
PARALLELIZED STRUCTURAL AND VALUE XML FILTERING
ON MULTICORE PROCESSORS

Panagiotis Antonellis, Christos Makris and Georgios Pispirigos
Department of Computer Engineering and Informatics, University of Patras, Rio, Patras, Greece

Keywords: XML, Filtering, Parallel, Multi-core

Abstract: Information filtering systems constitute a critical component in modern information seeking applications.
As the number of users grows and the information available becomes even bigger it is imperative to employ
scalable and efficient representation and filtering techniques. Typically the use of XML representation
entails the profile representation with the use of the XPath query language and the employment of efficient
heuristic techniques for constraining the complexity of the filtering mechanism. However, most of the
existing research work focuses on single-core systems, even though the multi-core processors are already
widely used. In this paper we propose a parallel filtering algorithm based on the well known YFilter, which
dynamically applies a work-load balancing approach to each thread to achieve the best parallelization. In
addition, the proposed filtering algorithm extends YFilter to also support value-based predicates in the user
profiles, thus enabling both structural and content-based XML filtering. Experimental results depict that the
proposed system outperforms the previous parallel approaches to XML filtering problem.

1 INTRODUCTION

Information filtering systems (also known as
publish/subscribe systems) (Aguilera et al., 1999)
are systems that provide two main services:
document selection (i.e., determining which
documents match which users) and document
delivery (i.e., routing matching documents from data
sources to users). In order to implement efficiently
these services, information filtering systems rely
upon representations of user profiles, that are
generated either explicitly by asking the users to
state their interests, or implicitly by mechanisms that
track the user behaviour and use it as a guide to
construct his/her profile. Initial attempts to construct
such profiles typically used “bag of words”
representations and keyword similarity techniques
(closely related to the well known vector space
model representation in the Information Retrieval
area) to represent user profiles and match them
against new data items. These techniques, however,
often suffer from limited ability to express user
interests, being unable to fully capture the semantics
of the user behaviour and user interests. As an
attempt to face this lack of expressibility, there have
appeared lately (Altinel and Franklin, 2000;

Antonellis and Makris, 2008; Canadan et al., 2006;
Diao et al., 2003; Kwon et al., 2005) a number of
systems that use XML representations for both
documents and user profiles and that employ various
filtering techniques to match the XML
representations of user documents with the provided
profiles.

The basic mechanism used to describe user
profiles in XML format is through the XPath query
language (http://www.w3.org/). XPath is a query
language for addressing parts of an XML document,
while also providing basic facilities for manipulation
of strings, numbers and booleans. XPath models an
XML document as a tree of nodes. There are
different types of nodes, including element nodes,
attribute nodes and text nodes and XPath defines a
way to compute a string-value for each type of node.

The process of filtering XML documents is the
reverse of searching XML documents for specific
structural and value information. An XML document
filtering system stores user profiles along with
additional information (e.g. personal information of
the user, email address). A user profile can store
either only structural criteria or both structural and
value criteria. In the first case, the XML filtering is
called structural while in the second case is called
hybrid (structural and value-based). When an XML

5Antonellis P., Makris C. and Pispirigos G..
PARALLELIZED STRUCTURAL AND VALUE XML FILTERING ON MULTICORE PROCESSORS.
DOI: 10.5220/0003896600050012
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 5-12
ISBN: 978-989-8565-08-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

document arrives, the system filters it through the
stored profiles to identify with which of them the
document matches. After the filtering process has
finished, the document can be sent to the
corresponding users with matching profiles.

2 BACKGROUND

2.1 Related Work

In recent years, many approaches have been
proposed for providing efficient filtering of XML
data against large sets of user profiles. Depending on
the way the user profiles and XML documents are
represented and handled, the existing filtering
systems can be categorized as follows:

