
IMPLEMENTING AN INCREMENTAL PROJECT-BASED
LEARNING SOLUTION FOR CS1/CS2 COURSES

Carlos Vega, Camilo Jiménez and Jorge Villalobos
Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia

Keywords: Student-centred Learning, Active Learning, Incremental Learning, Project-based Learning, Programming
Skills, Education.

Abstract: Cupi2 is a project that promotes an integral solution to problems in teaching/learning programming using a
large and structured courseware, and a student-centred pedagogical model (Villalobos and Casallas, 2006a;
Villalobos, Calderón, and Jiménez, 2009a; Villalobos, Calderón, and Jiménez, 2009b; Villalobos and
Jiménez, 2010). As a cornerstone of Cupi2, we use incremental projects intended to motivate students, and
to develop high-level programming skills throughout their learning. A critical factor of these projects is that
they are specially designed so that students are engaged in activities that complete a scaffold of a complete
program. However, both the scaffolds and the activities needed to complete these incomplete programs must
be arranged carefully by the instructors in order to stress the adequate contents for students, and at the same
time, to help those students acquire programming skills effectively. Jointly, scaffold versions need to
comply with high quality standards, representing a high time consuming activity for instructors, and
therefore, increased costs for institutions. In this paper, we describe the way we overcome these challenges
by supporting the projects’ design in a scalable way with a software factory.

1 INTRODUCTION

Learning and teaching computer programming
courses has been a challenge for higher education
institutions for the past twenty years (Baeten et al.,
2010); (Lea et al., 2003). Students perceive
programming as a hard subject, and it is common to
hear recurrent issues related to students’ frustration
and lack of motivation. Opinions like “I do not feel
like I belonged”, “classes were unfriendly”, or
“classes were boring” are very common among
students (Biggers et al., 2008). On the other hand,
programming courses have been reported to have
several methodological problems related with the
approach instructors adopt to teach (Cannon and
Newble, 2000). Particularly, they have ignored that
learning to program well, is much like learning to
write: Students need to understand the intention,
receive detailed feedback, rewrite and receive more
feedback. Instead, students are confronted with
lectures that explain non-contextualized contents
(e.g., programming fundamentals and algorithms),
rather than being confronted with activities to
generate programming skills applicable in different
situations (Woodley and Kamin, 2007). As a

consequence, students have acquired a sense that
“how to do/apply things” is not teachable, and is
rather something that depends on inspiration and on
the genius of the programmer. They usually do not
see the real need for concepts at all, while becoming
anxious about it and making their learning process
harder in the process (Villalobos and Casallas,
2006a).

In order to overcome these challenges during
computer programming courses, we designed an
integral learning approach called Cupi2
(http://cupi2.uniandes.edu.co) (Villalobos and
Casallas, 2006a); (Villalobos et al, 2009a);
(Villalobos et al, 2009b); (Villalobos and Jiménez,
2010). This approach is based on a concrete
pedagogical model we call incremental and project-
based, since students have to work completing and
extending projects incrementally through different
levels of mastery. Projects are contextualized real-
world incomplete programs that students have to
scaffold out of the classroom throughout each level.
This way, they are motivated when they apply their
knowledge in different real situations, while
developing programming skills incrementally.
Overall, students work on 12 projects among two

15Vega C., Jiménez C. and Villalobos J..
IMPLEMENTING AN INCREMENTAL PROJECT-BASED LEARNING SOLUTION FOR CS1/CS2 COURSES.
DOI: 10.5220/0003900500150027
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 15-27
ISBN: 978-989-8565-07-5
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

highly attended basic programming courses: CS1
and CS2. Approximately 1.250 students attend these
courses, and more than 40 instructors are needed
each semester. Jointly, several universities in
Colombia have adopted this model, augmenting the
number of students that use Cupi2 to more than
2.000 each semester.

In that scale, supporting such a project-based
pedagogical model becomes a challenging task. In
particular, building projects that stress similar
contents and motivation to each student, and under
high quality standards becomes a time consuming
activity for instructors and highly costly to our
institution. Not to mention that an excellent design
and construction is also essential. This is not only
the case from a software development standpoint,
since students are scaffolding incomplete programs,
but also from a pedagogical perspective, since the
projects are one of the cornerstones of our approach.
In this paper, we present how we support our
pedagogical model with a software factory for
building such projects. First we describe the
pedagogical impact of the projects in our learning
approach, and then we show how a set of
methodologies and structured tools make our
pedagogical model sustainable. We also discuss
some findings around our experience with this
project-based learning approach, and we describe its
applicability in other contexts apart from our
University as well.

Throughout the last six years, this incremental
project-based learning approach has shown
successful results at our university. Firstly, the
number of students who fail computer programming
courses has declined up to 50%. Secondly, the
results of evaluations made by students about their
perception of our computer programming courses
have increased positively by more than 30%.
Furthermore, the students’ average grade in
computer programming courses has increased by
more than 16%. These results show a general
improvement in computer programming courses,
and they also reflect the increase of learners’
satisfaction for programming and the decrease of
drop-out rates in our programming courses.

