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Abstract: The SIFT feature extractor was introduced by Lowe in 1999. This algorithm provides invariant features and
the corresponding local descriptors. The descriptors are then used in the image matching process. We propose
an overview of this algorithm: the methodology and the tricky steps of its implementation, properties of the
detector and descriptor. We analyze the structure of detected features. We finally compare our implementation
to others, including Lowe’s.

1 INTRODUCTION

Computer vision systems explore image content in
search for distinctive invariant features, serving a wild
variety of applications such as object detection and
recognition, 3-D reconstruction or image stitching.

The feature points of an image are extracted in two
steps. Feature points are first detected, then a descrip-
tor is computed in their neighboring region in order
to locally characterize them. Whereas many meth-
ods exist in the literature that enable the extraction of
feature points of different types (Harris and Stephens,
1988; Smith and Brady, 1997; Bay et al., 2008; Ke
and Sukthankar, 2004), we limit our study to the de-
tectors based on a shape description of a point using
size, thickness or principle directions to characterize
wispy/misty forms. The most widely used algorithm
in this context is the SIFT one (Scale Invariant Fea-
ture Transform) (Lowe, 2004). Lowe uses a differ-
ence of Gaussian function for the identification of ex-
trema in an image pyramid constructed at different
smoothing scales. A comparative study (Mikolajczyk
and Schmid, 2005) shows that the choice of the detec-
tor depends on the image type and so of the applica-
tion field. The algorithm of Lowe is nowadays widely
recommended in the literature (Juan and Gwun, 2009)
for its repeatability and robustness.

In this paper, we propose a SIFT algorithm sum-
mary specifying the tricky steps of its implementa-
tion. We then present an analysis of the structure and
localization of the selected feature points. We end up

with a comparison of the results of our implementa-
tion to others including Lowe’s.

2 SIFT FEATURES: DETECTION
and DESCRIPTION

The main steps of the SIFT algorithm are the follow-
ings:

1. Extrema Detection. Interest points are computed
as local extrema along a scale space pyramid.
They satisfy the property of invariance to scale
and rotation. Once localized, their coordinates
and the scale factor at which they were detected
are stored.

2. Keypoints Selection. For every candidate point
a complementary process is executed in order to
achieve a more accurate localization of the point.
The localized points are then filtered in order to
reject low contrasted points and the ones on low
curvatures edges.

3. Orientation Assignment. For rotation invariance
purposes, each keypoint is associated with an ori-
entation, which corresponds to the direction of
the most significant gradient of the neighborhood.
Hence, additional keypoints may be generated if
several significant gradients arise.

4. Descriptor Computation. For every interest
point, a numerical descriptor is computed from

467Younes L., Romaniuk B. and Bittar E..
A COMPREHENSIVE AND COMPARATIVE SURVEY OF THE SIFT ALGORITHM - Feature Detection, Description, and Characterization.
DOI: 10.5220/0003864604670474
In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP-2012), pages 467-474
ISBN: 978-989-8565-03-7
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



the gradient vectors of its neighborhood. The de-
scriptor is conceived to be robust to affine trans-
formation and illumination changes.

2.1 Extrema Detection

For the aim of the detection of candidate keypoints
that are invariant to scale, a pyramid of images at
different resolutions, denoted octaves, is constructed
from the initial image (Figure 1).

Figure 1: Two octaves of the image pyramid, each made of
five images i of scale factor kis0.

Gaussian smoothing, at uniformly increasing
scale factors (s0;ks0;k2s0; :::) are then applied to
each octave. Lowe recommends a three octaves pyra-
mid, each octave constituted of five smoothed scale
factors images. Every smoothed image L(x;y;s) of
its octave is computed as the result of the Gaussian
convolution at scale factor s of the image I(x;y):

L(x;y;s) = G(x;y;s)� I(x;y); (1)

where � represents the convolution operator.
According to Lowe, the first image of each octave

must be smoothed at a scale factor s0 = 1:6. In the
following we explain how this implementation can be
done. The initial image has an intrinsic smoothing
estimated empirically to sinit = 0:5. The first image
of the first octave is created by doubling the size of
the initial image. Its smoothing factor is thus esti-
mated to sinit � 2 = 1. The scale factor to be applied
to the image in order to achieve the desired scale s0
is computed according to the formula which indicates
the smoothing scale s f inal obtained after applying two
successive smoothings at scales s1 and s2:

s f inal =
q

s2
1 +s2

2: (2)

