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Abstract: This paper proposes a scheme for efficient compression of wide-area aerial video collectors (WAVC) data,
based on background modeling and foreground detection using a Gaussian mixture at each pixel. The method
implements the novel approach of treating the pixel intensities and wavelet coefficients as random variables.
A modified JPEG 2000 algorithm based on the algebra of random variables is then used to perform the com-
pression on the model. This approach leads to a very compact model which is selectively decompressed only
in foreground regions. The resulting compression ratio is on the order of 16:1 with minimal loss of detail for
moving objects.

1 INTRODUCTION

Recent development of wide-area aerial video col-
lectors (WAVC) that acquire 1.5 Gpixel images at
ten frames per second (Leininger B., 2008) imposes
novel challenges for compression and transmission of
the video data. Acquisition and manipulation of wide
area aerial surveillance video is a challenging task due
to limited on-board storage and bandwidth available
for transferring video to the ground. A collection mis-
sion of two hours produces 350 TeraBytes of data and
a bandwidth of 50 Giga Bytes/sec to record a three-
channel video at 10 frames per second. These high
bandwidth processing and storage requirements war-
rant the need for an efficient compression scheme.

The current approach to managing WAVC data is
to encode the video with JPEG2000 on a frame-by-
frame basis using multiple Analog Devices ADV212
chips, operating on sections of the video frame in par-
allel. However, with lossless compression this ap-
proach results in only a 3:1 compression ratio and
cannot achieve the required frame rate. Applying
higher compression ratios is not feasible since the loss
of fidelity for small moving objects significantly re-
duces the performance of automated algorithms, such
as video tracking.

The overall objective of this paper is to describe
an approach to the compression of high resolution
surveillance video using a background model that tol-
erates frequent variations in intensity and also appar-
ent intensity change due to frame mis-registration.

Since total pixel area of moving objects in a scene is
relatively small, an approach based on selectively en-
coding moving objects in each frame and only trans-
mitting a full frame occasionally is likely to produce
a high compression factor. The success of this strat-
egy depends on the ability to accurately detect fore-
ground. It is proposed to use a background model
based on a mixture of Gaussians (GMM), where the
model is compressed using JPEG2000. This approach
leads to an efficient foreground detection algorithm
and a model that is relatively inexpensive to compute
and store.

Alternative strategies such as Motion JPEG and
MPEG-4 Part 10/AVC (also known as H264) video
compression standards are not practical in this appli-
cation. Both methods require the memory storage of
past frames, especially in the case of H-264 which
uses up to 16 bi-predictive frames in motion estima-
tion as well as multiple motion vectors for each block
which point to different reference frames. These ref-
erence frames would have to be stored in high-speed
memory, which is very limited and largely occupied
with the formation of video frames, e.g. Bayer color
restoration.

Several implementations of video compression
based on background-foreground segmentation ex-
ist (Babu and Makur, 2006) (Schwartz et al., 2009)
but none suggest a practical solution for the case of
ultra-high resolution aerial video. Moreover, pixel-
based background models which are less compu-
tationally demanding than block-based models re-
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quire very large memory. For example, the robust
pixel-based background modeling scheme proposed
by C. Stauffer and W. Grimson (Stauffer and Grim-
son, 1999) uses a mixture of weighted normal distri-
butions at each pixel. Consequently, for a 3-channel
video a model with three mixture components at ev-
ery pixel requires 21 floating point numbers per pixel,
or a storage of over 130 GBytes per frame.

W.R. Schwartz and H. Pedrini (Schwartz et al.,
2009), extend the motion estimation approach of
Babu on foreground objects by projecting intra-frame
blocks on an eigenspace computed using PCA over a
set of consecutive frames, thus exploiting the spatial
redundancy of adjacent blocks. The cost of estimating
the PCA basis as well as the requirement of observing
foreground-free frames during the estimation process
renders this approach unsuitable.

2 SURVEILLANCE VIDEO
COMPRESSION

In the approach to be described, foreground pixels
are detected using a Gaussian mixture model (GMM),
which provides rapid adaptation to changing imaging
conditions as well as a probabilistic framework. Since
a GMM is stored at each pixel, the storage require-
ment would be prohibitive without some strategy for
model compression. In the following, a technique for
significant model data reduction without loss in de-
tection accuracy is described. The description starts
with a review of the GMM background model.