Automata-based Systems. Systems in this category
utilize Finite State Automata (FSA) to quickly match
the incoming XML document with the stored user
profiles. While parsing the XML document, each
node element causes one or more transitions in the
underlying FSA, based on the element's name or tag.
In XFilter (Altinel and Franklin, 2000), user profiles
are represented as queries using the XPath language
and the filtering engine employs a sophisticated
index structure and a modified Finite State Machine
(FSM) approach to quickly locate and examine
relevant profiles. A major drawback of XFilter is its
lack of twig pattern support, as it handles only linear
path expressions. Based on XFilter, a new system
was proposed in (Diao et al., 2003) termed YFilter
that combined all of the path queries into a single
Nondeterministic Finite Automaton (NFA) and
exploited commonality among user profiles by
merging common prefixes of the user profile paths
such that they were processed at most once. Unlike
XFilter, YFilter handles twig patterns by
decomposing them into separate linear paths and
then performing post-processing over the
intermediate matching results. The authors in (Zhang
et al., 2010) propose a parallel implementation of
YFilter for multi-core systems (shared-memory) by
splitting the NFA into smaller parts, with each part
assigned to a single thread. A distributed version of
YFilter which also supports value-based predicates
is presented in (Miliaraki and Koubarakis, 2010). In
this approach the NFA is distributed along the nodes
of a DHT network to speed-up the filtering process
and various pruning techniques are applied based on
the defined value predicates on the stored user
profiles.

Sequence-based Systems. Systems in this category
encode both the user profiles and the XML
documents as string sequences and then transform
the problem of XML filtering into that of
subsequence matching between the document and
profile sequences. FiST (Kwon et al., 2005) employs
a novel holistic matching approach, that instead of
splitting the twig patterns into separate linear paths,
it transforms (through the use of the Prüfer sequence
representation) the matching problem into a
subsequence matching problem. In order to provide
more efficient filtering, user profiles sequences are
indexed using hash structures. XFIS (Antonellis and
Makris, 2008) also employs a holistic matching
approach which eliminates the need of extra post-
processing of branch nodes by transforming the
matching problem into a subsequence matching
problem between the string sequence representation
of user profiles and XML documents.

Stack-based Systems. The representative system of
this category is AFilter (Canadan et al., 2006).
AFilter utilizes a stack structure while filtering the
XML document against user profiles. Its novel
filtering mechanism exploits both prefix and suffix
commonalities across filter statements, avoids
unnecessarily eager result/state enumerations (such
as NFA enumerations of active states) and decouples
memory management task from result enumeration
to ensure correct results even when the memory is
tight. XPush (Gupta and Suciu, 2003) translates the
collection of filter statements into a single
deterministic pushdown automaton using stacks. The
XPush machine uses a SAX parser that simulates a
bottom up computation and hence doesn't require the
main memory representation of the document. XSQ
(Peng and Chawathe, 2005) utilizes a hierarchical
arrangement of pushdown transducers augmented
with buffers.

Although all of the previously described works
have been used successfully for representing a set of
user profiles and identifying XML documents that
structurally match with the user profiles, little work
(Kwon et al., 2008), (Miliaraki and Koubarakis,
2010) has been done to support value matching, that
is evaluation of value-based predicates in the user
profiles. This is a very usual problem in real world
applications where the user profiles except for just
defining some structural predicates, also introduce
value-based predicates. A modern XML filtering
system should be able to handle both types of
predicates and also scale well in case of a large
number of stored user profiles.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

6

2.2 Paper Motivation and Contribution

Most of the research work in the area of XML
filtering has been in the context of a single
processing core. However, given the wide spread of
multi-core processors, we believe that a parallel
approach can provide significant benefits for a
number of real world applications. In addition, most
of the existing approaches concentrate only on the
structural characteristics of user profiles, although in
many real-world applications the value predicates
may be more important.

Based on this motivation, we propose a parallel
approach to the problem of structural and value-
based XML filtering for shared-memory systems,
based on the YFilter algorithm. The main
contributions of the proposed parallel algorithm are:

• Parallel execution of the NFA constructed by
the YFilter, by utilizing all the cores of the
processor.

• Dynamic work load balancing based on the
currently active states of the NFA.

• The support of value-predicates in user
profiles, by dynamically pruning the NFA
based on the most “popular” states.

In our knowledge, this is one of the few works in
parallel XML filtering that deal with support of
value-based predicates, mainly inspired by
(Miliaraki and Koubarakis, 2010).

3 YFILTER OVERVIEW

The YFilter algorithm constructs a single NFA for a
large number of queries and utilizes this NFA to
filter a continuous stream of incoming XML
documents (Diao et al., 2003).

In Figure 1 we present an example of such a
nondeterministic finite automaton (NFA)
constructed from four eight user profiles. The user
profiles have been chosen appropriately to represent
the different types of supported structural
relationships. Each intermediate NFA state is
represented with a circle, while each final NFA state
(e.g. a state that leads to accepting a specific user
profile) is represented with a double circle. The user
profiles associated with each final state are shown
with curly braces next to the state. Finally, each edge
transition is triggered when a matching element (tag)
name is encountered during the parsing of the
incoming XML document.

