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Abstract: This paper presents a method for 3D Human Body pose estimation. 3D real data of the searched object is 
acquired by a multi-camera system and segmented by a special preprocessing algorithm based on clothing 
analysis. The human body model is built by nine SuperQuadrics (SQ) with a-priori known anthropometric 
scaling and shape parameters. The pose is estimated hierarchically by RANSAC-object search with a least 
square fitting 3D point cloud to SQ models: at first the body, and then the limbs. The solution is verified by 
evaluating the matching score, i.e. the number of inliers corresponding to a-piori chosen distance threshold, 
and comparing this score with admissible inlier threshold for the body and limbs. This method can be used 
for 3D object recognition, localization and pose estimation of Human Body. 

1 INTRODUCTION 

3D human body recognition and pose recovery are 
the important problems in computer vision and 
robotics with many potential applications including 
motion capture, human-computer interaction, sport 
and medical analysis, video surveillance, etc. The 
human body pose estimation from 3D real data 
obtained by a multi-camera system can be solved 
different ways. A generic humanoid model 
approximating a subject’s shape can use either 
simple shape primitives (cylinders, cones, ellipsoids, 
and superquadrics) or a surface (polygonal mesh, 
sub-division surface) articulated using the kinematic 
skeleton (Forsyth, et al., 2005; Moeslund, et al, 
2006; Balan, et al. 2007; Mun Wai Lee and Cohen, 
2004; Ivecovic and Trucco, 2006). We consider 
below only “Direct-model-use” pose estimation 
approach corresponding to an explicit 3D geometric 
representation of human shape and kinematic 
structure by SQ. 

 Some authors propose recovering a pose with a 
shape detection stage (by hierarchical exemplar 
matching in the individual camera views with 3D 
upper body model based on tapered SQ), combining 
with Viterbi-style best trajectory estimation, and a 
filtering approach to 3D model texturing (Hofmann 
and Gavrila, 2009). Other authors used a method for 
restoring 3D human body motion from monocular 
video sequences based on a robust image matching 

metric, incorporation of joint limits and non-self-
intersection constraints, and a sample-and-refine 
search guided by rescaled cost-function covariance 
(Sminchisescu and Triggs, 2003). There is also a 
method for recovering an object by SQ models with 
the recover-and-select paradigm, filling range 
images with a set of seeds (small SQ models), and 
increasing these seeds with a growth iteration 
approach selecting the suitable models. This 
approach was tried out on a wooden mannequin 
(Jaklic et al., 2000; Leonardis et al., 1997).  

We propose using the hierarchical RANSAC-
based model-fitting technique with a composite SQ 
model of human body and limbs. It is known that SQ 
models permit to describe complex-geometry objects 
with few parameters and generate simple 
minimization function to estimate an object pose 
(Jaklic et al., 2000 and Leonardis et al., 1997). We 
assume the body shape and dimensions are known a-
priori to model body and limbs by SQ with correct 
anthropometric parameters in the metric coordinate 
system. The logic of our 3D Human Body pose 
estimation algorithm is presented by the block 
diagram (Figure 1). The object pose estimation starts 
with pre-processing of the 3D point cloud captured 
by multiple cameras. The preprocessing stage 
realizes segmentation of the Human Body into 9 
parts (body, arms, forearms, hips and legs). After 
that the algorithm recovers 3D position of the body 
as the largest object (“Body Pose Search”) and then 
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uses the information about body position to restore 
human limbs poses (“Limbs Pose Search”). To cope 
with measurement noise and outliers, the object pose 
is estimated by RANSAC-SQ-fitting technique. We 
control the fitting quality by setting inlier thresholds 
for limbs (body). These thresholds are a ratio of the 
optimal amount of inliers to whole data points of the 
corresponding limb (body). The tests showed that as 
a result of the Body Pose Search we can obtain a 
hypothesis with a slightly wrong body position, 
which can satisfy a body threshold, but can’t be 
applied to overcome limb thresholds. For this 
reason, when the limb inliers solution less than a 
limb threshold, the algorithm restarts the Body Pose 
Search until finding suitable results of RANSAC-
SQ-fitting for every limbs.  

 
Figure 1: The block diagram of 3D Human Body Pose 
Estimation algorithm. 

