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Abstract: We propose and investigate a prediction model of inpatient mortality for patients with myocardial 
infarction. The model is based on complex clinical data from a hospital information system used in the 
Czech Republic. The prediction of the outcome is an important risk-adjustment factor for objective 
measurement of the quality of healthcare; thus it is a very important factor in healthcare quality assessment. 
For our experiments we studied hospital mortality in acute myocardial infarction, because:  (1) this indicator 
is reliably detectable from available data; (2) treatment of acute myocardial infarction has a significant 
socio-economic impact; and (3) the prediction of mortality based on admission findings is the subject of 
many research papers and thus, we have a good benchmark for our experimental results. We considered 
only variables that convey information about the patient at the time of admission. We selected 21 out of 637 
variables and used them as predictors in logistic regression to form a prediction model for hospital 
mortality. The achieved prediction accuracy was 85% and the size of the area under the ROC curve was 
0.802. The results are based on a relatively small data sample of 486 patient records. Our future work will 
aim at increasing the accuracy by using a larger data set. 

1 INTRODUCTION 

The results of medical treatment depend not only on 
appropriate selection and proper execution of the 
treatment, but also on initial individual conditions of 
the patient. Evaluation of the patient’s initial 
conditions is applicable in two major tasks: (1) in 
estimating the prognosis of the patient in order to 
select the most efficient treatment, e.g., the selection 
of an adequate mix of interventions and medications, 
or to decide on timely referral to the facility with 
higher or (less commonly) lower specialization, i.e., 
for risk stratification, (2) for the retrospective 
statistical evaluation of the care using standardized 
quality indicators, i.e., for the risk adjustment task. 

Conceptually, these two processes must be 
mutually consistent. Risk adjustment of the outcome 
quality indicators is essentially based on the 
stratification of the risks and on empirical 
knowledge and scientific evidence of the influence 
which each patient's individual risk factors have on 
the result of care in the group of patients.  

In practice, there are significant differences in 

performing risk stratification and risk adjustment 
(standardization). Risk stratification is done in real 
time by physicians and it is based on all available 
information while standardization of the risks is 
done retrospectively, mostly by medical or 
regulatory authorities. During risk stratification of a 
particular patient, all relevant information is 
available or can be relatively easily obtained from 
the clinical documentation or from additional 
medical investigation. Retrospective evaluation of 
the quality of outcomes is subject to many 
restrictions: e.g., missing values of the variables 
cannot be completed; evaluation is mostly done 
outside of the healthcare facility and is based on 
limited sets of available data which have not 
necessarily been designed for the purpose of quality 
measurement. These data sets are in general denoted 
as “administrative” and the models based on them 
are generally called “administrative” models. 

Administrative data, i.e., demographic data, 
diagnoses, procedure codes, and coded results of 
hospitalization case outcomes are part of an inpatient 
service reimbursement form which is utilized for all 
inpatient cases reimbursed from the mandatory 
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healthcare insurance scheme in the Czech Republic. 
Differentiation of positive or negative results as 

they relate to quality of service is crucial for 
efficient allocation of funds; as such it is (or should 
be) of primary interest to the insurance companies.  

In order to create and validate an administrative 
prediction model, a clinical model, i.e., risk-adjusted 
clinical model, should be built first as a “gold 
standard”.  

For our experiments with risk-adjusted clinical 
models we chose hospital mortality in acute 
myocardial infarction, because: (1) this indicator is 
reliably detectable from available data; (2) treatment 
of acute myocardial infarction has a significant 
socio-economic impact; (3) prediction of mortality 
based on admission findings is the subject of many 
research papers, thus we have a good benchmark for 
our experimental results; and (4) no outcome-
prediction models are currently used in the Czech 
Republic; thus they are a necessary novelty in 
quality measurement.  

Our work has been motivated by the work 
published at the Yale University (Krumholz, H. M., 
et al, 2007). 

2 METHODS 

2.1 Risk Adjustment  

Risk adjustment is a statistical process used to 
identify and adjust for variations in patient outcomes 
that stem from differences in patient characteristics 
(or risk factors) across healthcare organizations in 
order to achieve better comparison of patient 
outcomes between different organizations and to 
improve the interpretability of results. The quality of 
healthcare can be measured by several types of 
indicators: by mortality, by re-hospitalization rate or 
by complication rate. In this part, we will show 
reasons and principles of risk adjustment of a 
mortality indicator. Standardization of other types of 
indicators follows the same principles. 

