Aho et al, 1986) tools: Lex&Yacc 
(Levine et al, 1992), AntLR (Parr, 1999) or LISA 
(Henriques et al, 2005). 

These tools are based on the language grammar 
and they allow specifying the automatic recognition 
and transformation of the program written in that 
language. In our case the language to be recognized 
is Octave and the transformation consists in adding 
the inspector functions. 

4.2 WebGRASMA 

The GrasSMa prototype is a desktop application, 
running in a Java Virtual Machine installed in the 
user workstation. This approach limits the possibility 
to update the existing algorithms as well as the 
possibility to deploy new algorithms. Moreover, the 
use of the software requires that each student installs 
the software on his own PC or laptop, making the 
tool unpractical to use in lectures. 
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To deal with these limitations, we are developing 
a Web based application able of displaying the 
algorithms directly on a web browser. 

The web application is structured in two main 
sections: the server and the client. We are making 
the effort to use standard HTML, to allow using 
regular web browsers as the client. 

The server side concentrates the application 
logic, responsible for storing the algorithms, execut-
ing them on demand on the Octave engine, 
retrieving the execution resulting XML file and 
producing the visualization, which will be sent to the 
client. 

In the desktop version, a single instance of the 
Octave engine is sufficient to respond to the user 
operation. However, in the Web based version, each 
user has, potentially, allocated a different instance. 
This can pose scalability and stability issues. 

To prevent, as much as possible, these problems, 
we are considering a server side cache mechanism, 
to allow responding to user operations without 
requiring on-the-fly interpretation of algorithms. 

To leverage the code already developed for the 
desktop operation, we are building the Web 
application in Java Servlets, for the “hardcore” logic, 
and JSF (Java Server Faces) and HTML for the 
complementary website structure, such as forms and 
documentation pages. 

 
Figure 6:  Snapshot of the web-based GraSMa. 

5 CONCLUSIONS  

This paper described GRASMA implementation. 
The approach followed by this graphical simulation 
tool was semi-automatic because it implied the 
manual insertion of code inspector functions. 

Here a big improvement is presented: the 
numerical algorithm is automatically instrumented 
and the algorithm visualization is generated with any 
effort from the user. 

The process is based in language processing 
techniques and it allows simultaneously the 
generation of XML code for further application 
domains. 
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