As we can easily observe, YFilter greatly reduces
the number of states by sharing the common prefix
paths of the stored user profiles. YFilter uses an

event-driven method along with a stack of active
states. Each level of the stack represents possible
states of the NFA for the XML part of the XML
document that has currently already been seen. As
shown in Figure 2, once it receives a start-of-
element event, the filtering algorithm follows all
matching transitions from all currently active states.
When checking an available edge transitions, if the
incoming element name matches the transition or the
transition is marked by the * symbol, the
corresponding state will be added to the new active
state set. After all possible transitions have been
checked, the new active state set is complete, and it
is pushed on the stack as a new level. Whenever an
accepting state is reached, it will output the user
profiles list in this state. When an end-of-element
event is received, the active states stack is popped
one level.

It is vital to note that the actual operations
required when a start-of-element event is received
are checking the available transitions for each state
in the top level of the active states stack. For
example, when the start-of-element event for
element <c> is received, the filtering algorithm
checks the available transitions for the states: 2, 4, 5,
7 which result in the states 4, 6, 8, 9, 10, 11 to be
activated and pushed in the top of the stack.

4 PARALLEL STRUCTURAL AND
VALUE FILTERING

In this work we describe our new parallelized XM
filtering algorithm, based on YFilter. The actual
NFA execution is split into the different threads
using a dynamic load balancing technique, which
always ensures that each thread is assigned with the
same work load. The proposed algorithm, in addition
to structural filtering, also supports value filtering
based on the value-predicates defined in the stored
user profiles.

4.1 Parallelized NFA Execution

Our goal was to truly parallelize the YFilter
algorithm in a balanced way in order for each thread
to be assigned with a similar amount of workload
during the filtering process. Existing approaches are
based on statically splitting the constructed NFA
into parts and assigning each specific part at each
thread (Zhang et al., 2010). Similar approaches also
exist for distributed NFA execution on top of DHT
networks (Miliaraki and Koubarakis, 2010).
However, this type of work splitting does not ensure

PARALLELIZED�STRUCTURAL�AND�VALUE�XML�FILTERING�ON�MULTICORE�PROCESSORS

7

Figure 1: Example NFA constructed from a set of user profiles.

Figure 2: Active states during parsing of an incoming XML document.

that each thread will actually have the same
workload, as the actual state transitions may occur
only in a very small part of the whole NFA. In such
a case some threads may remain idle, while others
are working, thus the NFA execution is not truly
parallelized. For example consider the NFA of
Figure 1, split in four parts: {0, 1, 2}, {3, 4, 5}, {6,
7, 8} and {9, 10, 11, 12}, which each part statically
assigned to a single thread. When the start-of-

element event for element <c> is received, the thread
#1 will check one state (state 1), the thread #2 will
check two states (states 4, 5), the thread #3 will
check only one state (state 7) and the thread #4 will
remain inactive as none of the currently active states
belong to its NFA part. Thus, the actual workload is
not equally split to the four available threads.

Based on this notion, the proposed filtering
algorithm achieves balanced work splitting, by

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

8

dynamically assigning tasks to each thread during
NFA execution. As mentioned before, whenever a
start-of-element event is received, the algorithm has
to check the transitions of each state included in the
top level of the active states stack. Although each
active state does not have the same number of
candidate transitions with the rest states, we make
the assumption that the number of tasks is equal to
the number of active states at that time. Based on
this assumption, the proposed filtering algorithm
creates a task for each active state and pushes them
into a queue. Whenever a thread is idle, it is
assigned with the next available task (e.g. active
state) from the queue. The only drawback of this
approach is that in cases that a state has a big
number of candidate transitions, the corresponding
thread may be late and thus the achieved
parallelization will be not the best one.

For example, consider a system with three
threads and the NFA of Figure 1, when the start-of-
element event for element <c> is received. The
currently active states are four (states 2, 4, 5, 7) and
thus the thread #1 will be assigned with state 2, the
thread #2 will be assigned with state 4 and the thread
#3 will be assigned with state 5. Each thread will
check the available transitions of its assigned state
with the character <c> and in case of a match, it will
activate the appropriate new state by pushing it on
top of the stack. The first thread that will finish its
job will be also assigned with the remaining state 7.

From the above example, it is clear that the
proposed dynamic parallelization of the NFA
execution achieves best results due to actual work
balancing based on the currently active states, unlike
the existing approaches which are based on statically
assigning NFA subsets to each thread.