2.1 Background Modeling

The extensive literature on background modeling
methods can be assigned to two major categories.
The first one exploits temporal redundancy between
frames by applying a statistical model on each pixel.
Model parameters are estimated either on-line recur-
sively or off-line using maximum likelihood. Al-
though the normal distribution seems sound and in-
expensive at first, it cannot cope with wide varia-
tions of intensity values such as reflective surfaces,
leaf motion, weather conditions or outdoor illumi-
nation changes. A natural improvement is to use a
mixture of weighted normal distributions(GMMs), a
widely used appearance model for background and
foreground modeling. However, the amount of stor-
age required to maintain a GMM at each pixel is im-
practically large for the WAVC application. In order
for the GMM representation to be effective, the stor-
age requirement must be reduced by at least an order

of magnitude. This paper presents an innovative ap-
proach to the compression of such models in order to
detect moving objects in very large video frames. Be-
fore presenting the new compression method, a sur-
vey of the GMM background modeling approach is
provided as background. Without compression, such
models would require an impractically large amount
of storage.

Friedman and Russell successfully implemented
a GMM background model over a traffic video se-
quence, each parameter being estimated using the
general Expectation-Maximization algorithm (Fried-
man and Russell, 1997). However, the most popu-
lar pixel-based modeling scheme is that implemented
by Stauffer and Grimson (Stauffer and Grimson,
1999), which uses a fast on-line K-means approx-
imation of the mixture parameters. Several varia-
tions of this method were developed improving pa-
rameter convergence rate and overall robustness (Lee,
2005)(Zivkovic, 2004).

The second category of background models ana-
lyzes features from neighboring blocks thus exploit-
ing spatial redundancy within frames. Although
Heikkilä,and Pietikäinen (Heikkilä and Pietikäinen,
2006) implemented an operator that successfully de-
picts background statistics through a binary pat-
tern, the relatively high computational cost prevent
its use in this application. W.R. Schwartz and H.
Pedrini (Schwartz et al., 2009), propose a method
in which intra-frame blocks are projected on an
eigenspace computed using PCA over a set of consec-
utive frames, thus exploiting the spatial redundancy of
adjacent blocks. The cost of estimating the PCA basis
as well as the requirement of observing foreground-
free frames during the estimation process renders this
approach unsuitable. The same reason makes other
block-based methods that capture histogram,edge, in-
tensity (Jabri et al., 2000)(Javed et al., 2002) and
other feature informations unsuitable for high reso-
lution surveillance video.

In the proposed approach, the background model
is based on a fast-converging extension of the Stauf-
fer and Grimson approximation presented by Dar-
Shyang Lee (Lee, 2005) to model background. The
extension of Lee is explained by starting with a sum-
mary of the basic Stauffer and Grimson algorithm.
The value of each pixel is described by a mixture of
normal distributions. Thus, the probability of observ-
ing a particular color tuple X at time t is given by

Pr(Xt) =
K�1

å
i=0

wi;t �N
�
Xt ;µµµi;t ;Si;t

�
(1)

K is the number of distributions in the mixture (typi-
cally 3 to 5) and wi;t represents the weight of distribu-
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tion i at time t. Each distribution in the mixture (also
referred to as mixture component) is normal with Pdf :

N (Xt ;µ;S) =
1

(2p)
n
2 jSj

1
2

exp
�
� 1

2
(Xt �µt )

T
S
�1 (Xt �µt )

�
(2)

The proposed method checks to see if a new incom-
ing pixel color tuple Xt+1 is within a factor f (typ-
ically 2.5) standard deviations from a normal distri-
bution in the mixture. If no match is found the least
weighted component is discarded in favor of a new
one with mean Xt+1 and a high variance. The weights
change according to:

wi;t+1 = (1�a)wi;t +a �Mi;t (3)

