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Abstract: The CUDA programming model allows the programmer to code algorithms for executing in a parallel way 
on NVIDIA GPU devices. But achieving acceptable acceleration rates writing programs that scale to 
thousands of independent threads is not always easy, especially when working with algorithms that have 
high data-sharing or data-dependence requirements. This type of algorithms is very common in fields like 
volume modelling or image analysis. In this paper we expose a comprehensive collection of optimizations 
to be considered in any CUDA implementation, and show how we have applied them in practice in a 
complex and not trivially parallelizable case study: a 3D curve-skeleton calculation algorithm. Two 
different GPU architectures have been used to test the implications of each optimization, the NVIDIA 
GT200 architecture and the new Fermi GF100. As a result, although the first direct CUDA implementation 
of our algorithm ran even slower than its CPU version, overall speedups of 19x (GT200) and 68x (Fermi 
GF100) were finally achieved. 

1 INTRODUCTION 

GPGPU (General-Purpose computing on Graphics 
Processing Units) has undergone significant growth 
in recent years due to the appearance of parallel 
programming models like NVIDA CUDA (Compute 
Unified Device Architecture) (NVIDIA A, 2011) or 
OpenCL (Open Computing Language) (KHRONOS, 
2010). These programming models allow the 
programmer to use the GPU for resolving general 
problems without knowing graphics. Thanks to the 
large number of cores and processors present in 
current GPUs, high speedup rates could be achieved. 

But not all problems are ideal for parallelizing 
and accelerating on a GPU. The problem must have 
an intrinsic data-parallel nature. Data parallelism 
appears when an algorithm can independently 
execute the same instruction or function over a large 
set of data. Data-parallel algorithms can achieve 
impressive speedup values if the memory accesses / 
compute operations ratio is low. If several memory 
accesses are required to apply few and/or light 
operations over the retrieved data, obtaining high 
speedups is complicated, although it could be easier 
with the automatic cache memory provided in the 
new generation of NVIDIA GPUs. These algorithms 
that need to consider a group of values in order to 

operate over a single position of the dataset are 
commonly known as data-sharing problems (Kong 
et al., 2010). The case study of this paper, a 3D 
thinning algorithm, belongs to this class of 
algorithms and shares characteristics with many 
other algorithms in the areas of volume modelling or 
image analysis. 

Some optimizations and strategies are explained 
in vendor guides (NVIDIA A, 2011); (NVIDIA B, 
2011), books (Kirk and Hwu, 2010); (Sanders and 
Kandrot, 2010) and research papers (Huang et al., 
2008); (Ryoo et al., 2008); (Kong et al., 2010); 
(Feinbure et al., 2011). In most cases, the examples 
present in these publications are too simple, or are 
perfectly suited to the characteristics of the GPU. 
Furthermore, the evolution of the CUDA 
architecture has meant that certain previous efforts 
on optimizing algorithms are not completely 
essential with the new Fermi architecture 
(Wittenbrink et al., 2011). None of those studies can 
assess the implications of the optimizations based on 
the CUDA architecture used. Recent and interesting 
works present studies in this respect, e.g. (Reyes and 
de Sande, 2011); (Torres et al., 2011), but only loop 
optimization techniques, in the first paper, and 
simple matrix operations, in the second paper, are 
discussed. 
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For GPGPU, Fermi architecture has a number of 
improvements such as more cores, a higher number 
of simultaneous threads per multiprocessor, 
increased double-precision floating-point capability, 
new features for C++ programming and error-
correcting code (ECC). But within the scope of data-
sharing and memory-bound algorithms, the most 
important improvement of the Fermi architecture is 
the existence of a real cache hierarchy. 

In the rest of the paper, we firstly describe our 
case study, a 3D thinning algorithm for curve-
skeleton calculation. Later we exposed our hardware 
configuration and the voxelized models that we used 
to check the performance of the algorithm. Next, we 
analyze one by one the main optimizations for two 
different CUDA architectures (GT200 and Fermi 
GF100), and show how they work in practice. 
Finally, we summarize our results and present our 
conclusions. 

2 CASE STUDY: A 3D THINNING 
ALGORITHM 

A curve-skeleton is a simple and compact 1D 
representation of a 3D object that captures its 
topological essence in a simple and very compact 
way. Skeletons are widely used in multiple 
applications like animation, medical image 
registration, mesh repairing, virtual navigation or 
surface reconstruction (Cornea et al., 2007). 