In our case, s f inal = s0 is required, with s1 = 1.
It is then necessary to smooth the image at a scale
s2 = 1:26. Similarly, this formula serves for the com-
putation of the smoothing factors to apply consecu-
tively to the image in order to build the octaves. Be-
tween two consecutive octaves the image is rescaled
to its half. As the first image of octave n+ 1 should

be at scale factor s0, the image at scale factor k2s0 of
the octave n is chosen to be rescaled. Though, with
k =
p

2, k2s0 = 2s0, this image will lead to one at a
scale s0, thereby simplifying the process.

Afterwards, extrema have to be detected. For
this, Lowe uses an approximation of the Laplacian of
the image with a finite difference of Gaussian DoG,
which is of low computation time. The pyramid
of DoG is derived from the image pyramid of the
smoothed images L(x;y;kns). Every DoG is the re-
sult of the subtraction of two Gaussian smoothed im-
ages at successive scales (kns0 and kn+1s0). It can be
defined as:

D(x;y;s) = L(x;y;ks)�L(x;y;s): (3)

The DoG pyramid is used for the identification of
the candidate keypoints. They correspond to extrema
identified over three consecutive DoG images within
one octave. An extremum is a maximum or minimum
in its 26-neighborhood: the intensity of the point in
the DoG image is compared to its 8-neighbors, then to
9-neighbors at superior and inferior scales. The value
of k =

p
2 has lead, according to (Lowe, 2004), to a

robustness in the detection and localization of the ex-
trema, even in the presence of significant differences
in resolution.

2.2 Keypoints Selection

The second step consists in accurately localizing the
points, and proceeding to the rejection of low con-
trasted points and the ones on edges of small curva-
ture. This step leads to the selection of stable and well
localized keypoints.

A sub-pixel precision is sought for the localization
of the keypoints, to enhance the matching quality be-
tween keypoints. Given a keypoint C(xC;yC;sC), we
define x= (x;y;s)T as the offset from C. A second or-
der Taylor approximation is used to compute the local
extremum of the function D(x) in the neighborhood of
C. Let D be the value of D(C).

D(x) = D+
¶DT

¶x
x+

1
2

xT ¶2D
¶x2 x (4)

The local extremum is the point x̂ for which the
derivative of the function D(x) is equal to zero:

x̂ = (x̂; ŷ; ŝ)T =�¶2D�1

¶x2
¶D
¶x

(5)

Let (Dx, Dy and Ds) be the first derivatives and
(Dab;(a;b) 2 fx;y;sg2) be the second derivatives of
D with respect to x,y and s, x̂ is the solution of the
following equation system:
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The derivatives are approximated by the differ-
ences of Gaussian in the 4-neighborhood of the key-
point. When the value of one component of x is
greater than 0:5 in one of the 3 dimensions, it means
that the extremum is closer to a neighbor of C than to
C itself. In this case C is changed to this new point
and the computation is performed again from its coor-
dinates. By at most five iterations of the process, the
obtained value of the offset will be considered as the
most accurate localization of the candidate keypoint.
It is then possible to compute the value of DoG at the
extremum x̂.

In order to reject the low contrasted points, the
point is rejected if the value of jD(x̂)j is less than a
threshold equal to 0:03. For all the process the pixel
values are normalized to the range [0:::1].

In the following step, the candidate keypoints lo-
calized on edges of small curvature will be rejected
as their localization along the edge is difficult to es-
timate precisely. Hence, solely corners and points on
highly curved edges, like corners, will be kept as in-
terest points. In this goal, the principle curvatures are
estimated. These are proportional to the eigenvalues
a and b of the Hessian matrix.