Cupi2 has also been recognized by important
regional institutions in two different occasions. In
the first occasion, Cupi2 was awarded the 2007
Colombian Informatics Award by the Association of
Colombian Computer Engineers (ACIS), based on
the quality of its learning objects and its academic
impact in more than 30 universities in Colombia. In
the second occasion, Cupi2 obtained the first place
in the 10th prize of Educational Informatics 2009 by

the Iberoamerican Network of Educational
Informatics (RIBIE), based on its academic and
research quality, its social incidence, and the number
of students and faculty members benefitting from it.

2 CUPI2: AN INCREMENTAL
PROJECT-BASED LEARNING
SOLUTION

Learning using projects or Project-based Learning
(PbL) is about generating interest and motivation in
students (Lam et al., 2009). Students are engaged in
activities that are designed to either answer a
question or solve a problem reflecting real life
situations, while they also integrate topics from
various study fields. They are continually involved
in problem solving and decision making tasks and at
the same time encouraged to become autonomous in
their learning process.

2.1 The Projects

PbL emphasizes students’ learning activities around
projects (Köse, 2010). Projects are learning objects
that require a question and a problem to direct
activities that will result in the construction of a
product or an artefact (Blumenfeld et al., 1991). This
process can involve the improvement of a product as
well. However, the product must always reflect a
real-world like problem.

In our learning approach, projects are based in
the notion of complete programs as the products
students will construct. A complete program is a
working computer program with an attractive
graphical interface, a well-defined set of
requirements, an architectural design document, a
set of unit tests, the corresponding compilation and
building scripts, a well-documented code, and a
demonstration video. With this, we permanently
encourage students to integrate and clearly discern
elements from different thematic axes in
programming (Villalobos and Casallas, 2006a). We
realized that these axes, which are important for
programming, were reviewed superficially or
ignored in traditional programming courses, and for
this reason, students used to end up with the wrong
comprehension of programming: They used to place
much more importance on the programming
language rather than on the process of building a
program. Contrary to that, we teach students that
programming is the balance of several domains
(Villalobos and Casallas, 2006a); like algorithmic,

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

16

software processes, programming languages, tools,
etc. (See Figure 1).

In order to construct these complete programs
inside a project, students are engaged in activities to
complete a partial version of them. In our words: the
problem students are confronted with, is improving a
skeleton of a complete program following an
assignment guide. Students never lose the whole
picture of a complete program. Basically, we show
them that it is not necessary to cover many topics or
reach the end of the course before being able to
construct something interesting. This way, students
have the feeling that the topics they are working on,
whether they are simple or not, do have a real value
in the course as they see how they apply them in the
construction of complete programs throughout the
course.

Figure 1: Different domains in computer programming.

Complete programs are designed to deal with
real-world-like problems. With this, they are not
only meant to be motivating from a student
perspective, but also from a professional one. We
are aware that the needs of graduates have changed.
They now need the flexibility to adapt to different
professions and the ability to apply their knowledge
to a wide variety of situations (Lea et al, 2003). For
this reason, projects in our learning approach deal
with quandaries derived from fields such as biology
and mathematics, as well as with issues concerning
engineering and business administration (see Figure
2 for a complete program derived from a biology
problem, and Figure 3 for a complete program
derived from a business administration problem).

Together with an assignment guide and a
skeleton, projects include a grading matrix for
instructors. We have always considered that it is

really important to also recognize the
learning/teaching aspects from the teachers’ point of
view and not just from the students’ perspective. For
this reason, teachers are assisted with a document
that assigns a grade to the tasks students must
accomplish in the project.

Figure 2: The DNA Chains editor.

Figure 3: The gas station mini ERP program.

2.2 Levels

Our learning approach aims principally at generating
an adequate set of programming skills in students.
These skills are abilities developed to apply mature
knowledge effectively in different professional
domains. Figure 4 illustrates these skills organized
in a mental process that students follow when
solving a problem.

IMPLEMENTING�AN�INCREMENTAL�PROJECT-BASED�LEARNING�SOLUTION�FOR�CS1/CS2�COURSES

17

Figure 4: High level skills in computer programming.

However, teaching these high-level skills in
computer programming along with the adequate
programming fundamentals is a challenging task.
These elements must be introduced in a gradual way
so that the balance between their complexities can
be preserved. To accomplish this, we defined the
notion of levels. Levels help us introduce new
concepts gradually, and facilitate incremental
learning. This way, students do not have to
reformulate their basic knowledge. Rather, they are
to refine and reinforce it continually (Reinke and
Michalski, 1988).

Each level is organized around a set of
pedagogical objectives intended to (1) introduce or
reinforce some knowledge, at the same time they are
(2) generating or strengthening a set of skills. In
particular this means that we permanently enforce
both skill generation and programming concepts. For
instance, in table 1 we list some of the pedagogical
objectives for the first level.

Table 1: First level pedagogical objectives.

