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Abstract: This paper is devoted to the presentation of the orientation and scale invariant detection subsystem within 
the current development of Hywacoss (Hyperspectral waterway control and security system). A neural 
network ensemble based identification and rotation detection module is considered in order to be able to 
detect and classify objects in waterways from hyperspectral image cubes in a fast and efficient manner. The 
neural approach followed is inspired by the orientation detection structures in the visual processing cortex. 
The system is tested over two different hyperspectral image cubes extracted from simulated waterways to 
verify its adequate operation. 

1 INTRODUCTION 

The objective of the Hywacoss project is to produce 
a real time small, light and easy to transport visible 
and near infrared hyperspectral detection and 
recognition system that autonomously monitors 
waterways, especially port and bay areas, and 
detects and classifies all the traffic, producing alerts 
when previously unknown objects or behavior 
patterns arise. Hywacoss is a part of a multisensory 
intelligent monitoring and protection system for 
ports and waterways called Watchman that is aimed 
at capturing real time information on what is going 
on in the area being monitored from multiple 
sensorial sources, both static and moving, and fusing 
this information to provide a coherent view of all the 
activities that are taking place within the designated 
area, identifying, tracking and profiling all targets 
found. It comprises dedicated hardware and software 
modules, some of them neural based. Here we will 
provide a global description of the whole system and 
a detailed analysis of the neural based modules 
related to rotation and scale independent overhead 
target detection from hyperspectral images.  

A hyperspectrometer obtains images in which the 
spectral information of every pixel is collected in 
hundreds of contiguous discrete spectral bands. 
Thus, each hyperspectral image contains a large 
amount of information that can be perceived as a 

cube with two spatial and one spectral dimension. 
The availability of such detailed spectral information 
for each pixel allows the classification of different 
materials or targets with an accuracy and 
discriminative power that are much better than in the 
case of lower dimensional color representations, 
such as RGB.  

Hyperspectrometers were originally designed as 
remote sensing instruments operated from highflying 
planes (Glackin, 1999) and, therefore, presented the 
handicap of a low spatial resolution. Consequently, 
analysis methods were developed to provide the 
segmentation of the images in terms of the ratio of 
endmembers present in every pixel so as to improve 
the spatial discrimination of these systems when 
analyzing different types of covers. Currently, due to 
improvements in the spatial resolution of the 
systems and to the new requirements that have come 
about due to the expansion of the applications for 
which these systems are used, an increasing demand 
for spatial-spectral processing techniques has been 
observed. This is especially patent in ground-based 
applications (Pan, 2003) (de Juan, 2004), where 
images are taken close to the subject producing a 
relatively detailed view. Thus, the emphasis in 
hyperspectral image processing is no longer placed 
only on extracting subpixel information, but also on 
detection and classification of elements within these 
images based on multiple pixel combinations taking 
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into account their geometric layout (Li, 2010), that 
is, their spatial-spectral signatures.  

This is the case in this work. The objective of the 
Hywacoss system is to detect and classify maritime 
traffic within its assigned monitoring area in real 
time in order to discriminate between normal traffic 
and possible intruders. Consequently it must be able 
to obtain hyperspectral images and from them 
quickly detect and classify whatever objects (ships 
or others) are present independently from scale or 
orientation. In addition it must be able to provide a 
value for the orientation of the object if it is 
classified as a ship. As hyperspectral images involve 
hundreds of values per pixel within the image and as 
we want to detect and classify objects independently 
from scale and orientation in a timely fashion, in this 
paper we have considered a system that uses a neural 
network trained to extract the abundance of a target 
and a second neural architecture, loosely based on 
the visual orientation processing structures of certain 
animals, to perform the detection and orientation 
determination. 