Thinning is one of the techniques for calculating 
curve-skeletons from voxelized 3D models. 
Thinning algorithms are based on iteratively 
eliminating those boundary voxels of the object that 
are considered simple, e.g. those voxels that can be 
eliminated without changing the topology of the 
object. This process thins the object until no more 
simple voxels can be removed. The main problem 
that these thinning algorithms present is their very 
high execution time, like any other curve-skeleton 
generation technique. We therefore decided to 
modify and adapt a widely used 3D thinning 
algorithm presented by Palágyi and Kuba in (Palágyi 
and Kuba, 1999) for executing on GPU in a parallel 
and presumably more efficient way. Thus, all 
previously exposed applications could benefit of that 
improvement. 

The 3D thinning algorithm presented in (Palágyi 
and Kuba, 1999) is a 12-directional algorithm 
formed by 12 sub-iterations, each of which has a 
different deletion condition. This deletion condition 
consists of comparing each border point (a voxel 
belonging to the boundary of the object) and its 

3x3x3 neighborhood (26-neighborhood) with a set 
of 14 templates. If anyone matches, the voxel is 
deleted; if not, the voxel remains. Each voxel 
neighborhood is transformed by rotations and/or 
reflections, which depend on the study direction, 
thus changing the deletion condition. 

In brief, the algorithm detects, for a direction d, 
which voxels are border points. Next, the 26-
neighborhood of each border point is read, 
transformed (depending on direction d) and 
compared with the 14 templates. If at least one of 
them matches, the border point is marked as 
deletable (simple point). Finally, in the last step of 
the sub-iteration all simple points are definitely 
deleted. This process is repeated for each of the 12 
directions until no voxel is deleted. The pseudo code 
of the 3D thinning algorithm is shown in Figure 1, 
where model represents the 3D voxelized object, 
point is the ID of a voxel, d determines the direction 
to consider, deleted counts the number of voxels 
deleted in each general iteration, nbh and nbhT are 
buffers used to store a neighborhood and its 
transformation, and match is a boolean flag that 
signals when a voxel is a simple point or not. 
 
##START;  
do{ //Iteration 
 deleted = 0; 
 for d=1 to d=12 { //12 sub-iterations 
 
  markBorderPoints(model, d); 
  for each BORDER_POINT do{ 
   nbh =loadNeighborhood(model, point); 
   nbhT =transformNeighborhood(nbh, d); 
   match =matchesATemplate(nbhT); 
   if(match) 
      markSimplePoint(model, point); 
  } 
 
  for each SIMPLE_POINT do{ 
   deletePoint(model, point); 
   deleted++; 
  } 
 } 
}while(deleted>0); 
##END; 

Figure 1: Pseudo code of Palágyi and Kuba 3D thinning 
algorithm. General procedure. 

Regarding the functions, markBorderPoints() 
labels as "BORDER_POINT", for the direction d, all 
voxels which are border points, markSimplePoint() 
labels the voxel point as "SIMPLE_POINT", and 
deletePoint() deletes the voxel identified by point. 
This algorithm has an intrinsic parallel nature,
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Table 1: GPU specifications (MP: Multiprocessor, SP: Scalar Processor). 

GPU Architecture 
Computing 
Capability 

Number of 
MPs 

Number of 
SPs 

Thread Slots per MP Warp Slots per MP Block Slots per MP

GTX295 GT200 1.3 30 240 1024 32 8 

GTX580 GF100 2.0 16 512 1536 48 8 

GPU Max. Block Size Warp Size 
Global 

Memory 
Constant 
Memory 

Shared Memory per 
MP 

L1 Cache 
32-bit registers per 

MP 

GTX295 512 32 895 MB 64 KB 16 KB 0 16K 

GTX580 1024 32 1472 MB 64 KB 48 KB/16KB 16KB/48KB 32K 

 
because a set of processes are applied on multiple 
data (voxels of the 3D object) in the same way. But 
this is not fully parallelizable, since each sub-
iteration (one for each direction) strictly depends on 
the result of the previous one and some CPU 
synchronization points will be needed to ensure a 
valid final result. In fact, we are dealing with a data-
sharing algorithm, where processing a data-item (a 
voxel) needs to access other data-items (neighbors 
voxels). Therefore kernel functions will have to 
share data between them. This is a memory-bound 
algorithm with a high ratio of slow global memory 
reads to operations with this read data, and it is not 
favourable in CUDA implementations. In addition, 
these operations are very simple (conditional 
sentences and Boolean checks), so it is difficult to 
hide memory access latencies. 