2 SUPERQUADRICS MODEL OF 
THE HUMAN BODY  

2.1 SuperQuadric parameters 

It is known (Jaklic et al., 2000 and Leonardis et al., 
1997) that the explicit form of the parametric 
equation of the superquadrics, which is usually used 
for SQ representation and visualization, is: 
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where x, y, z – superquadric coordinate system; 

     a1, a2, a3 – scale parameters of the object; 
     ε1, ε2 – object shape parameters; 
     η, ω – spherical coordinates. 

 
The implicit superquadric equation is more suitable 
for mathematical modeling to do fitting 3D data: 
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Figure 2: Presentation of Human Body in 9 parts: B – 
body, LA/RA – Left/Right Arms, LF/RF – Left/Right 
Forearms, LH/RH – Left/Right Hips, LL/RL – Left/Right 
Legs. Other abbreviations: LS – Left Shoulder, E – Elbow, 
ηLA – angle position of Left Shoulder, LHJ – Left Hip 
Joint, K – Knee, etc. 

The object under investigation is the Human 
Body (Figure 2), which consists of 9 superquadrics – 
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superellipsoids with the shape parameters ε1 = ε2 = 
0.5 and the following scaling parameters for 
different parts of the body: 

- Body: a1 = 0.095, a2 = 0.18, a3 = 0.275 (m).  
- Arms: a1 = a3 = 0.055, a2 = 0.15 (m). 
- Forearms: a1 = a3 = 0.045, a2 = 0.13 (m). 
- Hips: a1 = a2 = 0.075, a3 = 0.2 (m). 
- Legs: a1 = a2 = 0.05, a3 = 0.185 (m). 
The scale parameters of SQ are presented in the 

metrical superquadric object-centered coordinate 
systems. 

2.2 Human Body in SQ 

The position of Human Body is defined by the 
following rotation & translation sequences of the 
Body Superquadrics: 
1. Translation of center of BODY (xc, yc, zc), along  
x, y, z-coordinates. 
2. Rotation α among x (clockwise). 
3. Rotation β among y (clockwise). 
4. Rotation γ among z (clockwise). 
The rotation matrix of BODY RBODY is: 
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The transformation matrix TBODY for the BODY is: 
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2.3 Human Arms and Forearms in SQ 

Let’s consider the transformation equations for Left 
Arm and Forearm. 

The position of Left Shoulder according to the 
center of the body coordinate system (Figure 2) is 
estimated by SQ explicit equation (1): 
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Taking into account (5), the transformation Body 
- Left Shoulder (B-LS) will be: 
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We can express the transformation: Left 
Shoulder - Left Arm (LS-LA) by the following  
 

rotation & translation sequences: 
1. Rotation α among x (clockwise). 
2. Rotation β among z (anticlockwise). 
3. Rotation γ among y (clockwise). 
4. Translation of SQ center on distance a2 along y. 
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where RLA is the rotation matrix of Left Arm: 
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The transformation Left Arm - Elbow (LA-E) is 
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The transformation Elbow - Left Forearm (E-LF) is 
created by 
1. Rotation δLF among x (clockwise). 
2. Translation of SQ center on -a2 along y. 
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Finally, taking into account equations (5)-(10), 
the full transformation for every point of system 
“Body - Left Forearm” (B-LF) can be calculated this 
way: 
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where PB, PLF - coordinates of Body and Left 
Forearm points correspondingly (Figure 2). 

The main equations for Right Arm and Forearm 
are calculated the same way. 

2.4 Human Hips and Legs in SQ 

Analogically with previous equations (Section 2.3), 
the full transformation for every point of system 
“Body - Left Leg” (B-LL) is calculated this way: 
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where PB, PLL – coordinates of Body and Left Leg 
points respectively (Figure 2);  
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 T – corresponding transformations (13)-(16). 

The transformation Body – Left Hip Joint (B-
LHJ) is absolutely the same as TLS

B from equation 
(6), except using the angle ηLL in the equation (5) for 
calculation of the Left Hip position. 

The transformation Left Hip Joint – Left Hip 
(LHJ-LH) uses other rotation sequences and 
translation if compare with equations (7) and (8): 
1. Rotation α among x (clockwise). 
2. Rotation β among y (anticlockwise). 
3. Rotation γ among z (clockwise). 
4. Translation of SQ center on distance -a3 along z. 
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where RLH is the rotation matrix of Left Hip: 
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The transformation Left Hip - Knee (LH-K) is 
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The transformation Knee - Left Leg (E-LL) is 
created by 
1. Rotation δLL among y (clockwise). 
2. Translation of SQ center on a3 along z. 
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The similar transformations for Right Hip and 
Leg are described by almost the same equations. 