Id Description
PO1-01 Understand the process of solving a problem

using a computer program
PO1-02 Build a model with the elements involved in a

problem and specify the services that the
program should provide

PO1-03 Use simple assignment statements with
arithmetic operators

PO1-04 Use simple data types such as int, double and
String

PO1-05 Use methods to initialize attributes

Programming courses in Cupi2 (CS1 and CS2)

are divided in 12 levels, each one during no more
than three weeks. Within a level, students are
engaged in a specific project. Particularly, they are
given (1) an assignment guide to build a complete
program, (2) a skeleton of it to be completed, and (3)
a demonstration video showing its functionality.
Though we design these projects carefully to
encourage students in accomplishing the
pedagogical objectives of each level, and to
captivate them in a contextual practical experience, a
proper learning environment must also be provided.
We complement the project development with an
active learning environment composed of different

kinds of activities, such as classroom activities, extra
class activities, collaborative and individual
laboratory practices, and homework assignments
(Villalobos et al, 2009b). Each one of these activities
is configured by instructors using a vast courseware,
available online through a learning community
called the Cupi2 Community (Villalobos et al,
2009a). This courseware includes more than a 100
examples, 1.000 working sheets, 15 tutorials, 200
videos and animations, 35 interactive learning
objects and 30 mind maps. This way, instructors are
able to design activities using the most appropriate
resources.

Once the course level is finished, students must
submit the results of the project (a complete
program) using a specific Learning Management
System (LMS). Then, they are evaluated in three
different ways: A revision of the project, a
theoretical exam, and a practical exam. Since we are
interested in assessing skills acquisition, these
evaluation elements are based on two assessment
mechanisms:
1) Completion: The main mandatory activity for
students while working in the skeleton is to
complete coding. To do so, they need to understand
an existent program (i.e., its models, specifications
and code). Thus, when we revise the project we are
evaluating the student’s skills to read code, to
understand specifications and to solve problems.
2) Extension: By means of proposing extensions for
students to develop, we assess their skill to abstract
and apply knowledge in other contexts. We use
extensions in two evaluation elements: The
theoretical and the practical exam. On the one hand,
theoretical exams are written evaluations about the
project. Instructors must confront students with
abstraction problems derived from what they worked
on during the level. On the other hand, practical
exams are evaluations in a computer laboratory that
extend the functionality of the project.
A Cupi2 management committee fabricates the
projects for each level. However, it is the
responsibility of each instructor to prepare the
theoretical and practical exams, and to revise the
project of each student using the provided grading
matrix.

Courses in Cupi2 highly depend on our
definition of projects. We ground our approach in
the belief that when a student develops his project,
he acquires a set of skills that helps him taking the
exams successfully. Therefore, it is essential that
projects are well designed, implemented, and tested,
both from a pedagogical and a software perspective.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

18

3 DEVELOPING PROJECTS
WITHIN A SOFTWARE
FACTORY

When instructors were in charge of gathering their
own supporting materials, students used to manifest
several differences in their learning paths, and our
Computer Science (CS) department always struggled
in trying to take control of this situation. It was
common to find some materials that did not develop
all the course contents and others that were not
interesting enough to motivate students. Similarly,
the difficulty between these heterogeneous materials
was not equally measured and their quality was
really precarious.

In order to avoid this situation, we standardized
the construction of learning materials in basic
programming courses. Particularly with projects, we
created a software factory that automates their
development, by following a predefined process and
by reusing assets such as repositories, frameworks,
metrics, models, standards and tools. This factory is
supported by in house tools to facilitate the
management and planning of projects and its
developers are qualified graduate assistants that are
enrolled in the Master of Science in Systems and
Computing Engineering program in our university.

By taking off the responsibility of developing
projects from the instructors we discerned the
possibility to scale these learning materials for any
university in our local community. Besides,
instructors have reported to have more time to
concentrate in the instruction of programming, and
students have shown better results.

3.1 Specifying the Problem

The design of a project begins selecting the target
course and the level of mastery (i.e. CS2, Level 9).
Since each level specifies certain pedagogical
objectives, we know the kind of knowledge and
skills students should be able to develop with the
project. Jointly, we think of a simple but interesting
real life problem, with which we can satisfy all
identified educational needs derived from the
pedagogical objectives. As our programming
courses are taken by students of different careers, the
problem usually relates to a domain different from
computer science, such as finance, biology, music
and others. Cases of problems in these domains are
collected from instructors of other disciplines that
have joined us as clients of the final program.
Together, we have created a repository of cases that

is being updated each semester. Such cases should
be challenging, but not impossible to solve. At the
same time, they must consider the level of mastery
students have acquired for a specific level.

To this point, we will use a CS2 project as an
example. It is called the DNA Chain Editor (see
Figure 2a). It allows manipulating and visualizing
simple DNA chains, and it is intended for level 9. As
the pedagogical objectives state (See table 2),
instead of handling arrays of DNA sequences, the
DNA Chain Editor must handle linked structures in
which DNA sequences are tied to their successors.
On the other hand, according to PO9-3, the DNA
Chain Editor must use input dialogs with several
choices (Radio Buttons).

Table 2: Fourth level pedagogical objectives.

Id Description
PO4-01 Use linked lineal structures to model groups of

attributes
PO4-02 Write algorithms to manipulate linked lineal

structures
PO4-03 Build GUIs using Dialogs, Radio Buttons and

new Layouts

After this little analysis, the problem must be

consolidated in 3 elements: A description document,
a set of functional and non-functional requirements,
and a conceptual model that describes the problem’s
entities and their relations. These elements are then
validated against some metrics we have gathered in
a repository of previous projects. These metrics
establish the minimum and maximum number of
functional requirements for a given level and they
are continually updated considering also the
feedback of students throughout our experience. If
the mismatch with our metrics is very large, we
adjust the problem to meet the defined standards for
the level, so the complexity between projects of the
same level is always kept similar over different
semesters.