3 HARDWARE, 3D MODELS AND 
FINAL RESULTS 

Two different GPUs, based on GT200 and GF100 
CUDA architectures, have been used to test and 
measure the performance of our algorithm. The main 
specifications of these GPUs are exposed in Table 1. 
The GTX295 is installed on a PC with an Intel Core 
i7-920 @ 2.67GHz 64-bits and 12 GB of RAM 
memory (Machine A). The GTX580 is installed on a 
server with two Intel Xeon E5620 @ 2.40GHz 64-
bits and 12 GB of RAM memory (Machine B). The 
GTX580 has two modes: (1) Set preference to L1 
cache use (48 KB for L1 cache and 16 KB for shared 
memory), or (2) set preference to shared memory 
(16 KB for L1 cache and 48 KB for shared 
memory). We differentiate along this paper between 
these modes when testing our algorithm.  

Regarding the models used to test the CUDA 
algorithm, we use a set of five 3D voxelized objects 
with different complexity, features and sizes. These 
models are: the Happy Buddha and Bunny models 
from the Stanford 3D Scanning Repository (Stanford 
University, 2011), Female pelvis and Knot rings 

obtained in (SHAPES, 2011), and Nefertiti from 
(VIA, 2011). All values of speedup, time or other 
measures shown in this paper are the average value 
for these five 3D models. 

As an example, Figure 2 shows the Happy 
Buddha model and its curve-skeleton calculated at a 
high resolution of 512 x 512 x 512 voxels. 

 

 

Figure 2: Stanford's Happy Buddha voxelized model and 
its calculated 3D curve-skeleton. 

Table 2 summarizes the main data obtained when 
executing the 3D thinning algorithm. Time is 
represented in seconds. As could be seen, the 
improvement when executing on the GPU is 
impressive. By analyzing the data, when the 
algorithm runs on the CPU, running time directly 
depends on the number of iterations. However, when 
executing on GPU, this fact is not true, e.g. "Knot 
Rings" model is more time consuming than "Happy 
Buddha" model, although it implies less iterations. 
Thus, we conclude that the GPU algorithm is more 
sensitive to the irregularities and the topology of the 
model. 

In the next section we expose step by step the 
strategies and their practical implications that we 
have followed to achieve the optimal results showed 
in Table 2 with our CUDA implementation of the 
3D thinning algorithm. It is important to remark that 
the single-thread CPU version of the thinning 
algorithm is the one provided by its authors. 

GPU OPTIMIZATION AND PERFORMANCE ANALYSIS OF A 3D CURVE-SKELETON GENERATION
ALGORITHM

79



 

Table 2: Main data and final execution results for the test 
models at a resolution of 512 x 512 x 512. GTX580 in 
shared memory preference mode. 

Model Buddha Bunny Pelvis 
Knot 
Rings 

Nefert. 

Initial 
Voxels 

5,269,400 20,669,8044,942,014 19,494,91211,205,574

Final 
Voxels 

4,322 7,088 9,884 12,309 858 

Iterations 65 125 102 59 53 
MACHINE A - CPU i7-920 + GT200 

CPU Time 
(s) 

351.30 676.09 552.66 332.58 288.32 

GTX295 
Time (s) 

14.15 37.24 28.591 24.43 12.83 GTX295 speedup 24.83x 18.15x 19.33x 13.61x 22.47x 

MACHINE B - CPU INTEL XEON + GF100
CPU Time 

(s) 
376.34 732.95 596.46 353.13 307.68 GTX580 Time (s) 5.19 10.95 8.13 5.70 4.47 GTX580 speedup 72.51x 66.93x 73.36x 61.95x 68.83x 

4 OPTIMIZATION APPROACHES 

4.1 Avoiding Memory Transfers 

Input data must be initially transferred from CPU to 
GPU (global memory) through the PCI Express bus 
(Kirk and Hwu, 2010). This bus has a low 
bandwidth when compared with the speed of the 
kernel execution, so one fundamental aspect in 
CUDA programming is to minimize these data 
transfers (Feinbure et al., 2011). In our first naive 
CUDA implementation of the thinning algorithm, 
this fact was not taken into account, since some 
functions were launched on the GPU device and 
others on the CPU host, thus transferring several 
data between host and device. Therefore, the results 
of this first implementation are very poor, as could 
be seen in Figure 5 ("Memory Transfers" speedup). 
The processing time was even worse than that 
obtained with the CPU version. This shows that 
direct implementations of not trivially parallelizable 
algorithms may initially disappoint the 
programmer´s expectations regarding GPU 
programming. This occurs regardless of the GPU 
used, which means that optimizations are necessary 
for this type of algorithms even when running on the 
latest CUDA architecture. 