3 3D HUMAN BODY FITTING 
ALGORITHM 

3.1 About Sensors, Object and Data 

The 3D point cloud is captured with a multi-camera 
system developed at the University of Trento in the 
framework of the project VERITAS (De Cecco, 
Paludet, et al., 2010). The multi-camera system for 

acquiring range images consists of 8 pairs of 
cameras, which are a multiple stereo system, like a 
multi-camera system described in the paper (De 
Cecco, Pertile, et al., 2010), employing 
measurements a 3D-surface with superimposed 
colored markers. 

The multi-camera system gives 3D video of 
Human Body movement consisted of 119 frames, 
but we are analyzing every frame separately. The 
total amount of 3D Human Body data points for 
single 3D video frame is more than 2100.  

3.2 Preprocessing: Segmentation 

The segmentation of 3D point cloud of a human body 
has been done automatically basing on the clothing 
analysis. We extract the human being clusters (body 
and eight limbs: left/right arms, forearms, hips and 
legs) according to the special clothing marks on the 
garment (Figure 6). These marks generate color 
structures, which are pre-defined clothing models. 
The result of this clothing analysis is a segmentation 
matrix, the elements of which set belonging to the 
definite limbs of the body for every data points. 
Experimental results show that such clothing 
segmentation is well-able to extract limbs of human 
body from range images with variations in 
background environment and lighting conditions.  

The segmentation is completed with the use of 
RANSAC fitting. The markers near to the body 
joints have uncertain association with limbs. This 
uncertainty can be solved using RANSAC-SQ-
fitting. As the result of this clothing segmentation 
we have approximately 800 data points of the body, 
30-70 points of left/right arms, 15-25 points of 
forearms, 300-600 points of hips, and 80-150 points 
of legs (Figures 6 and 7).  

This method will also work with any 3D point 
cloud data acquired by other sensors (for example 
Kinect) with following segmentation of body parts 
from single depth images invariantly to body 
clothing, as an example, using randomized decision 
forests (Shotton J., et al., 2011). 

3.3 RANSAC Algorithm 

We use RANSAC ("RANdom SAmple Consensus") 
algorithm in estimating 3D Body and Limb Poses 
with SQ Model Fitting. To remind the basic concept 
of RANSAC algorithm, Figure 3 presents the 
pseudocode of RANSAC algorithm based on Peter 
Kovesi software (Kovesi, 2008). The number of 
iterations performed by RANSAC (the parameter k) 
can be determined from the following formula: 
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where p – is the probability desired for choosing 
at least one sample free from outliers (in most of 
applications: p=0.99); 

s – is a number of points required to fit the 
model. 

The success of RANSAC usage depends on 
choosing the right models. In our case it means 
correct choice of SQ parameters (as anthropometric 
sizes of human body and limbs) and logic of 
recognition (i.e. the sequence of body/limbs fitting).  
The attempt of one stage RANSAC recognition 
whole parts of human body simultaneously will be 
failed because of big amount of outliers. The test 
showed that an acceptable quality of RANSAC-SQ-
fitting can be achievable by hierarchical human body 
pose estimation (Figure 1). 

3.4 RANSAC Model Fitting 

The Body and Limbs Pose Search stages of the 
algorithm are very similar and have common logic 
and functions (Figure 1). The logic of RANSAC-
SQ-fitting algorithms both for the body and a limb 
are explained by pseudocodes (Figures 4 and 5).  

Let’s consider the RANSAC Body Fitting 
algorithm. We are using the RANSAC-based Object 
Search to find the body pose hypothesis, i.e. 6 
variables: 3 angles of rotation (α, β, γ) and 3 
translation coordinates (xC, yC, zC). Having these 
variables we can calculate the transformation matrix 
TBODY (4). We are fitting a model described by the 
superquadric implicit equation (2) to 3D data of the 
known object (i.e. the points of the body sorted by 
segmentation). Each RANSAC sample calculation is 
started by picking a set of random points (s = 6 
points for Body fitting, which are the minimal 
number of points to calculate the SQ position) from 
3D datapoints in the world coordinate system (xWi, 
yWi, zWi). To transform these points to the 
superquadric centered coordinate system (xSi, ySi, zSi), 
we use the following equation: 
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where 1−
BODYT  is the inverting homogeneous 

transformation matrix of the body (4). 
Then we are calculating the inside-outside 

  

function according to the superquadric implicit 
equation (2) in world coordinate system: 
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It is easy to see that the inside-outside function 
for superquadrics has 11 parameters (Jaklic et al., 
2000; Solina, 1990): 
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where 5 parameters  of the superquadric size and 
shape  are known (a1, a2, a3, ε1, ε2) and other 6 
parameters (α, β, γ, xC, yC, zC) represent the 
orientation and position of superquadrics in space 
and should be found by minimizing the cost-
function:  
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where additional exponent ε1 ensures that the points 
of the same distance from SQ surface have the same 
values of FW (Solina and Bajcsy, 1990). 