A straightforward comparison of mortality rate 
of two different healthcare facilities will not give 
objective results as it also depends on the presence 
of risk factors at the time of health care encounters. 
Patients may experience different outcomes 
regardless of the quality of care provided by the 
healthcare organization, so comparing patient 
outcomes across healthcare organizations without an 
appropriate risk adjustment could be misleading. By 
adjusting for the risks associated with outcomes of 
interest, risk adjustment facilitates a fairer and more 

accurate inter-organizational comparison. (CMS, 
2005). 

There are two essential methods: (1) case 
stratification, i.e., decomposition of cases into more 
homogeneous sub-groups based, for example, on age 
and/or sex grouping, or (2) standardization of results 
(indicators), i.e., risk-adjustment. The first method, 
however, is disadvantageous both in terms of 
statistics (subgroups will often have small numbers 
of patients) and in terms of subsequent interpretation 
(different subgroups may have different comparative 
results and it may not be clear how the provider 
should actually be evaluated with respect to the 
overall quality in the clinical area). 

2.2 Selection of Risk Factors 

The requirements for the selection of risk factors 
applicable in the standardization process indicators 
are as follows: (i) there must be a statistically 
significant relationship between risk factor and the 
outcome indicator. For example, if the probability of 
death from myocardial infarction is related to the 
value of blood pressure at the time of admission, 
then it is included as a risk factor. The prediction 
model should also reflect situations in which certain 
combinations of factors have greater impact than 
each of the individual factors alone; (ii) the 
composition of patients, in terms of risk factors, 
must be different in different healthcare facilities. 
Otherwise, there is no need to carry out 
standardization, although there is a strong 
correlation between the indicator and risk factor – all 
healthcare facilities are "disadvantaged" in the same 
way. In practice, this requirement is usually met, as 
healthcare facilities usually have different 
distributions of risk factors among their patients; (iii) 
each risk factor must clearly reflect the condition of 
the patient upon admission to a healthcare facility 
and may not be the result of the treatment process 
itself; (iv) each risk factor has to be reliably 
documented within the available data – 
unfortunately, this is a very limiting restriction in 
many cases, and especially in administrative data. 

It is obvious that the correction of the 
measurement bias is never perfect. Even after 
standardization, residual bias remains. Residual 
distortion can, for example, be caused by risk factors 
that are not yet known or that are not reflected in the 
data. 

2.3 Standardization of Indicators 

When standardizing the quality indicators it is first 
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necessary to find and express the relationship 
between the indicator and each risk factor. Suppose 
that the risk factor is age and the outcome indicator 
is the hospital mortality of acute myocardial 
infarction. Based on data from the entire set of 
healthcare facilities (standard population) it is 
therefore necessary to express, with the help of 
statistical methods, the relationship between the 
patient's age and the likelihood of death from heart 
attack. Then, for each hospital the correlation index 
(CI) is calculated. CI is defined as the proportion of 
two variables: the actual number of deaths and the 
predicted (expected) deaths: CI = the actual number 
of deaths / predicted (expected) number of deaths. 

The expected number of deaths in a hospital is 
the sum of individual probabilities of death of all 
patients admitted to the hospital, determined with 
respect to their risk factors. The expected number of 
deaths is the number of deaths that would be 
expected if the hospital held the same mortality risk 
as the population of all hospitals. If the actual 
number of deaths differs from the expected number, 
we can conclude there are internal factors that have 
an influence on the number of deaths in this 
particular hospital. The correlation index is a 
dimensionless number that indicates the relative 
position of the hospital compared with the average: 
an index value greater than one indicates above 
average mortality, while an index value less than one 
indicates the contrary, i.e., below average mortality. 
Standardized mortality rate is obtained by 
multiplying the index value by general mortality, 
i.e., the average mortality for all hospitals: 
standardized mortality = general mortality * CI.  

The result of standardization of the indicator is 
the value of the indicator on the condition that the 
hospital had the same distribution of risk factors as 
the entire group of providers.  