In our case, as previously mentioned, several 
intermediate functions, such as obtaining a 
transformed neighborhood, were initially launched 

on the CPU. Therefore we must move these CPU 
operations to the GPU, by transforming them into 
kernels. This way the memory transfer bottleneck is 
avoided, achieving a relative speedup of up to 1.43x 
on the GTX295. A speedup between 1.49x (L1 
cache preference) and 1.58x (shared memory 
preference) is achieved for the GTX580 (see "All 
processes to GPU" speedup in Figure 5). 

4.2 Kernel Unification and 
Computational Complexity 

In our case study, the first kernel marks whether 
voxels are border points or not, so that the second 
kernel can obtain and transform their neighborhoods. 
The third kernel detects which voxels are simple 
points, so the fourth kernel can delete them. The 
computational requirements of each kernel are very 
low (conditional sentences and a few basic 
arithmetic operations), therefore, the delays when 
reading from global memory cannot be completely 
hidden. It seems clear that this kernel division (a 
valid solution in a CPU scope) is not efficient and 
prevents a good general acceleration value. So we 
restructured the algorithm by unifying the first three 
kernels in only one, thus generating a new general 
kernel with an increased computational complexity, 
thus hiding the latency in accessing global memory. 
The kernel unification usually implies a higher 
register pressure. We take this fact into account 
later, when discussing the MP occupancy and 
resources in section 4.5. 

The practical result for the GTX295 is a speedup 
increase of up to 5.52x over the previous CUDA 
version. The cumulative speedup so far is up to 
7.89x over the original CPU algorithm. Higher 
speedup rates are achieved for the GTX580, due to 
the minimization of global memory read/write 
instructions and the automatic cache system. A 
speedup of 18.3x over the previous version is 
achieved, nearly 29x respect the CPU version (see 
"Kernel Unification" speedup in Figure 5). For the 
first time we have overcome the performance of the 
original CPU algorithm for all our test models and 
model sizes. 

4.3 Constant Memory 

Constant memory is a 64 KB (see Table 1) cached 
read-only memory, both on GT200 and GF100 
architectures, so it cannot be written from the 
kernels. Therefore, constant memory is ideal for 
storing data-items that remain unchanged along the 
whole algorithm execution and are accessed many 
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times from the kernels (Sanders and Kandrot, 2010). 
Also, as a new improvement incorporated on the 
GF100 architecture, the static parameters of the 
kernel are automatically stored in constant memory. 
In our 3D thinning algorithm we store in constant 
memory the offset values indicating the position of 
the neighbours of each voxel. These values depend 
on the dimension of the model and do not change 
along the thread execution, so are ideal for constant 
memory. These values are accessed while checking 
if a voxel belongs to the 3D model boundary and 
when operating over a border point to obtain its 
neighbourhood. Thus, global memory bandwidth is 
freed. Our tests indicate that the algorithm is 11% to 
18% faster, depending on the model size and the 
GPU used, when using constant memory (see 
“Constant Memory Usage” speedup in Figure 5). 

4.4 Shared Memory Usage 

Avoiding memory transfers between devices and 
hiding the access memory latency time are important 
factors in improving CUDA algorithms, whatever 
GPU architecture, as outlined in sections 4.1 and 
4.2. But focusing only on the GT200 architecture, 
the fundamental optimization strategy is, according 
to our experience, to use the CUDA memory 
hierarchy properly. This is mainly achieved by using 
shared memory instead of global memory where 
possible (NVIDIA A, 2011); (Kirk and Hwu, 2010); 
(Feinbure et al., 2011). However, the use of shared 
memory on the newest GF100 GPUs may not be so 
important, as would be seen later.  

Shared memory is a fast on-chip memory widely 
used to share data between threads within the same 
thread-block (Ryoo et al., 2008). It can also be used 
as a manual cache for global memory data by storing 
values that are repeatedly used by thread-blocks. We 
will see that this last use is not so important when 
working on GF100-based GPUs, since the GF100 
architecture provides a real cache hierarchy. 

Shared memory is a very limited resource (see 
Table1). It could be dynamically allocated during 
the kernel launch, but not during the kernel 
execution. This fact avoids that each thread within a 
thread-block could allocate the exact amount of 
memory that it needs. Therefore, it is necessary to 
allocate memory to all the threads within a thread-
block, although not all of these threads will use this 
memory. Several memory positions are wasted in 
this case. 

Based on our experience we recommend the 
following steps for an optimal use of shared 
memory: A) identify the data that are reused (data-

sharing case) or accessed repeatedly (cache-system 
case) by some threads, B) calculate how much 
shared memory is required, globally (data-sharing 
case) or by each individual thread (cache-system 
case), and C) deter-mine the number of threads per 
block that maximizes the MP occupancy (more in 
section 4.5).  