Let r be the ratio between the greatest and lowest
eigenvalues a = rb. The use of the determinant and
trace values of the Hessian matrix avoids the explicit
computation of the eigenvalues. Lowe suggests the
rejection of candidate keypoints having

Tr(H)2

Det(H)
� (rs +1)2

rs
where rs = 10: (7)

2.3 Orientation Assignment

The detected keypoints are characterized by their co-
ordinates and the scale under which they were ex-
tracted. It is necessary to assign a consistent orien-
tation to each detected point to obtain an invariance
to rotation. For each keypoint (x;y), the closest scale
factor (s) is chosen and the associated image L(x;y;s)
at this scale is used for the computation of the mag-
nitude m(x;y) and the orientation q(x;y) of the gradi-
ent: An histogram of orientations is established from
the image L, computed over a window centered at
(x;y;s), of diameter c�s, where c is a constant. Each
point of this windows contributes to the histogram bin
corresponding to the orientation of its gradient, by
adding a value of wm(x;y). This quantity is the mag-
nitude of the gradient weighted by a Gaussian func-

tion of the distance to the keypoint, of standard devi-
ation one and half the scale factor of the keypoint:

wm(x;y) = m(x;y)
1

2p(1:5s)2 e
� dx2+dy2

2(1:5s)2 (8)

m(x;y) is the magnitude of the gradient at the location
(x;y), dx and dy are the distances in x and y directions
to the keypoint, and s is the scale factor of this lat-
ter. The histogram of orientations is subdivided into
36 bins, each covering an interval of 10 degrees. The
bin of maximal value characterizes the main orienta-
tion of the interest point. If other bins have a value
greater than 80% of the maximal value, new interest
points are created and are associated with these orien-
tations. The value of the main orientation is refined
from the peak bin of the histogram by detecting the
maximum of a parabola which fits the main orienta-
tion and its adjacent bins. This maximum is evaluated
as the angle for which the value of the derivative of
the parabola is zero. The histogram is used in a circu-
lar order such as the successor of the last orientation
is the first one. The keypoints are represented by four
values, (x;y;s;q), which denote respectively the po-
sition, the scale and the orientation of the keypoint,
granting its invariance to these parameters.

2.4 Descriptor Computation

The computation of a numerical descriptor for every
keypoint is the ultimate step of the SIFT algorithm. A
descriptor is a vector elaborated from the magnitudes
and orientations of the gradients in the neighborhood
of the point. It is computed from the image L(x;y;s)
at the scale factor at which the point was detected. As
in section 2.3 the gradients magnitudes in the studied
region are weighted (equation 8) by a Gaussian func-
tion of standard deviation 1:5s. This gives less em-
phasize to gradients far from the keypoint and hence
yields to a certain tolerance to small shifts in the win-
dow position. To grant invariance to rotation, all the
gradient orientations inside the descriptor window are
rotated relatively to the dominant orientation. Practi-
cally, the keypoint orientation is subtracted from ev-
ery gradient orientation to reach this result. Further-
more the descriptor window is rotated in the direction
of the keypoint orientation (Figure 2). This window
has the same size as in section 2.3.

The descriptor window is then subdivided into 16
regions (Figure 2), and an eight bin histogram of
orientations is computed for each. Each point con-
tributes to the bin of the histogram corresponding to
the orientation of its gradient. Its contribution is the
product of its weighted magnitude wm(x;y;s) (equa-
tion 8) multiplied by an additional coefficient (1�d),
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Figure 2: The descriptor computed in the neighborhood of
the interest point is a concatenation of 16 8-D histograms.

where d is the distance of the gradient orientation to
the central orientation of the histogram bin. The val-
ues of the 8-D histograms of the 16 regions are packed
in a predefined order in an 4x4x8 = 128 dimensional
vector leading to a unique identification of the fea-
ture point. The descriptor is normalized to ensure in-
variance to illumination changes. Large gradients, i.e.
greater than an empirical threshold of 0:2, are reset to
this value and the normalization is done again.