The value of Mi;t is 1 for the distribution with the clos-
est match ( if more than one distribution matches, the
one with the highest match ratio (i.e. wi=jSij ) is cho-
sen and 0 for the rest of the distributions. The learn-
ing rate a represents how fast should the new weight
change when a match is found. Each component i in
the mixture will be updated as follows:

µµµt+1;i = (1�rt;i)µµµt;i +rt;iXt (4)

St+1 = (1�rt;i)St;i +rt;i(Xt �µµµt)
T (Xt �µµµt) (5)

Essentially, r is the probability of observing the tu-
ple Xt given the mixture component i scaled by the
learning rate.

ri;t = aPr(Xt ji;qi;t) = aN
�
Xt ;µµµi;t ;Si;t

�
(6)

The parameter a causes many inaccuracies in various
applications since a small value leads to slow conver-
gence and a large value will make the model sensi-
tive to rapid intensity variations. This problem is ad-
dressed by Lee’s implementation in which each mix-
ture component i has its own adaptive learning rate
which is a function of a global parameter a and a
match count ci;t (i.e. the number of times component
i was a match up until the current time t). Let qi;t be
1 if component i is the closest match at time t and 0
otherwise. The weight is updated as follows:

wi;t+1 = (1�a)wi;t +aqi;t (7)

The key difference from the Stauffer and Grimson al-
gorithm is the following update equation,

ri;t = qi;ta

�
1�a

ci;t
+a

�
(8)

Since each component maintains a history of obser-
vations, the convergence rate of the true background
distribution can be achieved much faster while main-
taining robustness in the early stages of learning. The
background model for video frames of dimension

w� h at time t can be regarded as an image of ran-
dom variables

I=
n

P d f
�

Xi j
t

�
ji < w ; j < h ; Xi; j

t �M (wr
t ;µµµ

r
t ;S

r
t )
o
(9)

The sample space for each pixel, X i j
t is the set of

all possible color tuples (e.g. all 8-bit RGB value
combinations) and the probability function is the mix-
ture of normal distributions M (wr

t ;µµµ
r
t ;S

r
t ). Storing

I losslessly requires a large memory space is not a
practical solution. A highly compressed representa-
tion of I will make implementations tractable but with
the risk of inaccurate classification of foreground ob-
jects. As will be seen, JPEG2000 provides an effec-
tive compression scheme, since regions that are de-
tected to contain foreground based on a highly com-
pressed model can be refined locally without decom-
pressing the entire model, and thus obtain the accu-
racy of the original background model.

2.2 The JPEG2000 Standard

JPEG2000 applies a transform (DWT) to the image
and then truncates the bit resolution of the wavelet
coefficients. The coefficients are then encoded using
image neighborhood context analysis followed by
entropy coding. In the case of large single frames,
JPEG2000 has better compression quality, compared
to other coding schemes such as JPEG or H264. The
standard also supports the concept of levels, where
quality can be flexibly balanced with compression
ratio. Additionally the hierarchical nature of the
DWT intrinsically provides an image pyramid, which
is useful for visualizing large images.

A discrete wavelet transform (DWT) decomposes
a signal into low and high frequency coefficients. A
single level of the 2-d transform divides the image
in four high and low frequency subbands along
each direction (e.g. the HL subband emphasizes the
high frequencies in the horizontal direction and low
frequencies in the vertical direction). The subband
that contains low frequencies in both horizontal and
vertical directions (LL) represents a low-pass filtered
and downsampled representation of the original
image. A recursive application of the transform
on the LL band yields a pyramid with multiple
levels of decomposition of the original image. The
subband size in each level is one fourth the size of
corresponding one from the level before.

The effective tiered decomposition of the original
image in JPEG2000 permits its decompression at
various intermediate resolutions before reaching
the original image resolution. Once the wavelet
domain is computed via the lifting scheme with the
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Daubechies 9/7 or 5/3 wavelet filters, the coefficients
are quantized and entropy coded. To further achieve
scalability, JPEG2000 introduces the concept of
coding passes when sending wavelet coefficients’ bits
to the entropy encoder. Instead of using a raster-scan
order to code the nth bit of each sample, the coding
passes prioritize the coding of bits that will reduce
distortion the most from the overall image. In the
case of lossy encoding, instead of truncating the
same number of bits for every sample in a region,
JPEG2000 truncates a certain number of coding
passes, effectively performing a ”selective” bit
truncation per sample. Furthermore, JEPG2000 has
a highly hierarchic partitioning policy which permits
random access and decoding of spatial regions in the
codestream.