Focusing now on our case study, the 
neighborhood of each voxel is accessed repeatedly 
so it can be stored in shared memory to achieve a 
fast access to it. This way, each thread needs to 
allocate 1 byte per neighbour. This amount of 
allocated shared memory and the selected number of 
threads per thread-block determine the total amount 
of shared memory that each thread-block allocates. 

We have tested our 3D thinning algorithm by 
first storing each 26-neighborhood in global memory 
and then storing it in shared memory. Testing on the 
GTX295 with our five test models, a relative 
speedup of more than 2x when using shared memory 
is achieved. On the contrary, for the GTX580, the 
relative speedup is minimal, achieving only a poor 
acceleration of around 10%, with shared memory 
preference mode. This indicates that the Fermi’s 
automatic cache system works fine in our case. In 
other algorithms, e.g. those in which not many 
repeated and consecutive memory accesses are 
performed, a better speedup could be obtained by 
implementing a hand-managed cache instead of 
using a hardware-managed one. If the L1 cache 
preference mode is selected, using shared memory 
decreases the performance on a 25%, because less 
shared memory space is available. Despite this fact, 
the use of shared memory is still interesting because 
it releases global memory space, since the 
neighbourhood could be directly transformed in 
shared memory without modifying the original 
model, which permits us to apply new improvements 
later. 

The overall improvement of the algorithm, up to 
13.94x on GTX295 and 36.17x on GTX580, is 
shown in Figure 5 (see “Shared Memory Usage” 
speedup). 

4.5 MP Occupancy 

Once the required amount of shared memory is 
defined, the number of threads per block that 
generates the better performance has to be set. The 
term MP occupancy refers to the degree of 
utilization of each device multiprocessor. It is 
limited by several factors. Occupancy is usually 
obtained as: 
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ܹ_ݕܿ݊ܽ݌ݑܱܿܿ = ோ௘௦௜ௗ௘௡௧஻௟௢௖௞௦ ∙ڿ ஻௟௢௖௞ௌ௜௭௘/ௐ௔௥௣ௌ௜௭௘ۀெ௔௫ெ௉ௐ௔௥௣௦   
 

This estimation is the ratio of the number of active 
warps per multiprocessor to the maximum number 
of active warps. In this expression, empty threads 
generated to complete the warp when the block size 
is not a multiple of the warp size are considered as 
processing threads. We calculate MP occupancy 
based on the total resident threads as follows: ܱܿܿݕܿ݊ܽ݌ݑ_ܶ = ∙ ݏ݇ܿ݋݈ܤݐ݊݁݀݅ݏܴ݁ ݏ݀ܽ݁ݎℎܶܲܯݔܽܯ݁ݖ݅ܵ݇ܿ݋݈ܤ   

 

This expression offers a most reliable value of the 
real thread slot percentage used to process the data. 
We have considered both expressions in our analysis 
for the sake of a more detailed study. It is important 
to note that if the block size is a multiple of the warp 
size both expressions return the same value. With 
respect the parameters, BlockSize represents the 
selected number of threads per thread-block. The 
WarpSize parameter is the number of threads which 
forms a warp, MaxMPThreads and MaxMPWarps is 
the maximum number of threads and warps, 
respectively, which a MP can simultaneously 
manage, and ResidentBlocks represents the number 
of blocks that simultaneously reside in an MP. We 
can obtain this last value as: 

 ݏ݇ܿ݋݈ܤݐ݊݁݀݅ݏܴ݁ 
= min(ඌܶܲܯݔܽܯℎ݁ݖ݅ܵ݇ܿ݋݈ܤݏ݀ܽ݁ݎ ඐ , ඎݏ݌ݎܹܽܲܯݔܽܯቒ݁ݖ݅ܵ݌ݎܹܽ݁ݖ݅ܵ݇ܿ݋݈ܤቓ ඒ, 

 (ݏ݇ܿ݋݈ܤܲܯݔܽܯ
 

MaxMPBlocks represents the maximum number of 
thread-blocks that can simultaneously reside in each 
MP. All these static parameters are listed in Table 1. 
Obviously, if MaxMPThreads/WarpSize is equal to 
WarpSize (like for the GTX295), the second 
mathematical expression of ResidentBlocks is not 
necessary.  

But the block size is not the only factor that 
could affect the occupancy value. Each kernel uses 
some MP resources as registers or shared memory 
(see previous section), and these resources are 
limited (Ryoo, 2008) (Kirk and Hwu, 2010). 
Obviously, an MP occupancy of 1 (100%) is always 
desired, but sometimes it is preferable to lose 
occupancy if we want to take advantage of these 
other GPU resources. 