3 VISUAL ANALYSIS

The aim of this section is to understand the properties
of the feature points retained by the SIFT algorithm.
For this, we will focus on their position and the scale
on which they were detected. Lowe1 proposed an ex-
ecutable program achieving the detection of the fea-
ture points. We used this code to generate the results
presented in this section. We will analyze the results
on three different nature images: a synthetic image
containing simple geometric objects, an image char-
acterized by a repetitive content and finally a natural
image. For the upcoming examples presented in this
paper, the origin of an arrow corresponds to the lo-
calization of a detected feature point. If many arrows
have the same origin, this illustrates the case when
the histogram of orientations presents many peaks.
The arrows orientation correspond to the most signifi-
cant gradients orientations in the neighborhood of the
feature point and their magnitudes reflect the scale at
which this point was detected.

In the synthetic image (Figure 3) containing sim-
ple geometric objects, we obviously notice that fea-
ture points are not exactly located over the edges and
that these are detected at different scales, i.e the length
of the arrows differ relative to the points. At lower
scales, only keypoints of high curvature and contrast
are detected. In this image keypoints are situated in
the vicinity of the corners of the pentagon. Whereas
these feature points are detected at different scales,
they are not exactly localized the same. The greater

1http://www.cs.ubc.ca/�lowe/keypoints/

Figure 3: Detected feature points in a synthetic image con-
taining simple geometric objects.

the scale of detection is, the farther the location of
the detected feature point is from the corner of the
pentagon. This is due to the smoothing of the im-
age that makes the edges diffuse in the differences
of Gaussian images. The main orientations associ-
ated to these points are similar according to the differ-
ent scales. Deprived of high curvatures, the edges of
the pentagon do not hold any feature points at lower
scales. It’s also the case of the disk. Furthermore,
we assume that at a high scale, the center of the ge-
ometric shape characterizes it. In this case, the main
orientations are not linearly distributed over the spa-
tial plan. This nonlinearity is due to the fact that at
high scales images are strongly smoothed and figures
merge partially in the image modifying its global spa-
tial organization. We also notice that a feature point
was detected on high scales between the two geomet-
ric objects. This point hold on the information of the
spatial organization of the scene.

Figure 4: Detected feature points on an image characterized
by a repetitive content.

Figure 4 presents a globally contrasted image with
a repetitive content corresponding to straw. We notice
that most of the keypoints are detected in highly con-
trasted region. Their number decreases in low con-
trasted bottom right region. We observe that the scale
factor of the detected features is proportional to the
width of each straw. The main orientation associated
to each feature point is the direction of significant gra-
dients: the orientation is perpendicular to the edge of
a straw.

Figure 5 corresponds to a region of interest ex-
tracted from an old postcard of the Reims Circus
(France)2. On the left we show the original image

2http://amicarte51.free.fr/reims/carte.php3?itempoint=8
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Figure 5: Detected feature points on an image of an old
postcard of the Reims Circus (France).

and on the right the different feature points detected
on with the SIFT algorithm. We mention one more
time many detections at different scales and princi-
pally in the highly contrasted zones. Details in the
images are represented at lower scales, i.e façade dec-
orative architectural details of the circus. At higher
scales feature points illustrate the spatial organization
of the coarse elements present in the image (openings,
windows....)

Figure 6: Detected feature points on an image of an old
postcard of the Reims Erlon Place (France). On the top the
detected feature points on the original image, on the bottom
the detected feature points on a rotated image.

Figure 6 presents the features detection obtained
on an Reims Erlon Place old postcard3. This figure

&ref=diversreims/0003.jpg
3http://amicarte51.free.fr/reims/carte.php3?itempoint=6

illustrates the features detected on a correctly oriented
image and the ones obtained on a rotated image. We
can observe here that the detected features are similar
in the two images even if some features detected near
the borders are not the same. This is due to the fact
both of the images contain white borders allowing the
rotation (the image submitted to the algorithm must
be rectangular).

4 COMPARISON

It exists many implementations of the SIFT algorithm,
we selected here two of them4. A Matlab executable
implementation is proposed by Lowe on his website
(cf. part 3.) Another implementation computed in
C++ using the OpenCV library for image processing
is provided by Hess5. As we wanted to control the
parameterization of the algorithm, we also computed
our own implementation in C++ using OpenCV. Our
implementation results in this section respect the pa-
rameters suggested by Lowe in 2004.