2.4 Patient Sample 

Our initial study is comprised of cases from one 
Czech hospital. After exclusion of patients 
transferred for treatment elsewhere, we selected all 
patients admitted to the hospital with the main 
diagnosis of acute myocardial infarction (ICD-10 
codes in the range of I210 - I214). Our resulting data 
set consisted of 486 patients (both male and female, 
without age restrictions). The data set includes the 
usual demographic and administrative data including 
outcome status, principle and secondary diagnoses 
coded using ICD-10, list of procedures coded using 
the Czech national list of medical procedures, and 
laboratory results. In addition, we had complete 

information about previous hospitalizations in the 
same hospital during the 12 months prior to the 
respective hospitalization. In total we considered 
637 variables (possible risk factors). Only 151 
patient records included all values of the potential 
risk factors. Patient records with missing values 
were not excluded; instead, to keep maximum usable 
information, we used a method of imputation of 
missing data values (Rubin, D. B., 1987). 

2.5 Statistical Analysis 

The first and most difficult step in the 
standardization of a selected indicator is to identify 
relevant risk factors and formally characterize their 
influence on the selected indicator. Often (see, e.g., 
Krumholz et al, 2007) the relationship between the 
risk factors and the selected indicator is expressed 
using logistic regression. 

Let P(Y = 1|X=x) denotes the probability that the 
variable Y reaches the value 1 given the value x of 
the vector of risk factors X. In our case it is the 
probability that the patient will die within 30 days 
after admission to the hospital. 

The logistic regression model defines the 
relationship between the dependent variable ܻ and a 
vector of the risk factors ࢄ having values of 
vector ࢞. The relationship is defined by the logistic 
function 

 P(Y = ࢄ|1 = (࢞ = exp(࢞′ࢼ)1 + exp(࢞′ࢼ) , (1)
 

where ࢼ is the vector of parameters to be found and ࢼ′ denotes its transposition. Vector ࢞ is usually of 
the form (1,  ,ࢼ and the first component of vector (ࢠ
referred to as ߚ଴, is the absolute member (intercept). 

First, we selected candidates for the risk factors 
based on the information gain method. Information 
gain of each risk factor ܺ and the dependent variable ܻ is defined as 

,ܻ)ܫ  ܺ) = (ܺ)ܪ + (ܻ)ܪ − ,ܺ)ܪ ܻ) , (2)
 

where ܪ(ܺ) is the entropy of variable ܺ  defined as 
(ܺ)ܪ  = − ෍ ܲ(ܺ = (ݔ log ܲ(ܺ = ௫(ݔ  (3)
 

and ܪ(ܺ, ܻ) is the mutual entropy of variables ܺ and ܻ defined similarly as 
,ܺ)ܪ  ܻ) = − ෍ ܲ(ܺ = ,ݔ ܻ = ௫,௬(ݕ  log ܲ(ܺ = ,ݔ ܻ = (4) .(ݕ

Log is the binary logarithm. The higher the 
information gain, the more information variable ܺ 
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brings about the value of variable ܻ. Absolute values 
of laboratory tests have been used, not relative 
values against the standard range for age and sex of 
the patient. Values of continuous variables were 
divided into ten bins for the purpose of information 
gain calculations. For further processing, we ranked 
only variables whose information gain was greater 
than 0.01. The finally selected variables are given in 
Table 1. 

Table 1: Variables with an information gain greater than 
0.01. 

Code Description Information 
gain 

Urea Serum urea 0.11674202 
Crea Serum creatinine 0.09532763 
Leuco Leukocytes in full blood 0.06820710 
I48 Atrial fibrillation and flutter 0.02425088 
O.E78 Disorders of lipoprotein 

metabolism and other 
lipidaemias 

0.02318073 

O.I20 Angina pectoris 0.02044021 
O.I48 Atrial fibrillation and flutter 0.01997538 
I73 Other peripheral vascular 

diseases 
0.01971532 

O.I27 Other pulmonary heart 
diseases 

0.01971532 

O.I73 Other peripheral vascular 
diseases 

0.01971532 

Age Patient’s age  0.01926587 
O.I46 Cardiac arrest 0.01851840 
K92 Other diseases of digestive 

system 
0.01758336 

O.I21.0 Acute transmural myocardial 
infarction of anterior wall 

0.01651995 

I74 Arterial embolism and 
thrombosis 

0.01576957 

I42 Cardiomyopathy 0.01474711 
O.I42 Cardiomyopathy 0.01474711 
O.I10 Essential (primary) 