2.3 Compression of Background Models
Using JPEG 2000

In order to compress the background model, which
is an array of GMM distributions, it is necessary
to derive the associated GMM distribution for the
DWT coefficients at each subband at each level of the
wavelet decomposition. Since the wavelet transform
involves basic arithmetic operations such as addition
and scalar multiplication, the required transform of
the GMM will be evaluated according to the presented
novel technique based on the algebra of random vari-
ables.

2.3.1 Algebra of Random Variables

To obtain the distribution of the sum of two indepen-
dent random variables knowing each of their distribu-
tion, one must convolve one pdf with the other. Math-
ematically,

PX+Y (z) = PX (x)
PY (y) (10)
The operator
 stands for convolution. Similarly, one
can determine the distribution of an invertible func-
tion g of a random variable as such (Wackerly et al.,
2002):

Pg(X)(y) = PX (g�1(y)) � dg�1(y)
dy

(11)

for our purposes let g be a linear function of the form
Y = g(X) = s �X . Thus (11) becomes

PY =
1
s

PY=s (12)

Extending these to normally distributed random vari-
ables we have for the sum operator (Weisstein, 2012):

N (X ;µX ;SX )
N (Y;µY ;SY ) = (13)
= N (X +Y;µX +µY ;SX +SY ) (14)

Similarly for scaling:

1
s

N
�

Y
s
;µ;S

�
= N

�
Y;s �µ;s2 �S

�
(15)

The order of summation and integration can trans-
posed thus obtaining,

M (qr)
M (qq) =
Z

z

m

å
i=0

w
r
i PXi(z)

n

å
j=0

w
q
j PYj (x� z)dz

(16)

=
n

å
j=0

m

å
i=0

w
r
i w

q
j

Z
z
PXi(z)PYj (x� z)dz

(17)

=
n

å
j=0

m

å
i=0

w
r
i w

q
j N (Xi;q

r
i )
N (X j;q

q
j)

(18)

Note that the convolution of two mixtures of size m
and n generally yields m �n modes. The scalar multi-
plication of mixtures simply scales each mode thus:

s �M (wr;µµµr;Sr) = M
�
w

r;sµµµr;s2
S

r� (19)

2.3.2 The Wavelet Transform of Random
Variables

Based on these operations over random variables, the
distribution for each wavelet coefficient can be ob-
tained. One issue is that convolution of distributions
produces a number of components equal to the prod-
uct of the number of components in each distribu-
tion. It is necessary to prune back the extra compo-
nents. One approach is to delete the lowest weight
components and then re-normalizing the weights of
the remaining components. Alternatively Z. Zhang et
al.(Zhang, 2003) propose an elegant way of merging
modes in a mixture. Essentially, two mixture modes
with weights wi and w j will yield a new mode with
weight wk = wi+w j after the merger. The underlying
property of the newly obtained mode is:

wkPr(Xjk) = wiPr(Xji)+w jPr(Xj j) (20)

Taking the expectation operator on each side will
give out the mean µµµkkk of the new distribution. The
covariance is similarly obtained by solving Sk =
E[XXT jk]�µµµkµµµT

k Finally we end up with the follow-
ing merger relationships:

wkµµµkkk = wiµµµi +w jµµµ j (21)

wk
�
Sk +µµµkµµµT

k
�
= wi

�
Si +µµµiµµµ

T
i
�
+w j

�
S j +µµµ jµµµ

T
j
�

(22)
After each addition operation, the extra modes are
merged until the desired mixture size obtained, e.g.
three or five components. Using the lifting scheme
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Figure 1: Probability map evaluation using LL5.

the approximate distribution of wavelet coefficients is
obtained. For each frame F in the video, the proba-
bility map P is obtained by evaluating at every pixel
(i; j) Pr(Xi; j

t = F i j) , i.e. P= Pr(I= F). Threshold-
ing and binarizing P, a mask is obtained to select the
foreground pixels which will be encoded using stan-
dard JPEG2000. According to A. Perera et al.(Perera
et al., 2008) H.264 is reputed to have better perfor-
mance in encoding foreground blocks. However, as
mentioned earlier, its memory costs preclude its ap-
plication in wide area aerial video collection.