Neurons in the visual cortex display orientation 
selectivity, which basically leads to the detection of 
local bars and edges in the visual images and the 
subsequent encoding of their orientations (Hubel, 
1962) (Hubel, 1974). In fact, neighboring neurons in 
the visual cortex have similar orientation tunings, 
producing orientation columns or iso-orientation 
domains (Hubel, 1974). The mechanism through 
which precise orientation detection is achieved is 
rather complex, but it can be summarized by saying 
that each neuron is tuned to a given orientation for 
which it provides the maximum response. It is 
through the integration of the responses of the 
different sets of neurons with different orientation 
tunings that a decision can be made on the precise 
orientation of a feature of the image. Some authors 
have based their approximations for orientation 
detection on these types of models of the visual 
cortex over 1 channel or three channel (RGB) 
images. A clear example of this is (Han 2010), 
where the authors implement a detailed model using 
spiking neurons in order to detect the orientation of 
cars. However, in the field of high dimensional or 
multichannel imaging orientation detection has 
mostly been carried out using traditional 
deterministic or statistical approaches and not brain 
inspired or neural techniques (Plaza, 2009).  

The paper is organized as follows. In the 
following section we provide a general description 
of the hyperspectral system that was developed for 
the Hywacoss system. Section 3 will be devoted to 
the presentation of the neural processing system. In 

section 4 we discuss the results of the application of 
the system in the simulated environments used for 
its validation and, finally, section 5 provides the 
main conclusions of this work. 

2 HYPERSPECTROMETER 

In terms of the sensing element and associated 
hardware, we have designed and constructed a small, 
light and easy to transport push-broom type 
spectrometer. It is shown in Figure 1. It consists of a 
moving mirror that captures light that is focalized on 
a 10 mm long, 10 μm wide slit which selects a single 
line from the image each instant of time. The light 
corresponding to this pixel line is passed through a 
diffraction grid and its image is focalized on the 
sensing element of a front-illuminated interline CCD 
camera. This arrangement produces the images we 
are using that have a size of 1392x1392 pixels, 
where each pixel is represented using 1040 spectral 
bands in the 400-1000 nm wavelength interval 
(visible to near-infrared). The information obtained 
is directly sent to a processing computer for image 
processing and the other tasks required by the 
Hywacoss system. 

 
Figure 1: Hyperspectrometer designed and built for this 
project. 

3 NEURAL PROCESSING 
SYSTEM 

The basic elements of the neural processing system 
that is going to be used for processing the images 
obtained from the hyperspectrometer are represented 
in the block diagram of Figure 2. The system is 
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made up of two main elements: a target abundance 
extraction artificial neural network (ANN) and a 
rotation and target identification ANN. 

 
Figure 2: Block diagram representing the basic elements 
that make up the neuronal processing system and their 
relations. 

Initially, a spatial gridding is performed over the 
whole image and the proportion of a target present 
within each grid cell is estimated by the target 
abundance ANN. The segmented objects are 
checked by a rotation detection and target 
identification ANN ensemble. They are able to 
decide if a particular target is present in a 
hyperspectral image and to detect its rotation. 
Obviously, this ensemble is particular to each target. 

The main two elements of this system will be 
described with more detail in the following 
subsections. 

3.1 Object Segmentation 

Starting from a hyperspectral image of dimensions 
wxhxb (width w, height h and b number of spectral 
bands), the first stage of the system is a target 
abundance extraction step. The hyperspectral image 

is spatially downresampled, by means of a grid of 
w/8 x h/8 cells. Then, an ANN is in charge of 
deriving the percentage of target present in every 
cell. Basically this ANN has b inputs corresponding 
to the average spectrum of the points for the b 
spectral bands considered. The output of this ANN is 
the target percentage, a value between 0 and 1. As 
the target may be present within a very small part of 
the cell, this is basically an endmember extraction 
ANN tuned to the particular average spectral 
features of the target. 

The image areas with a percentage higher than 0 
are segmented. For each area, the center of mass and 
the surface are calculated (weighted by the 
percentage values provided by the ANN). Figure 3 
displays an example of this segmentation process. 
The left image shows an input image with 8 targets 
(grey areas) and the right image shows the ANN 
output corresponding to the areas that will be 
segmented. 

 
Figure 3: Input image (left) and a 3D representation of the 
target percentage provided by the ANN (right). 