hypertension 
0.01471863 

O.I21.1 Acute transmural myocardial 
infarction of inferior wall 

0.01440448 

O.I64 Stroke, not specified as 
haemorrhage or infarction 

0.01358037 

I27 Other pulmonary heart 
diseases 

0.01349612 

K29 Gastritis and duodenitis 0.01338366 
K62 Other diseases of anus and 

rectum 
0.01290232 

L95 Vasculitis limited to skin, not 
elsewhere classified 

0.01290232 

K57 Diverticular disease of 
intestine 

0.01217010 

I50 Heart failure 0.01158408 
O.I21.4 Acute subendocardial 

myocardial infarction 
0.01140944 

K80 Cholelithiasis 0.01054740 
 
Variables prefixed with "O" indicate diagnoses 

that the patient encountered during the examined 
hospitalization. Other diagnoses (without the "O" 

prefix) were taken from the patient's hospitalizations 
within one year prior to the hospitalization studied. 

Variables in Table 1 were then used for training 
the logistic regression model. For this purpose the 
values of all the considered variables were 
normalized to the interval <0, 1>. Some patients did 
not have all selected variables examined. One option 
for such patients was their exclusion from the data 
set. This would, however, significantly reduce the 
available data. Therefore, we chose Multivariate 
Imputations by Chained Equations (cf. Rubin, D. B., 
1987 or Buuren, S., at al, 2006) to substitute the 
missing values. Alternatively, we also tested the 
replacement of missing risk factor values by the 
average value of this factor, but in this case the 
results proved to be less accurate. We also excluded 
variables that were causing singularities: O.I73, 
O.I42 and L95, and also those that might yield 
misleading information due to co-morbidities: O.I20, 
O.I48, O.I46 and O. I64. 

For the actual learning of the model parameters 
of logistic regression we have used the glm module, 
which is part of the statistical system R (R 
Development Core Team, 2010). 

3 RESULTS 

The resulting model is described in Table 2. The 
first column includes the names of the risk factors as 
in Table 1. 

In the second column there are individual 
coefficients ߚ, i.e., the components of vector ࢼ of 
the logistic regression formula. Standard deviations 
of the coefficient are in the third column, and the 
fourth column contains the corresponding values of ݐ Student's t-test -- i.e., whether coefficient ߚ has the 
given mean value. The fifth column shows the 
number of degrees of freedom of the Student's t-
distribution calculated in accordance with (Barnard 
and Rubin, 1999). The last column gives the 
probability of alternative hypotheses of the t-test 
presented. Values lower than 0.05, which 
corresponds to the static level of significance of 5%, 
are shown in bold. These values indicate that the 
hypothesis that coefficient β has the given value as 
its mean value is accepted at a static level of 
significance of 5%. 

The values of coefficients β thus can be roughly 
interpreted as follows: the greater a positive number, 
the greater the influence of the corresponding risk 
factor on the probability of death. The lower a 
negative number, the greater the influence of the 
corresponding risk factor on the probability of
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Table 2: Parameters of the logistic regression model. 

Code ߚ SD t value degrees of 
freedom 

Alt. hyp. 

(Intercept) -2.1060975 1.2651842 -1.664656859 31.598080 0.105868127 
Urea 8.6381220 3.2418691 2.664549922 6.539030 0.034363798 
Crea -1.0298399 3.1864171 -0.323196842 6.948143 0.756055460 
Leuco 1.3401639 2.5917890 0.517080649 6.072126 0.623388122 
I48 1.1774437 0.5043932 2.334376623 62.932775 0.022781215 
O.E78 -1.1969985 0.4437995 -2.697160631 456.217585 0.007252314 
I73 24.2072289 3127.7478688 0.007739508 463.999987 0.993828154 
O.I27 22.4904111 3055.1132840 0.007361564 463.999942 0.994129539 
Age -0.8665293 1.2988153 -0.667169004 46.748401 0.507944173 
K92 0.1754608 2.1248919 0.082573969 260.797168 0.934253641 
O.I21.0 2.0831447 1.2175409 1.710944339 14.713859 0.108083943 
I74 0.8435731 1.2306952 0.685444349 363.623078 0.493500307 
I42 18.6880782 3580.0597075 0.005220047 463.999856 0.995837268 
O.I10 -1.7197621 0.5011027 -3.431955378 32.644378 0.001645515 
O.I21.1 -18.4366694 1142.1321492 -0.016142326 463.999889 0.987127785 
I27 -0.3723272 2.1099515 -0.176462425 220.553439 0.860092594 
K29 -0.6493484 1.1797607 -0.550406839 49.675659 0.584507085 
K62 1.6111716 3.1727303 0.507818643 83.887081 0.612913195 
K57 1.5036105 1.8285737 0.822285931 17.330469 0.422084093 
I50 -0.2095659 0.5698730 -0.367741513 18.221241 0.717302894 
O.I21.4 -0.2596627 1.1148068 -0.232921682 9.406510 0.820811800 
K80 1.4525334 0.5681741 2.556493236 388.428873 0.010952816 