Focusing now on registers, each MP has a limit 
of 16 K registers (on 1.x devices) or 32 K registers 
(on 2.x devices). Therefore, if we want to obtain a 
full occupancy then each thread can use up to 16 
registers (16 K / 1024 = 16 registers). On the other 

hand, on the GTX580 each thread can use up to 21 
registers (32 K / 1536 = 21.333 registers). Taking 
this into account, we calculate the number of 
simultaneous MP resident blocks in a more realistic 
way as follows: 

= ݏ݇ܿ݋݈ܤݐ݊݁݀݅ݏܴ݁  min(ඌܶܲܯݔܽܯℎ݁ݖ݅ܵ݇ܿ݋݈ܤݏ݀ܽ݁ݎ ඐ, 
ඌ ඐۀ݁ݖ݅ܵ݌ݎܹܽ/݁ݖ݅ܵ݇ܿ݋݈ܤڿݏ݌ݎܹܽܲܯݔܽܯ , ඌ  ,ඐܯܵ݀݁ݎ݅ݑݍܴ݁ܯ݈ܵܽݐ݋ܶ

ඌ ∙ ܴ݃݁݀݁ݎ݅ݑݍܴܴ݁݃݁݀ܽ݁ݎℎܶݔܽܯ ඐ݁ݖ݅ܵ݇ܿ݋݈ܤ ,  (ݏ݇ܿ݋݈ܤܲܯݔܽܯ

Where TotalSM represents the total amount of 
shared memory per MP; RequiredSM is the amount 
of shared memory allocated in each thread-block; 
MaxThreadReg is the number of MP registers; and 
RequiredReg is the number of registers that each 
thread within a block needs. 

In summary, there are three factors limiting the 
MP occupancy: (1) the size of each thread-block, (2) 
the required shared memory per block, and (3) the 
number of registers used per thread. It is therefore 
necessary to analyze carefully the configuration 
which maximizes the occupancy. To check the exact 
amount of shared memory and registers used by 
blocks and threads, we can use the CUDA Compute 
Visual Profiler (CVP) tool (NVIDIA C, 2011), or we 
can set the '--ptxas-options=-v' option in the CUDA 
compiler. CVP also directly reports the MP 
occupancy value as the expression called 
Occupancy_W in this paper. 

In our case study, when compiling for devices 
with a compute capability of 1.x, our threads never 
individually surpass 16 used registers (the highest 
value if we want to maximize occupancy on the 
GTX295), so this factor is obviated when calculating 
the number of resident bocks for this device. But 
when compiling the same kernel for 2.x devices, 
each thread needs 24 registers. This is because these 
devices use general-purpose registers for addresses, 
while 1.x devices have dedicated address registers 
for load and store instructions. Therefore, registers 
will be a limit factor when working on the GTX580 
GPU. 

If the block size increases, the required shared 
memory grows linearly because allocated shared 
memory depends directly on the number of threads 
launched. However, the MP occupancy varies 
irregularly when block size increases, as shown in 
Figure 3 and Figure 4. Occupancy_W is always 
equal or greater than Occupancy_T because 
Occupancy_W gives equal weight to empty threads 
and real processing threads. However, Occupancy_T 
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Table 3: Block size and speedup relationship on the GTX295. Average values for the five test models. 

Block 
Size 

Thread 
Slots 

Warp 
Slots 

Warp Multiple Occupancy_T
Divergent 

Branch 
Overall 

Throughput 
Serialized 

Warps 
Speedup 

128 512 16 Yes 50 % 3.67 % 1.328 GB/s 20,932 13.82x 

149 596 20 No 58.20 % 3.75 % 2.198 GB/s 23,106 15.03x 

288 576 18 Yes 56.25 % 3.89 % 1.350 GB/s 25,074 14.15x 

301 602 20 No 58.79 % 3.77 % 2.017 GB/s 27,758 14.56x 

302 302 10 No 29.49 % 3.79 % 1.231 GB/s 30,644 10.24x 

 
only considers those threads that really work on the 
3D model. 

In brief, the amount of shared memory and the 
number of required registers determine the resident 
blocks, this number of blocks and the block size 
determine how many warps and threads are 
simultaneously executed in each MP, and the 
occupancy is then obtained. 