3.2 Designing the Complete Program

When the problem is consolidated and validated, we
can start designing the complete program of the
project. Programs in our approach must also be built
in a similar way. It is important to recall that we do
not want students to reformulate their basic
knowledge every time they change a level. Besides,
we want to permanently exemplify adequate
architectures and best practices to build software.
For this reason, we follow a reference-architecture
(see Figure 5) that is complemented with a set of
software and coding patterns.

IMPLEMENTING�AN�INCREMENTAL�PROJECT-BASED�LEARNING�SOLUTION�FOR�CS1/CS2�COURSES

19

Figure 5: Reference architecture for complete programs.

The reference architecture of a complete program
discerns three levels: a graphical user interface
(GUI), a domain model, and a test model. Each of
these levels defines a façade that communicates with
elements from other levels. An MVC (Model-View-
Controller) pattern is also used in the architecture of
a program. Particularly, a controller that extends the
JFrame element in Java-Swing must be defined. This
controller implements the main method of the
program and contains both a reference to the main
class of the domain model (the Model in a MVC
pattern) and to a set of panels that structure the GUI
(the Views in a MVC pattern). This way, it controls
the behavior of the application in a decoupled way
separating the behaviour of the program and the user
interaction behaviour.

Complete programs define a set of extension
points in their architecture. Particularly, a panel with
two buttons must be implemented as well as the
corresponding methods to control their behaviour:
One method in the controller, and another in the

model. At first, this behaviour is simple: It only
displays a message saying “This is an extension”.
The purpose of this is that when students complete
the program in their projects, they will be evaluated
by extending the functionality of the program using
these extension points. They are asked to change
only this behaviour, for instance to traverse a certain
data structure or to display data about the program.

For every class in the domain model level, there
is a class that implements a set of test cases for its
behaviour. It implements at least one test case for
each method.

We use UML class diagrams to document the
design of the complete program. Together with the
corresponding class diagram, we identify the test
cases for the program. They are documented in a
template word file, to be used as input in the
implementation phase.

Similar to the previous step, the designs are
validated against previous design metrics that we
have gathered in our repository. These include the
number of classes in the domain, the graphical
interface and the test cases, the number of attributes
of each class, and the number of relations between
them. Again, we adjust the design to meet the
defined standards for the level in case the mismatch
with our metrics is very large.

3.3 Implementing the Complete
Program

To implement the complete program, we use a tool
called “Application Builder”. This tool generates a
base application that conforms to the projects’
reference architecture from which we can proceed to
build the solution (See Figure 6). It generates the
following elements:
 A structured project for eclipse IDE;
 Files to run both the application and the unit

tests. It generates the corresponding files for
Windows (.bat) and for Mac (.sh). (In total 14
executables);
 Template files for documenting the description

of the problem, specifying the functional and non-
functional requirements, and sketching the UML-
based domain model;
 A basic GUI: This user interface consists of three

elements implemented in different classes: A basic
JPanel, in which the graphical elements of the
program should be included. A JPanel for extensions
that consists of two buttons that will be extended in
the practical exam of each level. And a JFrame that
contains both panels and a reference to the principal
class of the domain model;

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

20

 A basic domain model: The tool generates the
principal class of the domain model intended to be
used as a façade to externalize the behaviour of the
application domain;
 A basic test model: A class for unit testing is also

provided. This class has a basic scenario set up for
the principal class of the domain model;

Figure 6: Generated GUI from the Application Builder.

With this base application, two groups of
developers start the implementation of the program.
One group is responsible for completing the GUI
and the domain model classes. The other, is
responsible for implementing the corresponding test
cases. When both teams finish their task, they revise
the work of the other group to later run the test
cases. In case of errors, developers report them using
an in-house tool called ChangeSet. This is a change
management tool that controls the development
process of software projects. Similarly, to plan the
tasks associated to software changes, we use another
in-house tool called Planning Tool, which is an
extension of DotProject deployed as an Eclipse plug-
in.

Another validation task is performed after
implementing the complete program. In this case, we
compare the lines of code (LOC) that result from the
implementation with LOC metrics from programs
built in previous semesters. If the mismatch is too
large, we first try to reduce the LOC without
changing the design; for example, only reducing the
LOC used to implement different algorithms. If this
is not possible and we need to change the design, we
have to validate it against the corresponding design

metrics again, before implementing the changes in
the code.

3.4 Demonstration Video

To motivate students, we build a multimedia
instructional video that shows how the application
would work once they have successfully completed
the skeleton. The video is a tour of all the features of
the application, designed for students to figure out
the usability and utility of it. At the same time, it
encourages students to think about how to complete
the skeleton.