A slightly different approach can be utilized if
the fan-out of the NFA (e.g. number of edges per
state) is quite small: in such a case the actual cost of
checking all the transitions of each state is quite
small, so the overhead of creating a separate task for
each active state may overcome the benefits of the
actual parallelization. So, it is better to split the set
of active states into a list of subsets, based on the
number of threads, and assign a subset to each
thread.

For example, consider again a system with two
threads and the NFA of Figure 1, when the start-of-
element event for element <c> is received. Instead of
assigning the state 2 to thread #1, the state 4 to
thread #2 and waiting for them to finish in order to
assign the rest of the states, we can directly assign
the states 2, 4 to thread #1 and the states 5,7 to
thread #2. That way, we reduce the cost of task

initialization for every separate active state, thus
achieving a further improvement on the total
filtering time.

This variation decreases the overhead introduced
of task creation and assignment by creating the least
number of tasks. However, if a specific subset of
states includes much more transitions than the other
subsets, the rest of the threads would have to remain
idle for quite a long time, thus increasing the actual
filtering time. Based on the above notions, the
proposed filtering algorithm only uses this approach
only if the number of transitions is about the same
for every state during NFA construction, based on a
predefined threshold of 15%, which was depicted
after experimental testing.

4.2 Evaluation of Value-Based
Predicates

In the previous section, we described how the
structural matching is parallelized by assigning each
thread with a subset of the active states to check. In
this section, we concentrate on the evaluation of
value-based predicates. Consider for example the
user profile q:

paper[@year=2011]/author[text()=”James”],

which selects the papers of author “James” during
the year 2011. In order to filter an incoming XML
document against the user profile q requires to check
if the document’s structure matches the profile’s
structure and also whether the value predicates of
the user profile q are satisfied by the XML
document.

A naïve approach is to integrate the value
predicates directly on the constructed NFA, by
adding extra transitions for the predicates, thus
considering the value predicates as distinct nodes
(Kwon et al., 2008). However, this approach would
lead to a huge increase in the number of states and
also destroy the sharing of path expressions for
which the NFA was selected to begin with, as the
value predicates usually form a larger set than the
structural constraints of the user profiles. Other
approaches, such as bottom-up and top-down
(Miliaraki and Koubarakis, 2010), have been
proposed to address this problem. The common idea
behind those approaches is the selection of a small
subset of the value predicates for pruning the NFA
execution, based on some predefined selectivity
criterion. However, in real world applications, the
incoming XML documents have been usually
generated by different sources and thus vary both in
structure and content. In such cases, a selected value

PARALLELIZED�STRUCTURAL�AND�VALUE�XML�FILTERING�ON�MULTICORE�PROCESSORS

9

predicate may be good for pruning the NFA
execution during the filtering of a specific set of
XML documents and bad for another set of XML
documents. Thus, deciding on which value
predicates to utilize during the NFA execution is not
straightforward and has a strong impact on the
efficiency of the filtering algorithm.

Based on this notion, our proposed filtering
algorithm utilizes a novel step-by-step approach for
supporting value-based predicates. This approach
introduces the idea of "popular" NFA states, that is
the NFA states that have been activated a lot during
the filtering of the various incoming XML
documents. More precisely, we keep a counter for
each NFA state that counts the number of activations
for that state and we select the top 10% states as the
most "popular" states. For example, in Figure 3, the
state 4 has been activated two times, while the state
3 has been activated zero times. The value of the
threshold can change to balance the pruning of the
NFA, but it is initialized to 10% which resulted in
better results during the experiments.

The idea of utilizing the most "popular" states
has the benefit that dynamically defines the set of
NFA states that trigger value predicate checking
(and thus may stop the NFA execution), only based
on the set of previously filtered XML documents
and not some user-defined selectivity criterion, like
in (Miliaraki and Koubarakis, 2010). Thus there is
no need for a-priori knowledge of the semantics of
incoming XML documents in order to decide the
those states. This approach is based on the idea that
a state that has been activated a lot during the
filtering of previous XML documents has a greater
possibility to be activated during the filtering of
subsequent XML documents, and thus an unsatisfied
value predicate in that state will stop the NFA
execution (prune this execution path).

During the NFA construction, at each state we
also store a set of the corresponding value-based
predicates along with the query id of each predicate.
This set of predicates will be used during the
filtering in order to decide whether the current
execution path will continue or stop. Whenever an
incoming XML document arrives, we parse it and
create a list of candidate predicates based on the text
data of nodes and attributes. This list of candidate
predicates will be used during candidate checking
during the filtering procedure.