3.2 Rotation Estimation and 
Identification 

Whenever an object has been segmented in the 
previous step, it is necessary to check if the target 
can be identified independently of rotation. In order 
to do this, first of all, a rectangle area that surrounds 
the segmented object is estimated. The left image of 
Figure 4 represents this process. The region 
determined by this rectangle is subdivided into four 
areas (right image of Figure 4) and the average 
spectrum is calculated for each area. These 4xb 
values are run through the ANN based identification 
and rotation detection ensemble. Figure 5 depicts the 
structure of this ensemble. It draws inspiration from 
the orientation columns within the visual cortex and 
it is implemented as a set of orientation detectors for 
the target. Each of these detectors has been trained 
using the curve displayed in Figure 6 with the peak 
centered on the angle for which the detector is 
trained. 
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Figure 4: Rectangle areas surrounding the segmented 
objects are estimated (left) and divided into four parts 
where the average spectrum is calculated (right). 

The outputs of the ANNs in the first layer of the 
ensemble are used as inputs to a second layer that 
contains two ANNs, one that decides if the target is 
correctly identified and another one that provides the 
rotation angle of the target. Basically, if the target is 
present at the scale under analysis, the ANNs in the 
first layer should provide outputs that look very 
much like those in Figure 7, where the left and 
central graphs correspond to two positive 
identifications at different angles and the graph on 
the right to a negative identification. The second 
layer ANNs, which have as many inputs as ANNs 
there are in the first layer, are in charge of both, 
deciding on the angle depending on the values of the 
first layer and deciding on whether the identification 
is positive. 

 
Figure 5: Representation of the ANN based 
identification and rotation detection ensemble. 

4 EXPERIMENTAL RESULTS 

To clarify the operation of the system and to show 
the capabilities of Hywacoss, two different scenarios 
have been selected. Both of them consist in the top-
view   of   a   simulated   waterway,  which  contains 

 
Figure 6: Curve used to train the rotation detection ANNs. 

 
Figure 7: Points obtained by the different ANNs in the 
first layer of the ensemble (black) and theoretical points 
for that angle (grey). Two positive identifications (left and 
center) and a negative one (right) are shown. 

different possible targets that must be found: 
different ships, a person in the sea and a buoy. 

In the first scenario, we intend to identify a 
person in the water that can be confused with other 
objects present in water, like a buoy. In this case, the 
estimation of the rotation angle of the target is not 
relevant, but low error identification is crucial. The 
second scenario shows two very similar ships and 
the objective is to identify one of them and to 
estimate its rotation angle. An image containing only 
the 588 nm band of the hyperspectral cube of this 
scenario is shown in Figure 8 (left) while the right 
image displays the details of the hyperspectral cube 
(from 493nm band to 1000nm band) of the two 
ships. 

In the following subsections we discuss the 
specific processing parameters that have been used, 
the ANN architectures and we detail the training of 
each phase of the neural system. We also show the 
results after applying the whole algorithm to the 
hyperspectral captures. 
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Figure 8: Left: 588nm band of the hyperspectral capture. 
Right: Interior detail of the hyperspectral cube (bands 
from 493nm to 1000nm). 

4.1 Identification of a Person in the 
Water 

In the first detection problem we try to identify a 
shipwrecked person with the presence of a buoy and 
a small ship within the image capture (Figure 9). 
The hyperspectral image has been spectrally reduced 
to 64 bands through binning of the 1040 initial bands 
since we have checked that 64 bands are sufficient to 
achieve good ANN training results, and increasing 
the number of inputs to the neural system 
complicates and slows down the detection. In this 
case, we have used a feed-forward ANN for the 
Target abundance extraction, Rotation estimation, 
Target identification and Rotation detection stages. 

 
Figure 9: 588nm band of the hyperspectral capture of the 
first scenario. 