Focusing on the algorithm running on the 
GTX295, the MP occupancy is maximized (62.5%) 
when a value of 301 threads per block is set. A block 
size of 149 obtains equal Occupancy_W percentage, 
but 301 threads per block configuration also 
maximizes Occupancy_T (58.79%). It seems clear 
that one extra thread in a block could be a very 
important factor. In our example, if we select 302 
threads instead of 301, occupancy is reduced from 
58.79% to 29.49%, which generates a reduction of 
the algorithm´s performance. In the literature this is 
sometimes called a performance cliff (Kirk and 
Hwu, 2010), because a slight increase in resource 
usage can degenerate into a huge reduction in 
performance. 

The highest occupancy is no guaranty for 
obtaining the best overall performance. Therefore, 
we perform an experimental test on the device for 
determining exactly the best number of threads per 
block for our algorithm. The analysis of the MP 
occupancy factor obtains a set of values that would 
lead to a good performance for our kernel execution. 
But if we want to maximize the speedup it is 
necessary to take into account other parameters. 
Table 3 shows, for different block sizes, the values 
obtained for the main parameters to be considered 
on the GTX295 GPU. In this table, Divergent 
Branch represents the percentage of points of 
divergence with respect to the total amount of 
branches (the lower the better). Overall Throughput 
is computed as (total bytes read + total bytes written) 
/ (GPU time) and refers to the overall global 
memory access throughput in GB/s (the higher the 
better). 

The value Serialized Warps counts the number of 
warps that are serialized because an address conflict 

occurs when accessing to either shared memory or 
constant memory (the lower the better). All these 
parameters are obtained with the CVP (NVIDIA C, 
2010). 

 

 

Figure 3: Analysis of GTX295 MP Occupancy and the 
speedup achieved with different "threads per block" 
values. Average values for the five test models. 

Table 3 also shows that the highest speedup is 
achieved with a configuration of 149 threads per 
block. Although that row does not have the highest 
occupancy value, it has a low number of Serialized 
Warps and also the highest memory throughput 
value. It is important to note that the achieved 
speedups are directly related to its corresponding 
memory throughput. This fact indicates that the 
algorithm is clearly memory bound, as previously 
mentioned. The best values of Divergent Branch and 
Serialized Warps appear with a size of 128 threads, 
but its low occupancy and throughput prevent its 
achieving a maximum speedup. 

A very similar reasoning could be done by 
analyzing for the GTX580 with the shared memory 
preference mode. In Figure 4 are represented the 
theoretical Occupancy_T and Occupancy_W trends. 

According to our theoretical occupancy 
calculations, a block-size of 192 threads, which is a 
warp-size multiple, seems to be the better 
configuration, achieving an 87.5% of Occupancy_T 
and Occupancy_W. In fact, the best speedup is 
achieved with this last value. By selecting the L1 
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cache preference mode, we realize another 
equivalent analysis, concluding that for this case 631 
threads per block is the ideal value. 

 

 

Figure 4: Analysis of GTX580 MP Occupancy and the 
speedup achieved with different "threads per block" 
values. Average values for the five test models. 

Figure 3 and Figure 4 also shows the evolution 
of the speedup when selecting different block sizes. 
These lines follow the same trend as the 
Occupancy_T line, especially in Figure 3, 
demonstrating that this is a good parameter to take 
into account when setting the thread-block size. The 
irregularities of the speedup line are due to the 
influence of the other parameters shown in Table 3. 

Finally, “Block Size (Occupancy)” value in 
Figure 5 represents the achieved speedup when we 
select: 149 threads per block instead of 128 for the 
GTX295, 192 threads per block instead of 149 for 
the GTX580 in shared memory preference mode, 
and 631 threads per block instead of 149 for the 
GTX 580 in L1 cache preference mode. 

4.6 Device Memory. Buffers 

At this moment of the programming process we 
have two kernels in our parallel CUDA algorithm: 
the first kernel determines which voxels are simple 
points and labels them, and the second one deletes 
all simple points, so we are performing some extra 
and inefficient writes to global memory. If the first 
kernel directly delete simple points, the final result 
would not be right because each kernel requires the 
original value of its neighbors. We can duplicate the 
structure which represents the 3D voxelized model 
taking advantage of the high amount of global 
memory present in GPU devices. Therefore, at this 
time we also beneficiates of the use of shared 
memory on both GPUs, since more global memory 
is released. In this way, a double-buffer technique is 
implemented and only one kernel must be launched.  

This kernel directly deletes simple points by 
reading the neighborhood from the front-buffer and 
writing the result in the back-buffer. This ensures a 
valid final result and, according to our tests, 
improves the algorithm´s performance. This 
improvement is greater if the voxelized 3D object 
has a high number of voxels. In the case of our 3D 
models, this optimization achieves an average 
improvement of 25% on the GTX295, and an 
acceleration of 52% and 83%, depending on the 
selected mode, on the GTX580 (see “Double Buffer” 
speedup in Figure 5). 