In this section we will discuss the parameters sug-
gested by Lowe in 2004 analyzing the results we ob-
tain with his executable implementation. We will
compare his results to those obtained with the Hess
implementation and to ours.

4.1 Parametrization of the Algorithm

In section 2 we have described the SIFT algorithm and
the parameters that Lowe recommended after some
empiric tests. In (Lowe, 2004) Lowe suggest to build
a pyramid of three octaves, each of them composed
of five smoothed images. The smoothing scale fac-
tors increase uniformly with

p
2 frequency between

each image. In theory the highest scale factor that
can be reached on the last image of an octave is
4s0 = 4 � 1:6 = 6:4. Thereby, at same resolutions,
the largest scale factor s under which a feature point
can be detected is 6:5 � 2 = 12:8 at the last image of
the third octave. We analyze the features points ex-
tracted with the implementation of Lowe. We observe
that this value is exceeded. We then conclude that the
Lowe’s implementation increases the number of oc-
taves of the constructed pyramid or the number of im-
ages in each octave comparing to the values suggested
in (Lowe, 2004).

&ref=erlon/0004.jpg
4A third interesting one is http://www.vlfeat.org/

overview/sift.html
5http://blogs.oregonstate.edu/hess/code/sift/
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Figure 7: SIFT feature points detection obtained with three
different implementations: our’s (top), Lowe’s (center) and
Hess’s(bottom.)

4.2 Feature Points Validation

In figure 7 we present feature point detection results
on a synthetic image on the left and Lena image on the
right. The first line of this figure corresponds to the
results we obtained with our implementation of the
algorithm, the middle line with the executable Lowe’s
implementation and finally the bottom line with the
Hess implementation.

The synthetic image represents a black square
over a white background. We observe that feature
points associated to low scale factors, i.e points with
high curvatures as the square corners, are not detected
by the Hess implementation. Such points are nor-
mally detected in the first steps of the process. We
can then conclude that the implementation of Hess do
not consider low scale or that it rejects edge points
of high curvature. We notice that our implementa-
tion detects features with low scale factors. However,
Lowe detects more feature points. They correspond to
higher scales (greater than 12.8). Similarly, the points
detected by Hess represent really high scale features.

The results obtained with Lena’s image shows that
more feature points were detected in highly contrasted
zones. We can notice that the different structures de-
scribed in section 3 are characterized here. An obvi-

ous similarity of the detected features is denoted on
the feather, the details of the hat, the highly curved
architectural structures.... Once more, less feature
points appears within Hess results. The main dis-
similarity between our implementation and the two
other implementations concerns the survey of the high
scales. This study validates the feature points detec-
tion process for the three implementations.

A validation of the quality of the detected feature
point descriptors is fundamental since these are cru-
cial for the matching process.

4.3 Validation of the Descriptors

The robustness of the computed descriptors can be
validated through the matching process. The method
we use to match two different images is the one pro-
posed by Lowe in (Lowe, 2004). For each feature
point in the original image, the Euclidien distance is
computed between the associated descriptor and all
the feature points descriptors present in the second
image. A distance ratio of the two closest neighbors
is then compared to a threshold of 0:6. The closest de-
scriptor is considered as a candidate match if the ratio
do not exceed this threshold. To validate the robust-
ness of the computed descriptors, we test the results
of the matching between an image and its associated
transformed image obtained by a known transforma-
tion. Thus, once a match is found, we compute the
distance between the identified feature point and the
real match obtained applying the transformation. If
this distance is higher than 3 or 5 pixels, the candi-
date match is rejected.

Figure 8: Matches identified without rotation of the descrip-
tor (top) and with its rotation (bottom). The thick lines cor-
respond to wrong matches while thin lines represent correct
matches.

This approach proves the importance of the rota-
tion of the descriptor window relatively to the dom-
inant orientation of the feature point as described in
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the section 2.4. Figure 8 shows results of the match-
ing process obtained for the rotated (20�) Reims Erlon
Place postcard. Wrong matches are here represented
by thick lines while thin lines correspond to correct
matches considering a 5 pixels tolerance. The top part
of the figure was obtained with a static descriptor win-
dow. In this case we notice that few matches were
detected, and that most of them are wrong. The bot-
tom part of the figure illustrates the results obtained
with a mobile (rotary) descriptor window. In this case
matches are numerous and they are roughly correct.
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Figure 9: Percentage of correct matches depending on the
rotation angle of the image. Results are obtained one the
fragment of the Reims Circus old postcard using the three
implementations: our’s (Lowe 2004), Lowe’s and Hess’s.
The dotted line was obtained with a maximal error tolerance
of 3 pixels, the continuous one with a 5 pixels tolerance.