Checking a set of predicates assigned to a state
against the list of candidate predicates contained in
an XML document may be a slow procedure, due to
the big number of candidate predicates. Thus,
instead of checking the predicates at each active

state, the filtering algorithm applies the candidate
checking only on the most "popular" states, as
described before. During this check, we check if at
least one of the state predicates is included in the list
of document’s candidate predicates. In such a case,
the execution path will continue normally on this
state. On the other hand, if none of the state
predicates is part of the candidate predicates, then
there is no need to continue this execution path as
none of the corresponding user profiles are satisfied,
thus the state is not activated.

The only drawback of this approach is that at the
end of filtering process, all the matched user profiles
must be checked against the incoming XML
document based on their value-based predicates, as
the filtering algorithm does not check the value
predicates in all the states. However, usually the
number of matched user profiles is a small portion of
the total number of stored user profiles and thus the
cost is very small compared to the cost of checking
the value predicates at each NFA state.

5 EXPERIMENTS

We tested our filtering system against the most
recent parallel approach to XML filtering (Zhang et
al., 2010). In this approach the authors propose a
method for statically splitting the NFA into subparts
and assign each subpart to a separate thread.
However, this approach does not support value-
based predicates, so for the experiments we only
used structural-only user profiles. Our filtering
system was implemented in Java using the freeware
Eclipse IDE. In order to obtain comparable and
reliable results, we also implemented the other
parallel algorithm in Java as well.

In our experiments we used three different
datasets: DBLP dataset (http://kdl.cs.umass.edu/),
Shakespeare’s plays dataset (http://xml.
coverpages.org/) and synthetic Treebank data
generated by an XML generator provided by IBM
(Diaz and Lovell). We also generated three user
profile sets, one set for each dataset, using the XPath
generator available in the YFilter package. The final
set of user profiles consisted of the three different
user profile sets, each set constructed from the
corresponding XML dataset. We used that approach
in order to emulate a real-world filtering system
where the stored user profiles are usually different
from each other and the same also stands for the
incoming XML documents.

All the experiments were run on a quad-core
hyper threading (thus 8 threads) Linux machine

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

10

Figure 3: Filtering time as the number of threads increases.

Figure 4: Filtering time as the number of user profiles increases.

running Kubuntu 11.04 with 8 Gb RAM. During the
experiments, we measured the average filtering time
of an XML document with size approximately 5500
nodes through 7000 stored user profiles, by varying
the number of threads between 1 and 8, in order to
calculate the speed-up gained by the proposed
parallelization compared to the parallel algorithm
presented in (Peng and Chawathe, 2005). In
addition, we measured the average filtering time as
the number of stored user profiles increases between
1000 and 10000, for 4 threads.

Figure 3 shows the results of the first
experiment. As it can be easily observed both
approaches achieve a speed-up of the total filtering
process as the number of utilized threads increases.
However, although our approach starts slower (for 1
thread), it turns out that it takes greater advantage of
the increasing number of threads and finally

achieves better filtering times after the 4 threads. In
fact the achieved speed-up in filtering time is 7
(14000ms to 2000ms) for 8 threads, while the other
algorithm actually achieves a speed-up of 2.5
(10000ms to 4000ms) for 8 threads. The results can
be easily explained, as the overhead for creating a
separate task for each active state can slow down the
total filtering process if the number of threads is
small (in the current experiment : 1- 3 threads), but
as the number of threads increases, the proposed
dynamic parallelization works efficiently and the
total filtering time is greatly reduced. On the other
hand, the approach proposed in (Peng and
Chawathe, 2005), which is based on splitting the
NFA into subsets and assigning each subset into a
separate thread, cannot achieve the same speed-ups
as the number of threads increases. This is due to the
fact that it doesn’t apply a balanced workload

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8

Fi
lte

rin
g
tim

e
(m

s)

Number of threads

Our Approach

Other approach

0

1000

2000

3000

4000

5000

6000

1000 2000 5000 8000 10000

Fi
lte

rin
g
tim

e
(m

s)

Number of user profiles

Our approach

Other approach

PARALLELIZED�STRUCTURAL�AND�VALUE�XML�FILTERING�ON�MULTICORE�PROCESSORS

11

splitting into the available threads, as each NFA
subset execution may require different work, and
thus some threads may remain idle for quite large
amount of time

Figure 4 shows the results obtained from the
second experiment. It is clear that the filtering time
of both algorithms slightly increases as the number
of stored user profiles increases. This is expected, as
a greater number of user profiles results to a larger
NFA and thus to a bigger number of active states
during NFA execution. Thus, the actual workload
increases and this is depicted in the total filtering
time. However, the filtering time does not increase
analogously to the total number of stored user
profiles, which means that both approaches scale
very well as the number of user profiles increases.
Again, as the number of user profiles increases, our
proposed parallel approach scales better than the
algorithm proposed in (Peng and Chawathe, 2005),
achieving an average of 15% better filtering time for
4 threads.