3.5 Designing the Skeleton and the
Grading Matrix

Once we have completed the functional application,
we proceed with making the skeleton. Basically, we
suppress parts of the application, such as source
code or design documents, considering the
pedagogical objectives. To do so, we rely on
historical statistical data to comparatively evaluate
the complexity of projects (in terms of size of
requirements, application classes and lines of code
to complete). We work continuously until we
achieve a stable and balanced version of the
skeleton. Once it is finished, we review the
suppressed parts and build the assignment guide.
This document must direct students to the
development of the complete program and it is
composed of the following parts: (1) Objectives, (2)
setup, (3) development process and (4) validation
process.

As for instructors, we assist them in the
evaluation process of projects with a grading matrix
that provides grading parameters to assess whether
the student met the educational objectives proposed
for the project. Using this template, we ensure that
all students are evaluated under the same criteria
regardless of the course section in which they are
enrolled.

3.6 Inspecting the Project

When we finish the project building phase, we
initiate the internal project inspection, which is made
by developers of the software factory. Particularly,
they must validate that the project complies with our
reference architecture as well as with the
documentation and coding standards. After this, we
validate the project from a pedagogical perspective:
We review that the educational needs (knowledge
and skills extracted from the pedagogical objectives)

IMPLEMENTING�AN�INCREMENTAL�PROJECT-BASED�LEARNING�SOLUTION�FOR�CS1/CS2�COURSES

21

for the chosen level are reflected in the proposed
solution of the problem and the skeleton. Each of
these steps is performed according to an internal
review checklist.

Once the project successfully approves the
internal inspection, we begin inspecting the project
from an external perspective. This inspection is
performed by instructors who must have two roles in
mind: The teacher role and the student role. In
particular, the instructor must check whether
developing the project would generate the intended
level skills, and at the same time, he must validate
the student’s ability to resolve the skeleton. He also
checks that the assignment guide is clear and
concise, and that it should guide the student
adequately through the entire process of completing
the skeleton. In this inspection, we ask instructors to
do the project while reviewing an internal checklist.

4 FINDINGS AND
PEDAGOGICAL
REFLECTIONS

One of the big changes we have experienced with
the learning approach we adopted six years ago is
that we were able to increase the scope of the
programming courses at the same time students
obtained better results in their exams. In the last
level of current CS1 for example, they end up
building simple standalone versions of applications
such as the Sudoku, the Excel sheet, and the
Facebook (see Figure 7). In the case of CS2,
students build distributed applications that
communicate through sockets and use databases and
SQL. It is important to mention that in the last levels
of CS1 and CS2, students do not use a skeleton to
build a complete program. They only receive the
assignment guide that conducts them through the
construction of the complete program from scratch.
In previous versions of our courses (2005), students
only managed to build one simple program without a
graphical interface throughout the entire
programming course (see Figure 8). The interaction
with the user was limited by a console and it used to
have approximately 60% less programming concepts
compared to the projects they build nowadays. In
average lines of code (LOC), this difference
increases even more. Students used to build
programs of one hundred LOC, 6% of the LOC they
write in current projects (1.500 LOC in average).

Figure 7: CS1 level 6 Project (2010): The Sudoku.

Figure 8: CS1 Final Project before Cupi2 approach (2005):
A tic-tac-toe console version.

In other conditions, we would have suggested
that this scope increase would boost the number of
students who disapprove the programming courses,
or even discourage them to take them. However, in
our CS1 and CS2 courses the number of students
who disapprove the course has fallen by 50% during
these years (see Fig. 9). Based on this situation, we
have noticed that it is not the complexity of the tasks
or the challenging situations the only aspects that
affect students’ performance. On the contrary, it is
their motivation and the willingness to assume these
challenging situations, the aspects driving their
performance, and consequently, their learning. To
better support this hypothesis, our courses show an
increase in the motivation of students in
programming of more than 20% according to
qualitative surveys performed by our University.
They usually agree that “projects promote learning”
and that the available courseware “facilitates the
preparation for the exams”.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

22

Figure 9: Students who disapprove the course in CS1 and
CS2.

Not only the number of students who disapprove
programming courses decreased, but their average
grade in these courses increased (See Figure 10).
Particularly CS1 reported an increment of 16% in
the students’ grade average from 3.4 to 3.92, at the
same time CS2 increased this value by 7% from 3.65
to 3.89. It is important to mention that the maximum
grade in these courses is 5. Similarly, the perception
of programming courses also increased. Increasing
by 13% and 4% respectively (See Figure 11), CS1
and CS2 courses are better appreciated than before.
We now hear students saying “I used to hate
programming before taking CS1”, or “I did not
know programming had this scope in society”. In
fact, it is common to find students taking
programming courses as an optional course in their
careers. For this reason, we have opened special
programs for them at our University, so they can
emphasize their current career with computer
programming as something we call an “optional
curriculum” within their corresponding major.

After obtaining these promising results we were
not completely certain that they were caused by the
adoption of our incremental PbL learning approach.
Thus, we validated this hypothesis by measuring the
impact the projects have in the evaluation of
students. We found that 89% of those students who
treated the project successfully, also succeeded in
the corresponding theoretical and practical exams
that each instructor prepares individually. We now
firmly believe that learning to program is as much
like learning to write: Students need to understand
the intention, receive detailed feedback, rewrite and
receive more advice. It is a continuous process
guided by practicing in the correct contexts.

Figure 10: Average grade of students in CS1 and CS2.

Figure 11: CS1 and CS2 quantitative evaluation by
students.