It is desirable to work with a JPEG2000 com-
pressed representation of I when obtaining P. A
sound implementation is to store in high speed mem-
ory the lowest resolution LL band (typically LL5 )
and and use its random variables to evaluate the prob-
ability map. Let the lowest LL band in the wavelet
transform decomposition of I be L. Because the size
of L is 25 = 32 times smaller than I, each distribution
in L will be used to measure the probability of the pix-
els in a 32x32 patch in the video frame F. A less accu-
rate probability map will result than the one obtained
using the full model I. However, by taking advantage
of/harnessing the scalability features of JPEG 2000,
the accuracy of this probability map can be increased
according to the method described below. Low prob-
ability pixels are assumed to be due to the result of
actual foreground or possibly due to the inaccuracy
of the distribution in L. Distributions from L are re-
fined by local decompression from the codestream in
order to distinguish true foreground from model in-
accuracy. Pixels that are found to have low probabil-
ity in a frame will have their corresponding distribu-
tion from I determined via local JPEG2000 decom-
pression. The probability for those pixels is then re-
evaluated with the decompressed distributions which
are close to the distributions of the in original model

I, as shown in Figure 1. The model will not be exactly
recovered due to the fact that JPEG2000 irreversible
compression is employed on I.

It is safe to assume that foreground pixels exist
in coherent regions. Therefore it is efficient that a
pixel needing local decompression causes the neigh-
boring distributions to also be decompressed due to
the pyramid structure of the DWT. Thus, the over-
head involved with performing the inverse DWT and
bitplane de-coding is minimized.

3 EXPERIMENTS

In the first experiments, data that has been obtained
from a high-definition video camera is used to eval-
uate the proposed scheme. In a final experiment,
the compression performance is evaluated on ARGUS
wide-area aerial video data taken from one of the fo-
cal planes. (Taubman and Marcellin, 2004) As men-
tioned above, if the probability of a certain pixel mea-
sured with L falls below a certain value, the pixel’s
corresponding distribution from the compressed I
is extracted from the codestream. Several experi-
ments have been run with different decision thresh-
olds, namely f0:01 , 0:1 , 0:3 , 0:5 , 0:7 , 0:9 , 0:99g.
Background models were encoded at various bitrates
also starting at 0.05 and ending at 32 bps(bits per
sample ). A 1280 x 720 background model hav-
ing a maximum of three components per mixture and
each component having an independent covariance
matrix takes up 5.5 KB of storage when JPEG2000
compressed at 0.05 bps. A higher rate like 32 bps
will increase the storage cost per frame to 3184 KB.
On the other hand, higher bitrate models require a
smaller number of local decompressions when evalu-
ating foreground probability. It can be noted that even

VISAPP 2012 - International Conference on Computer Vision Theory and Applications

42



(a) (b)

Figure 2: (a) Percent of pixels requiring local refinement vs. bit rate and (b) ROC characteristic curves for various bitrates.

(a) (b)

Figure 3: Number of local refinements required with a de-
cision threshold of 0.7 and a model compressed at a rate of
(a) 0.05 bps and (b) 32 bps.

the higher rate produces a model that is approximately
100 times smaller than the original GMM and compa-
rable in storage to a single uncompressed color video
frame. The JPEG 2000 library used was D Taubman’s
”Kakadu” 2.2 library (Taubman and Marcellin, 2004)

Figure 3 shows the pixels which require local de-
compression when evaluating the probability map on
one of the frames with two differently encoded back-
ground models. Figure 2 (a) shows that the num-
ber of lookups drops dramatically as bitrate increases
from a fractional value to an integer one. Moreover,
the receiver operator characteristic (ROC) curves in
figure 2 (b) depict that the True Positive Rate (TPR)
vs. False Positive Rate ( FPR) pairs approach the top
left corner rapidly as a function of the bitrate of the
model used to measure foreground probability. From
both figures, it is clear that models encoded at bi-
trates ranging from 5bps and above exhibit very simi-
lar characteristics both in the ability to correctly iden-
tify background and the in number of local decom-
pressions required during probability evaluation.