6 CONCLUSIONS

In this paper we have presented an innovative
parallel XML filtering system that takes advantage
of the multi-core processors that are widely used in
modern computers, in order to speed up the XML
filtering problem. The proposed system, which is
based on the well-known YFilter algorithm,
constructs a NFA from the stored user profiles and
utilizes this NFA to filter a continuous stream of
incoming XML documents. However, instead of
executing the NFA using a single-thread approach, it
splits the workload required at each step of the
filtering process into the available threads, thus
providing a big speed-up to the total filtering time
required. The number of threads depends on the
number of available cores and can vary, but the
proposed filtering algorithm can work with any
number of threads. In addition, the proposed filtering
system extends the YFilter in order to efficiently
support value-based predicates in the user profiles,
enabling both structural and value-based filtering of
the incoming XML documents. The value-based
filtering is applied using a dynamic top-down
approach, where the NFA execution is pruned only
in the most popular states, which results to small
overhead and big speed-up due to early pruning. The
experimental results showed that the proposed
system outperforms the previous parallel XML
filtering algorithms by fully utilizing the available
threads.

ACKNOWLEDGEMENTS

This research has been co-financed by the European
Union (European Social Fund - ESF) and Greek
national funds through the Operational Program
"Education and Lifelong Learning" of the National
Strategic Reference Framework (NSRF) - Research
Funding Program: Τhales. Investing in knowledge
society through the European Social Fund.

REFERENCES

Aguilera, M. K., Strom, R. E., Stunnan, D. C., Ashey, M.
and Chandra, T. D. Matching Events in a Content-
based Subscription System. In Proceedings of the
ACM Symposium on Principles of Distributed
Computing (PODC ’99), 1999, 53-61.

Altinel, M. and Franklin, M.l J. Efficient Filtering of XML
Documents for Selective Dissemination of
Information. In VLDB, 2000, 53-64.

Antonellis, P. and Makris C. XFIS: an XML filtering
system based on string representation and matching. In
International Journal on Web Engineering and
Technology (IJWET), 2008, 4(1), 70-94

Canadan, K., Hsiung, W., Chen, S., Tatemura, J. and
Agrrawal, D. AFilter: Adaptable XML Filtering with
Prefix-Caching and Suffix-Clustering. In VLDB, 2006,
559-570.

Diao, Y., Altinel, M., Franklin, M.l J., Zhang, H. and
Fischer, P. Path sharing and predicate evaluation for
high-performance XML filtering. In TODS, 2003,
28(4), 467-516.

Gupta, A.K and Suciu, D. Stream processing of XPath
queries with predicates. In SIGMOD, 2003, 419-430.

Kwon, J., Rao, P., Moon, B. and Lee, S. FiST: Scalable
XML Document Filtering by Sequencing Twig
Patterns. In VLDB, 2005, 217-228.

Kwon, J., Rao, P., Moon, B. and Lee, S. Value-based
predicate filtering of XML documents. In Data and
Knowledge Engineering (KDE), 67 (1), 2008.

Miliaraki, I. and Koubarakis, M. Distributed structural and
value XML filtering. In DEBS, 2010, 2-13.

Peng, F. and Chawathe, S. XSQ: A streaming XPath
Queries. In TODS, 2005, 577-623.

Zhang, Y., Pan, Y. and Chiu, K. A Parallel XPath Engine
Based on Concurrent NFA Execution. In Proceedings
of the IEEE 16th International Conference on Parallel
and Distributed Systems (ICPADS 2010), 2010, 314-
321.

http://www.w3.org/TR/xpath
http://kdl.cs.umass.edu/data/dblp/dblp-info.html
http://xml.coverpages.org/bosakShakespeare200.html
Diaz, A. L. and Lovell, D. XML Generator. http://

alphaworks.ibm.com/tech/xmlgenerator

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

12