Though we have obtained really promising
results, the costs to support such a PbL approach are
indeed high. Nevertheless, the adoption of a
software factory paradigm for building these
projects has greatly leveraged them. Currently, one
instructor and two graduate assistants are
responsible for the software factory. Approximately,
they spend 30 hours in building a project for CS1
and 45 building a project for CS2. In total, 12
projects (one for each level in our courses) are
fabricated in approximately 450 hours, meaning that
it takes around two months to build them. Another
two weeks are spent in supporting these projects
since students report an average of one error per
project. In conclusion, a total of 2 months and a half
are spent each semester in supporting our PbL
approach. These are excellent results, considering

IMPLEMENTING�AN�INCREMENTAL�PROJECT-BASED�LEARNING�SOLUTION�FOR�CS1/CS2�COURSES

23

that the same people used to spend 4 months and a
half building the projects before.

The time we save designing and building
projects is currently invested both in scaling our
approach to other universities and augmenting our
courseware. On the one hand, several universities
use these projects to complement their curricula in
different ways. Some of them use them strictly
following our approach. This means that they define
similar incremental levels and, to some extent, they
have fit their course syllabi to ours (sometimes even
using the books we have published (Villalobos and
Casallas, 2006b; Villalobos, 2008)). Others simply
use the projects in the next semester we publish
them. This way, they have enough time to fit them
according to the learning approach they use. On the
other hand, projects older than three years are
published as learning objects in the Cupi2
Community (Villalobos, 2009a). Some of them are
shared as projects, while others as examples. In this
case, the solution of the project (the complete
program) is also published. This far, our repository
of projects keeps more than two hundred projects
built during the six years we been using a PbL
approach.

5 RELATED WORK

Project-Based Learning (PbL) is an innovative
learning approach that develops several skills that
are critical for success in a dynamic twenty-first
century. Students are engaged in their own learning
process through inquiry and they work
collaboratively to create projects reflecting their
knowledge. They are encouraged to “learn how to
learn” via “real-life” problem solving (Adams, 2005;
Laffey, Tupper, Musser, and Wedman, 1998; Nagel,
1996) inside a learning environment which several
authors have considered to be more effective than
traditional ones. For instance, according to Boaler
(Boaler, 1999), in comparison to students at a
traditional school, three times as many students from
a British school following a PbL approach achieved
the highest possible grade on the national exam.
They concluded that students acquired a different
kind of knowledge by using a PbL approach
increasing their thinking skills. In another study
(Bell, 2010), students in colleges from Iowa (USA)
using a PbL approach raised their IOWA Test of
Basic Skills scores from “well below average” to the
district average in two schools and to “well above
the district average” in another school. Statistics
about learning assessments in these institutions grew

from 15% to 90% while the district average
remained the same. Similar findings in Maine (USA)
concluded that a middle school using a PbL
approach showed significant increases in all
achievement areas on the Maine Educational
Assessment Battery after only one year using the
approach. The gains made by this school were three
to ten times higher than the state average (Bell,
2010). In (Gallagher, Stepien, and Rosenthal, 1992),
a PbL group shows an increasing problem solving
ability between a pre-test and a post-test compared
to the ability of a group of students following
traditional learning approaches. Similarly, Schneider
et al (Krajcik, Marx, and Soloway, 2002) report that
PbL students score significantly higher than students
nationwide on many items. Even compared with
groups that traditionally score higher on
achievement tests, the PbL students outscored the
national average on almost half the items of the
National Assessment of Educational Progress
(NAEP) test. This test is the largest national
representation of students’ assessment known in
America in various subject areas.

Students also perceive PbL to be more effective
than traditional approaches. In (Curtis, 2002),
students claimed that “engaging projects teaches you
much more, because you get to analyze and
understand the logic behind things. If you
experiment and discover how things work, it will be
better memorized. And if it's more fun, you'll learn
faster.” Similarly, high levels of satisfaction were
reported by a majority of students in (Oliver, 2007),
in relation to the scope of the learning, their learning
success and support for their preferred learning
style. Moreover, the teacher’s feedback was positive
and the overall learning outcomes were considered
by the staff to be very satisfying.

Nevertheless, studies have shown that some
students may dislike the PbL approach (Brickman,
Gormally, Armstrong, and Hallar, 2002; Mohamed,
2008; Li, Dyjur, Nicolson, and Moormann, 2009).
These studies report that students tend to frustrate
themselves because they are engaged in activities
that challenge them more than a traditional lecture
session. However, they do admit they learn a lot
more in a PbL learning approach. In our case,
students have enhanced their perception about our
courses from an average of 80% to 90% using a PbL
approach.