The Target abundance extraction ANN has to 
detect, for any region of the image, what percentage 
of the shipwrecked person is present. This ANN has 
64 inputs that correspond to the average spectrum of 
every band of all the pixels of the region that is 
being analyzed and an output that oscillates between 
0 and 1 (percentage). The training of the detection 
ANN was carried out by selecting rectangles of 
different sizes that could contain or not the target 

(shipwrecked person) from different hyperspectral 
captures. The number of samples we used for the 
training was around 500. 

The Rotation detection ensemble is devoted to 
returning a specific value depending on the rotation 
angle of the target as explained in section 3. As 
commented above, in order to obtain the inputs of 
this ANN, the region under analysis is divided into 
four sub-regions (see Figure 4 right) and for each of 
them the average spectrum is calculated. 
Consequently, the system will have as inputs the 256 
(64x4) values of these four average spectra. The 
training was performed as described in the previous 
section. 

 
         (i)                                                 (ii) 

 
      (iii)                                             (iv) 

Figure 10: Application steps of the whole system to the 
hyperspectral image of scenario 1.  

In the case of the ANNs in the second layer of the 
ensemble, that is, the Target identification and 
Rotation detection stages, a feed-forward ANN was 
selected. The structure of all the networks of the 
neural system and the training and validation mean 
squared errors (MSE) are shown in Table 1. As we 
can see from the last two columns, the detection 
errors are very low and the ANNs perform their task 
in a very successful way. 

The whole neural system was applied to the 
image displayed in Figure 9. Image (i) of Figure 10 
shows the output provided by the target abundance 
extraction ANN and image (ii) the corresponding 
segmented objects. Next, image (iii) displays the 
output provided by the rotation estimation ANN that 
corresponds  to   the  person  in  the  water.  Finally,  
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Table 1: Network structure and training results of the neural system in scenario 1. 

 
 

image (iv) represents the positive detection (green 
square) and the two negative detections (red squares) 
obtained in this case by the target identification and 
rotation detection ANNs. 

4.2 Ship Discrimination and Rotation 
Detection 

For the second scenario, we have arranged copies of 
two very similar ships, that, even though they 
present some different materials, they display the 
same apparent colour and shape. We have named the 
target ship as ship1, and the other ship as ship2. Two 
different captures of this scenario are displayed in 
Figure 11.  

 
Figure 11: 588nm band of two hyperspectral capture of the 
second scenario. 

The ANNs employed in this case are the same used 
in the previous example, also they use the same 
number of hidden layers and neurons. Table 2 
contains the network details and the mean squared 
error levels achieved in training and validation. 
Figure 12 left shows in detail the division into four 
sub-regions of the original region carried out for the 
training and execution of the Rotation detection 
ANN and the average spectra of each of the sub-
regions  that  are  used as inputs  to  this ANN in this 

case (right image). 

 
Figure 12: Four sub-regions of the original image used for 
the ANN training (left) and detail of the inputs for the 
rotation curve fitting ANN (right). 

Again, we have applied the neural system to a set 
of three hyperspectral images corresponding to 
scenario 2, and the results obtained are shown in 
Figure 13. Left images correspond to the 588 band 
image in the three different cases. Middle images 
show the segmented objects and right images display 
the final result with the identification results. The 
mean squared error in the angle estimation was 1.22º 
for these test images. As shown, in all the images the 
target ship has been properly detected (green 
window). 

5 CONCLUSIONS 

In this paper we have presented an orientation and 
scale independent ANN ensemble based target 
identification and orientation determination system 
for targets within hyperspectral images. The system 
is inspired by the way orientation is processed in the 
visual cortex and provides a fast and efficient way to 
address   the    problem    of     finding      objectives 
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Table 2: Network structure and training results of the neural system in scenario 2. 

 
 

 

 

 
Figure 13: Application of the whole algorithm to 
hyperspectral images of scenario 2. 

independently from scale and rotations and, at the 
same time provide an accurate estimation of the 
object’s orientation. It has been tested with different 
hyperspectral images and has been shown to 
appropriately detect targets as well as differentiate 
between targets and non-targets that were very 
similar (similar ships). We are now in the process of 
implementing these algorithms and their extensions 
over GPUs in order to be able to run them in real 
time. 
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