4.7 Other Strategies 

There are other optimization strategies that could 
improve our parallel algorithm. One of them is to 
avoid that threads within the same warp follow 
different execution paths (divergence). 
Unfortunately, in our case study it is very difficult to 
ensure this because the processing of a voxel by a 
thread depends directly on whether the voxel is a 
border point or not, whether it is a simple point or 
not, or if the voxel belongs to the object or not. 
However, empty points and object points managed 
by a warp are consecutive except when in-out or out-
in transition regarding the object boundary occurs.  

This implies that the problem of divergence does 
not greatly affect our algorithm. In fact, as shown in 
Table 3, the percentage of divergent branches is 
quite low. However, it is interesting to try different 
combinations with our conditional sentences to get 
better speedup. 
It is also recommended to apply the technique of 
loop unrolling, thus avoiding some intermediate 
calculations which decrease the MP performance 
(Ryoo et al., 2008). Shared memory is physically 
partitioned into some memory. To achieve a full 
performance of shared memory, each thread within a 
half-warp has to read data from a different bank, or 
all these threads have to read data from the same 
bank. If one of these two options is not satisfied then 
a partition camping problem occurs that decreases 
the performance (Price et al., 2010). By applying all 
these enhancements, our algorithm obtains a final 
speedup of up to 19.68x for the GTX295. For the 
GTX580, with the L1 cache preference mode, a final 
speedup of 50.78x is achieved. This GPU achieves a 
high speedup of 68.8x with the shared memory 
preference mode (see “Other Strategies” speedup in 
Figure 5). It is important to know that both CPU and 
GPU applications are compiled in 64-bit mode. 
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Figure 5: Summary of the main optimization strategies applied and their achieved speedups. Average values for the five test 
models with size of 512 x 512 x 512. 

5 CONCLUSIONS 

We have detailed in a practical way the main CUDA 
optimization strategies that allow achieving high 
acceleration rates in a 3D thinning algorithm for 
obtaining the curve-skeleton of a 3D model. Two 
different GPU architectures have been used to test 
the implications of each optimization, the NVIDIA 
GT200 architecture and the new Fermi GF100. 
Unlike typical CUDA programming guides, we have 
faced to a real, complex and data-sharing problem 
that shares characteristics with many algorithms in 
the areas of volume modelling or image analysis. 

We conclude that parallelizing a linear data-
sharing algorithm by using CUDA and achieving 
high speedup values is not a trivial task. The first 
fundamental task when optimizing parallel 
algorithms is to redesign the algorithm to fit it to the 
GPU device by minimizing memory transfers 
between host and device, reducing synchronization 
points and maximizing parallel thread execution. 
Secondly, especially when working with GT200-
based GPUs, the programmer must have a deep 
knowledge of the memory hierarchy of the GPU. 
This allows the programmer to take advantage of the 
fast shared memory and the cached constant 
memory. Also, the hardware model must be taken 
into account in order to maximize the processor´s 
occupancy, the influence of divergent paths to the 
thread execution, or which types of instructions have 
to be avoided. 

It has been demonstrated that the use of shared 
memory as a manual cache may not be a 

fundamental task (it depends on the algorithm 
characteristics) with the new GF100 GPUs, due to 
the presence of a new memory hierarchy and its 
automatic cache system. Anyway, shared memory 
still is a faster mechanism necessary to share data 
between threads within a thread-block. The use of 
shared memory also allows the programmer to 
release global memory space, which can be used for 
the implementation of other optimizations. 
Obviously, if we decide to use shared memory in our 
algorithm with the GF100 architecture, we must 
select the shared memory preference mode to 
achieve the highest speedup rate. The rest of 
improvements exposed along this paper result in a 
speedup increase in both GT200 and GF100 based 
GPUs, so it is clear that the CUDA programmers 
have to apply them even if they only work with the 
latest Fermi GPUs. 

We have shown the impressive speedup values 
that our GF100 GPU achieves with respect to the 
GT200. This is mainly due, in our case, to the high 
number of cores, a higher amount of simultaneous 
executing threads per MP, and the real cache L1 and 
L2 hierarchy present on the GT100 architecture.  

A summary of the main optimization strategies 
detailed in this paper and their corresponding 
average speedup rate are presented in Figure 5. 
These results show that very good speedups can be 
achieved in a data-sharing algorithm through the 
particularized application of optimizations and the 
reorganization of the original CPU algorithm. 
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