Though PbL may seem an excellent alternative
for students, its implementation involves some
challenges for teachers (Lam et al, 2007). Firstly, the
planning of projects implies more preparation time
than lecture-based approaches. In PbL, projects need

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

24

extended time periods that change between a few
lessons to a whole year of education process (Köse,
2010). Secondly, some teachers may have limited or
a lack of resources and support (Hall, 2002). And
thirdly, teachers may resist changing their habitual
pedagogical approach. For these reasons, it is critical
that institutions support PbL with the appropriate
methodologies and technological tools. Lam et al
(Lam et al, 2007) propose that when implementing a
PbL approach, institutions should support teachers
for three perspectives: Competence support,
autonomy support, and collegial support. In the first
perspective, teachers should be engaged with PbL
teaching in optimal conditions that include a good
coordination, a reasonable workload and an adequate
staff development. In the second perspective,
teachers should be allowed to be autonomous in
some parts of their teaching. They should be allowed
to participate in the definition of projects, and their
opinions should be acknowledged by the institution.
Otherwise, they would feel threatened by the
learning approach, decreasing their motivation to
teach. In the last perspective, institutions should
ensure a good group perception about the
implementation of a PbL approach. They argue that
the primary reason for some people to engage in
certain behaviour is probably because this behaviour
is prompted, modelled, or valued by significant
others to whom they feel attached or related. To
support their hypotheses, they performed a study of
how school support was related to the teacher’s
motivation and willingness to persist in a PbL
learning approach. Finally, they found that when
schools are stronger in the previous perspectives,
teachers show an increased motivation and
willingness for implementing and continuing these
PbL approaches.

Supporting PbL approaches is naturally achieved
with technology. In (Köse, 2010), an advanced web
system was developed to provide an effective
education environment for PbL activities in a “web
designing and programming” course. The web
system is designed for both teachers and students.
On the one hand, teachers permanently guide and
control the work of students throughout the
development of the tasks of a project. On the other
hand, students use coding editors to accomplish
these tasks, at the same time they obtain feedback
from teachers and other members. The system has
been assessed and the results show that 89% of the
students are satisfied with the support it offers for
their learning process. Teachers have reported better
academic achievements as well while adopting this
tool into their everyday teaching. Currently, more

customization features are needed from the web
system to support the PbL approach they follow in
an optimal way.

6 CONCLUSIONS

In this paper we have presented our project-based
learning (PbL) approach for teaching/learning
computer programming and the way it is supported
with a software factory for projects. We have found
that after adopting such approach in our computer
programming courses, namely CS1 and CS2, the
average grade of students has increased, and the
number of students who disapprove computer
programming courses has decreased. In addition,
these courses are better appreciated and students
have shown high levels of motivation when working
towards projects. Surprisingly, these successful
indicators have not implied reducing the scope of
our courses or lowering the quality of our courses.
On the contrary, current courses encompass more
programming concepts than before, including even
concepts that derive not only from algorithmic, but
also from a holistic view of computer programming.

Mainly, our PbL approach is based on
incremental projects that motivate students in
different ways. First, projects demonstrate them that
it is not necessary to cover many topics or reach the
end of the course before being able to construct
something interesting. Second, projects show that
programming is the balance of several domains apart
from just algorithmic and programming languages.
And third, projects confront students with real-world
like problems from different domains. This way,
students feel motivated to work since they have the
feeling that the topics they are working on, whether
they are simple or not, do have a real value in the
course as they see how they apply them in real-
world like problem solving.

One of the main drawbacks of such a PbL
approach is that it is indeed highly costly for
institutions. However, we have shown that an
adequate software factory approach for fabricating
these projects can leverage costs and generate
opportunities to scale this approach to other contexts
as well. In this manner, we have reduced the time we
spend in the fabrication of projects by nearly a half,
and several universities in Colombia have adopted
our PbL approach in different ways.

IMPLEMENTING�AN�INCREMENTAL�PROJECT-BASED�LEARNING�SOLUTION�FOR�CS1/CS2�COURSES

25

ACKNOWLEDGEMENTS

We greatly acknowledge the support from European
Union to our work, through the project entitled
IGUAL – Innovation for Equality in Latin American
Universities (code DCI-ALA/19.09.01/10/21526/
245-315/ALFAHI (2010)123) of the ALFA III
program). Although this article has been produced
with the financial assistance of the European Union,
the contents of this article are the sole responsibility
of the authors and can under no circumstances be
regarded as reflecting the position of the European
Union.

REFERENCES

Adams, K., (2005) ‘The sources of innovation and
creativity’, available at (accesed 10 October 2011):
http://www.fpspi.org/Pdf/InnovCreativity.pdf.

Baeten, M., Kyndt, E., Struyven, K., and Dochy, F.,
(2010) ‘Using student-centred learning environments
to stimulate deep approaches to learning: Factors
encouraging or discouraging their effectiveness’,
Educational Systems Review, vol. 5, pp 243–260,
doi:10.1016/j.edurev.2010.06.001.

Bell, S., (2010) ‘Project-based learning for the 21st
century: Skills for the future’, The Clearing House,
vol. 83, pp. 39-43.

Biggers, M., Brauer, A., and Yilmaz, T., (2008) ‘Student
perceptions of computer science: a retention study
comparing graduating seniors with CS leavers’,
Proceedings of the 39th SIGCSE technical symposium
on Computer science education, Portland, USA.

Blumenfeld, P. C. et al., (1991) ‘Motivating project-based
learning sustaining the doing, supporting the learning’,
Educational Phycologist, vol. 26, no. 3, pp. 369–398,
doi: 10.1207/s15326985ep2603&4_8.

Boaler, J., (1999) ‘Mathematics for the moment, or the
millennium?’ Education Week, vol. 17, no. 29, pp. 30–
34.