 
survival. The number in the last column tells us to 
what extent this effect is statistically significant. For 
values greater than 0.05 (which is true for most of 
our risk factors), we can say that the impact on the 
probability of death was not statistically proven in 
our data set. However, it is necessary to remark that 
these results are affected by the small number of 
patients in our data set. 

3.1 Evaluation of Results of the 
Logistic Model 

For a reliable evaluation of the quality of the trained 
prediction model, independent data that were not 
used to learn the model are needed. For this purpose 
we used the method of K-fold cross-validation, 
where K had a value of ten. We randomly divided 
the data set into ten groups of approximately equal 
size. The remaining nine groups were used to train 
the model which was then validated on the selected 
group. This procedure was repeated for each of the 
ten groups. The results presented below summarize 
all partial results.  

The basis for evaluation is the confusion matrix, 
which includes numbers of true positive (tp) and 
false positive (fp) predictions that the patient will die 
and true negative (tn) and false negative (fn) 
predictions that the patient will not die. 

The results of our model were as follows: tp = 
28, tn = 383, fp = 9, fn = 66. Based on these values 
we can express the results of model evaluation: 

 

accuracy = 0.85, precision = 0.76, recall = 
0.30, and false alarm rate = 0.02. 

 

The output of the logistic regression model is not 
only an estimate of whether or not the patient dies 
within 30 days, but it gives the probability with 
which this event occurs. Also, it is possible to 
change the decision threshold (which is normally set 
to 0.5) of the classification. This enables us, for 
example, to increase recall at the expense of 
precision and vice versa. The overall behavior of 
such a classifier is best characterized by the ROC 
curve, see Figure 1. 

The ROC curve shows the dependence of recall 
and false alarm rate on the value of the threshold 
(threshold values are shown below the curve in 
Figure 1). The higher the curve is located, the better 
results the model gives. A good measure of 
classifier’s performance is the size of the area under 
the curve, i.e., the ROC area. The maximum value 
that represents the ideal classifier is 1.0. On the 
contrary, a value of 0.5 can be reached by a random 
classifier. The value of the ROC area of our model 
was 0.802. 

PREDICTION MODEL OF INPATIENT MORTALITY FOR PATIENTS WITH MYOCARDIAL INFARCTION

457



 

 

Figure 1: ROC curve of the classifier. 

4 CONCLUSIONS 

In this work we studied the standardization of 
outcome indicator “hospital mortality in acute 
myocardial infarction.” Although we had a relatively 
small data sample and we used only the main and 
secondary diagnoses and the results of three 
laboratory tests to build a predictive model, we 
succeeded in predicting the 30-day mortality of 
patients relatively successfully. The achieved 
accuracy was 85% and the size of the area under the 
ROC curve was 0.802. With regard to the statistical 
properties of predictive models of this type, it can be 
expected that a better prediction could be achieved 
by using other data from an electronic patient record, 
such as ECG, localization of pain and blood pressure 
(these data are stored only in free text format and 
would involve difficult pre-processing to enable us 
to use them in the classifier construction; this was 
beyond the scope of this paper). For practical use of 
our result in the standardization of mortality 
indicators, it will be necessary to train the model 
using a larger data set from many hospitals. Then it 
will also be possible to make a better medical 
interpretation of the achieved results. 

Another challenge, which we intend to address in 
the future, is researching the effect of a combination 
of several risk factors and the use of ratings of 
laboratory test results performed with respect to the 
normal ranges for a particular sex and age 
combination, rather than with respect to their 
nominal values only.  
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