As (Morel and Yu, 2011) have proven the scale-
invariance of the SIFT method, we will focus our
study on invariance to rotation. A series of tests is per-
formed for the two tolerance levels (3 and 5 pixels).
Images are successively rotated by an angle of 10� un-
til reaching 350�. Figure 9 shows the variations of the
percentage of correct matches relatively to the angle
of the rotation, the two levels of distance error tol-
erance and using the three different implementations
of the SIFT algorithm. These results are obtained for
the fragment of the Reims Circus old postcard. The
same tests computed for the Reims Erlon Place old
postcard (presented in Figure 8) show a stable per-
centage of 96% for all the implementations and for
both tolerance levels. In figure 9 Lowe detected 157
feature points on the original image and obtained a
mean value of 110 matches overall the rotated images
according to the two error tolerances. Hess detected
111 feature points on the original image and obtained
a mean value of 84 matches. We detected 128 fea-
ture points on the original image and obtained a mean

value of 77 matches. In the image of the Reims Erlon
Place, Lowe detected 1973 feature points on the origi-
nal image and obtained a mean value of 1500 matches
according to the 3 pixels error tolerance and 1513 ac-
cording to the 5 pixels one. Hess detected 1463 fea-
ture points on the original image and obtained a mean
value of 1004 matches according to the 3 pixels er-
ror tolerance and 1016 according to the 5 pixels one.
We detected 1510 feature points on the original image
and obtained a mean value of 937 matches accord-
ing to the two error tolerances. We can notice that on
these two figures that the results are obviously very
performing when the error tolerance is of 5 pixels for
both images and the three implementations. When the
error tolerance is of 3 pixels, the results are preform-
ing and comparable for the Reims Erlon Place old
postcard. We notice a lower performance for the frag-
ment of the Reims Circus old postcard. Even if Hess
found more matches in this case than us, his imple-
mentation presents the worst results cause he detected
more wrong matches, the Lowe’s one is the best even
if for some angles our implementation parametrized
according to Lowe 2004 shows better matching per-
centage.

Reims Circus Erlon Place
3 px 5 px 3 px 5 px

Lowe04 95.05 99.56 97.64 99.41
Lowe 96.87 99.26 99.41 99.96
Hess 89.65 98.23 97.86 99.23

Figure 10: Evaluation of the matching process on the Reims
Circus postcard extract and the Reims Erlon Place postcard
for 3 and 5 pixels tolerance levels.

Figure 10 presents the means percentage of cor-
rect matches for all the angles of rotation for both
levels of tolerance computed for the fragment of the
Reims Circus old postcard and the Reims Erlon Place
old postcard. The three aforementioned implemen-
tations where tested: our (Lowe04) implementation,
Lowe’s executable Matlab implementation and Hess’s
implementation. We notice performing results for all
the implementation with an advantage for the Lowe’s
implementation. Our results are situated between the
Hess’s and Lowe’s while being dependent of the test
image.

5 CONCLUSIONS

In this paper, we presented a synthetic view of the
SIFT algorithm insisting on the tricky steps of its im-
plementation. We analyzed and discussed the prop-
erties of the detected feature points and their corre-
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sponding descriptors. We presented a survey of three
implementations of the algorithm: Lowe’s, Hess’s
and our’s implementation respecting the parametriza-
tion suggested by Lowe in 2004. We studied the dif-
ferences between these implementation and conclude
on the robustness of all of them with an advantage
for the Lowe’s implementation. Our implementation
will be used in the context of the spatio temporal 3-
D reconstruction of the city of Reims using old post-
cards as data. The challenge is to take into account
the architectural evolution across the years in order to
match the different views of the buildings.
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