Brickman, P., Gormally, C., Armstrong, N., and Hallar,
B., (2009) ‘Effects of Inquiry-based Learning on
Students’ Science Literacy Skills and Confidence’,
International Journal for the Scholarship of Teaching
and Learning, vol. 3, no. 2.

Cannon, R., and Newble, D., (2000) ‘A guide to
improving teaching methods: A handbook for teachers
in university and colleges’, Kogan Page, London.

Curtis, D., (2002) ‘The power of projects’, Educational
Leadership, vol. 60, no. 1, pp. 50-63.

Esteves , M. et al., (2009) ‘Using Second Life for problem
based learning in computer science programming’,
Journal of virtual worlds research, vol. 2, no. 1, pp.3–
25.

Gallagher, S. A., Stepien, W. J., and Rosenthal, H., (1992)
‘The effects of problem-based learning on problem
solving’, Gifted Child Quarterly, vol. 36, pp. 195-200.

Hall, S. et al. (2002) ‘Adoption of active-learning in a
lecture-based engineering class’, Proceedings of the
32nd ASEE/IEEE Frontiers in Education Conference,
Boston, USA.

Jiménez C., and Villalobos, J., (2010) ‘Design and
development of an undergraduate course in Internet
applications based on an integral pedagogical
approach’, Proceedings of the 2nd International
Conference on Computer Supported Education
(CSEDU), Spain.

Köse, U. ‘A web based system for project-based learning
activities in ‘web design and programming’ course’,
Procedia Social and Behavioral Sciences, vol. 2, pp.
1174-1184, doi: 10.1016/j.sbspro.2010.03.168.

Laffey, J., Tupper, T., Musser, D., and Wedman, J., (1998)
‘A computer-mediated support system for project-
based learning’, Education Technology Research and
Development, vol. 46, no. 1, pp. 73–86.

Lam, S., Wing-yi Cheng, R., and Choy, H. C., (2009)
‘School support and teacher motivation to implement
project-based learning’, Learning and Instruction,
Vol. 20, pp. 487–497, doi:
10.1016/j.learninstruc.2009.07.003.

Lea, S., Stevenson, D., and Troy, J., (2003) ‘Higher
education students’ attitudes to student-centred
learning: Beyond 'educational bulimia’?’, Studies in
Higher Education, vol. 28, no. 3, pp. 321–334,
doi:10.1080/03075070309293.

Li, Q., Dyjur, P., Nicolson, N., and Moormann, L., (2009)
‘Using Videoconferencing to Provide Mentorship in
Inquiry-Based Urban and Rural Secondary
Classrooms’, Canadian Journal of Learning and
Technology, vol. 35, no. 3.

Mohamed, A. R., (2008) ‘Effects of Active Learning
Variants on Student Performance and Learning
Perceptions’, International Journal for the
Scholarship of Teaching and Learning, vol. 2, no. 2.

Nagel, N. G., (1996) ‘Learning through real-word solving:
The power of integrating teaching’, CA Corwin Press.

Oliver, R., (2007) ‘Exploring an inquiry-based learning
approach with first-year students in a large
undergraduate class’, Innovations in Education and
Teaching International, vol. 44, no. 1, pp. 3–15.

Reinke, R. and Michalski, R., (1998) ‘Incremental
learning of concept descriptions: A method and
experimental results’, J. Hayes, D. Michie, and J.
Richards (Eds.), Machine Intelligence 11, Oxford
Clarendon Press.

Schneider, R. M., Krajcik, J., Marx, R. W., and Soloway,
E., (2002) ‘Performance of Students in Project-Based
Science Classrooms on a National Measure of Science
Achievement’, Journal of research in science thinking,
vol. 39, no. 5, pp. 410-422.

Villalobos, J., and Casallas, R., (2006) ‘Teaching/learning
a first object-oriented programming course outside the
CS curriculum’, 10th Workshop on Pedagogies and
Tools for the Teaching and Learning of Object
Oriented Concepts - ECOOP (European Conference
on Object-Oriented Programming).

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

26

Villalobos, J., Casallas, R., (2006) ‘Fundamentos de
Programación: Aprendizaje Activo basado en Casos’,
Prentice-Hall.

Villalobos, J., (2008) ‘Introducción a las Estructuras de
Datos: Aprendizaje Activo basado en Casos’, Prentice-
Hall.

Villalobos, J., Calderón, N., and Jiménez, C., (2009)
‘Cupi2 community: Promoting a networking culture
that supports the teaching of computer programming’,
Proceedings of the 1st International Conference on
Computer Supported Education (CSEDU), Portugal.

Villalobos, J., Calderón, N., and Jiménez, C., (2009)
‘Developing Programming Skills by Using Interactive
Learning Objects’, Proceedings of the 14th Annual
Conference on Innovation and Technology in
Computer Science Education (ITiCSE), France.

Woodley, M., and Kamin, S., (2007) ‘Programming
Studio: A course for improving programming skills in
undergraduates’, Proceedings of the 38th technical
symposium on computer science education, Kentucky,
USA.

IMPLEMENTING�AN�INCREMENTAL�PROJECT-BASED�LEARNING�SOLUTION�FOR�CS1/CS2�COURSES

27