3.1 Results

After each probability map is evaluated with the
method described above, a binary mask is derived
from it via probability thresholding and is applied
on the corresponding frame. The resulting fore-

Table 1: Compression Ratios for two Video Sequences.

Video id Model IVideo
(Lossless )

Video
(lossy @
0.05 bps)

Still 720p Camera 96 4 31
ARGUS City Scene 96 16 87

ground objects are encoded using JPEG2000. Once
every 50 frames the mean image Mt;k of the highest
weighted component of the background model is en-
coded, where

Mt;k = fµµµi j
tkji < w ; j < h ; k = argmax

r
(wr

t ) ;

Xi; j
t �M (wr

t ;µµµ
r
t ;S

r
t )g

Figure 4 shows a video frame and associated proba-
bility map, foreground set and its reconstruction post
compression. A 600 frame 720p video , having each
foreground object losslessly compressed according to
the described method, will reduce its overall storage
reduced by a factor of 4. Each foreground frame
has an average of 0.02 bps. The lossy encoding of
foreground objects is possible, at the expense of re-
construction artifacts. These are due to the fact that
JPEG2000 smooths with each DWT level abrupt tran-
sitions from RGB values at foreground edges to the
0-value background label. This behavior has been re-
ported by Perera et al: (Perera et al., 2008). One solu-
tion is to losslessly encode a binary mask correspond-
ing to the foreground and apply it on the decoded fore-
ground to eliminate the smoothing artifacts. The re-
sults of this masking technique are shown in Figure 5.
A second aerial video sequence,acquired from one of
the ARGUS focal planes, has frame size 2740x2029
and the pixel resolution of moving objects is 25 times
lower than for the stationary camera.

As a consequence, a high compression ratio is
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Figure 4: (a) Mean image MMMk;50. (b) Probability map evaluated with model encoded at 5 bps. (c) Segmented foreground. (d)
Reconstructed frame d = a+ c.

(a) (b)

(c) (d)

Figure 5: Encoded foreground (a) lossy 0.01 bps (no mask), (b) lossy at 0.01 bps , (c) lossy at 0.05 bps and (d) lossless

achieved since the relative area of moving objects is
much smaller. Scaling the results to the full 1.5 GByte
ARGUS sequence, the encoding of moving objects
requires only 90 MBytes. The results for video and
background model compression are summarized in
Table 1. In each case, moving objects are encoded
with no compression. It should be noted that in the
ARGUS sequence additional bits were spent on en-
coding pixel intensities near discontinuities (edges)
that are labeled as foreground due to frame misalign-
ment.

4 CONCLUSIONS

It has been demonstrated that efficient foreground de-
tection and frame encoding can be achieved by ex-
ploiting the intrinsic mechanisms of the JPEG2000
coding scheme. By encoding the probability distribu-
tions it is possible to reduce the storage cost of GMM
per pixel to the same order as a single video frame.
The resulting accuracy in foreground detection, even
for video that is registered to a single ground plane,
enables a significant advance in compression ratio
without sacrificing the quality needed for computer
vision algorithms such as tracking.
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Future work will focus on a GPU implementation
of the proposed algorithm. Pixel-wise and frame-wise
parallelism is inherent will be exploited in the imple-
mentation. Another consideration is to develop algo-
rithms for the lossy encoding of foreground objects
to further improve the compression ratio. As noted
by Perera et al: (Perera et al., 2008), such compres-
sion is not a trivial task since JPEG2000 smooths with
each DWT level abrupt transitions from RGB val-
ues at foreground edges to the 0-value background
label . Moreover, such encoding will inevitably re-
quire closer integration with the computer vision al-
gorithms, such as encoding only the information that
is actually used in tracking.
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