So we are fitting SQ model to this random 
dataset by minimizing an inside-outside function of 
distance to SQ surface (applying the “Trust-Region 
algorithm” or “Levenberg-Marquardt algorithm” in 
the nonlinear least-square minimization method). 
After this we are evaluating amount of inliers by 
comparing the distances between every point of 3D 
point cloud and SQ model with assigned distance 
threshold t (to accelerate the calculations we took 
the distance threshold t = 2 cm): 
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Analogically, we are realizing the RANSAC 
Limb Fitting (Figure 5). Let’s consider the example 
of the Limb Fitting of Left Arm (LA) and Forearm 
(LF). The main differences between RANSAC Body 
and Limb Fitting are: 

- in the minimal number of points to calculate the 
SQ position for Limb fitting s = 3 (although we need 
to set the body transform matrix TBODY, obtained 
from the Body Fitting algorithm).  

- in using 4 variables for Limbs Pose Search: 4 
angles of rotation (α, β, γ, δ) equations (8,10). 

- in minimizing the joint cost-function of two 
superquadrics together, considering two limbs 
simultaneously: 
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where abbreviations LA and LF mean that 
parameters and variables are related to the Left Arm 
(LA) and Forearm (LF) Limbs correspondingly. 

 
Figure 3: Pseudocode of RANSAC algorithm. 

To speed up the fitting process, the position of 
initial starting point of minimization searching in 
world coordinates can be chosen in the center of 
gravity of the body. Thus SQ modeling allows to 

recovery an object in “clouds of points” with using 
the limited number of 3D data points. The 
minimization process with “Trust-Region” or 
“Levenberg-Marquardt” algorithms is stable without 

 
Figure 4: Pseudocode of RANSAC Body Fitting 
algorithm. 

Algorithm RANSAC_Body_Fitting (x,t)
 
s = 6;     % min number of points to fit a SQ 
t = 2·10-2; % a threshold: datapoint-SQ (2 cm) 
% Trials - a number of iterations in algorithm 
% x - a dataset xn of n points of a body, which 
are a vector of the world coordinates ),,(

iii www zyx  
% fittingfn - function to define SQ position by s, x. 
function fittingfn (xs) 
  set x0

s = 0; % initial values of α,β,γ,xc,yc,zc 
  set SQBODY parameters a1-a3,ε1,ε2    
  for all xi from x
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% distfn - a function to select distances from SQ to x 
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  if di < t then xi = inliers 
  end for  
return inliers 
 
Trials = 1000; % a number of iterations 
start RANSAC (x, fittingfn, distfn, s, t, Trials) 
return bestTBODY, bestinliers 

Algorithm RANSAC (x, fittingfn, 
      distfn, s, t, Trials) 
 
% x - a dataset xn of n observations 
% fittingfn - a function that fits a model to x 
% distfn - a function that checks a distance  
       from a model to x  
% s - min number of data to fit the model M 
% t – a threshold (a distance: datapoint - model) 
% Trials - a number of iterations in algorithm 
 
iter := 0 % count of iterations 
bestM := 0 % the best model 
inliers := 0 % accumulator for inliers 
score := 0 % amount of inliers 
p := 0.99 % probability of a sample  
     without outliers 
 
while k > iter  
% randomly selected j values from data xn 
  xj

s := random(xn);    
% model parameters, which fitted to xj

s 
  M := fittingfn(xj

s);  
  for all xi from x

n  
     if distfn(M, xi

n) < t 
  inlk := xi 
     end if 
  end for  
% amount of inliers 
    m := length(inlm);  
% the test to check how good the model is 
  if m > score  
     score := m;     % amount of inliers 
     inliers := inl; % inliers 
     bestM := M;     % the best model 
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  end if 
  increment iter 
  if iter > Trials 
       break 
  end if 
end while 
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Figure 5: Pseudocode of RANSAC Limb Fitting algorithm 
on example of Left Arm (LA) and Forearm (LF) Limbs. 

redundant complexity and time consuming. The 
Figures 6 and 7 show the result of fitting by the 
RANSAC-SQ-Fitting algorithm (pink points – 
inliers, cyan – outliers). For most of 3D video 
frames, the amount of inliers is more than 65% from 
approximately 2100 points of 3D rawdata. 

Figure 6: Illustration of RANSAC Limb Fitting algorithm. 
At the top: left – a pose of a human in the garment, right – 
“cloud of points”. At the bottom: left – the result of 
RANSAC-fitting to 3D data (pink points – inliers, cyan – 
outliers), right – final pose estimation. 

The small amount of data points for arms and 
forearms (Section 3.2) gives some displacements of 
the upper limbs poses from one 3D video frame to 
another. It spoils the impression of the Human Body 
movement when we are preparing 3D video 
collecting together 3D Human body models from the 
individual video frames processed by RANSAC-SQ-
fitting. This problem can be solved in future by 

Algorithm RANSAC_Limb_Fitting (x,t) 
s = 3;     % min number of points to fit a SQ 
t = 2·10-2; % a threshold: datapoint-SQ (2 cm) 
set TBODY;   % from Body Fitting Algorithm 
% x - a dataset xn of n points of a limb, which are 
a vector of the world coordinates ),,(

iii www zyx  
% fittingfn - function to define SQ position by s, x. 
function fittingfn (x, TBODY) 
  set x0

s = 0; % initial values of α,β,γ,δ 
  set a1-a3,ε1,ε2 for SQLA and SQLF  
  set ηLA; % the angle position of a Shoulder 
  for all xi from x

n  
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  end for  
  calculate variables α,β,γ,δ   by 

minimizing ∑
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return α,β,γ,δ 
 
% distfn - a function to select distances from SQ to x 
function distfn (x,TBODY,α,β,γ,δ) 
  for all xi from x
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  if di < t then xi = inliers 
  end for  
return inliers 
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correcting 3D Human Body Pose Estimation 
algorithm or improving 3D data point acquisition 
process, or using other sensors (for example MS 
Kinect) and other segmentation techniques 

4 RESULTS 

The Figures 6 and 7 show the workability of the 
RANSAC-SQ-fitting algorithm for tasks of Human 
Body Pose Estimation. For most of 3D video frames, 
the amount of inliers is more than 65% from 
approximately 2100 points of 3D rawdata.  

   

 
Figure 7: Illustration of RANSAC Limb Fitting algorithm. 
At the top: left – a pose of a human in the garment, right – 
“cloud of points”. At the bottom: left – the result of 
RANSAC-fitting to 3D data (pink points – inliers, cyan – 
outliers), right – final pose estimation. 

The small amount of data points for the upper 
limbs gives some limb pose displacements and 
spoils the impression from body movement if 
collecting back 3D video from single frames.  

This problem can be solved in future by 
correcting 3D Human Body Pose Estimation 
algorithm, or improving 3D data point acquisition 
process, or using other sensor and segmentation 
techniques.  

The algorithm has been developed in MATLAB. 
3D data have been captured from a multi-camera 
system and then processed offline. The pose 
estimation technique described has been tested at 
processing 3D video of Human Body movement 
consisted of 119 frames giving encouraging results.  
The presence of loops in the algorithm (during the 
hierarchical Body and Limbs Pose searches) can be 
a problem for real-time body movement application. 
But the correct comparative evaluation of speed and 
accuracy of the body pose estimation can be realized 
in the future if a) use other pose recognition methods 
with the existing multicamera system, or b) apply 
the proposed method with another sensor. 

5 CONCLUSIONS 

This paper describes a method of Human Body pose 
estimation from 3D real data obtained by a multi-
camera system and structured by the special clothing 
analysis. This method will also work with any 3D 
point cloud data acquired by other sensors and 
segmented using any other algorithms. 

The human body was modeled by a composite 
SuperQuadric (SQ) model presenting body and 
limbs with correct a-priori known anthropometric 
dimensions. The proposed method based on 
hierarchical RANSAC-object search with a robust 
least square fitting SQ model to 3D data: at first the 
body, then the limbs. The solution is verified by 
evaluating the matching score (the number of inliers 
corresponding to a-piori chosen distance threshold), 
and comparing this score with admissible inlier 
threshold for the body and limbs.  

This method can be useful for applications dealt 
with 3D Human Body recognition, localization and 
pose estimation.  
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