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This paper presents a new multi-view stereo approach that reconstructs aerial or outdoor scenes in both a

planar and a point representation. One of the key features is to integrate two heterogeneous schemes for planar
and non-planar reconstruction, given a color segmentation where each segment is classified as either planar
or non-planar. In planar reconstruction, an optimal plane for each segment is chosen among possible plane
candidates by comparing the remapped reference segment region with multiple target images in parallel on a
GPU. In point reconstruction for non-planar objects, remapped pixel descriptors along an epipolar line pair
are efficiently matched on a GPU. Our method also detects and discards incorrect segment planes and outliers
that have a large 3D discontinuity with the neighboring segment planes. Several aerial and outdoor scene
reconstruction results with quantitative analyses are provided.

1 INTRODUCTION

Traditionally, multi-view reconstruction methods be-
gin 3D scene recovery from a set of images with dense
point matching, using pixel neighborhood color simi-
larity or feature descriptors. Outliers due to matching
error are discarded or adjusted via local smoothing
or global energy minimization. A disparity map de-
rived from the set of matched pairs is converted into a
3D depth map via triangulation. Color-segmentation-
based algorithms perform a similar procedure, with
each segment reconstructed as a plane (or a smooth
surface) by least-squares or RANSAC plane fitting,
given initially matched points. (Tao and Sawhney,
2000; Hong and Chen, 2004; Taguchi et al., 2008;
Bleyer et al., 2010).

In textureless regions or wide-baseline stereo,
however, plane fitting may not be successful due to
numerous outliers in the initial matching. T-junctions
(i.e., incorrectly matched apparent endpoints on par-
tially occluded edges) may cause critical errors in the
plane fitting. A more robust planar reconstruction is
desirable that can handle such cases. The basic as-
sumption that each segment is planar may also not be
applicable to a variety of object surfaces in outdoor
scenes. Additionally, over-segmentation, preferred in
most algorithms so that fewer segments contain re-
gions in more than one plane, may not be practical for
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large planar segment regions.

In this paper, we propose a new GPU-based multi-
view stereo algorithm for aerial/outdoor urban scenes
that integrates planar and point reconstruction meth-
ods. Based on the segment properties obtained from
color segmentation, each segment is reconstructed ei-
ther as a plane or as a set of points. This method also
detects and discards incorrect segment planes and out-
liers that have a large 3D discontinuity towards neigh-
boring segment planes or points.

Our proposed algorithm is parallelized onto a
GPU where multiple GPU threads are efficiently uti-
lized for higher performance. In the planar recon-
struction, multiple plane-finding energy computations
are performed in parallel on a GPU to reduce compu-
tation time. In the point reconstruction, all pixels in a
descriptor form are remapped with respect to camera
geometry to improve the efficiency of the data access
on a GPU. We provide several aerial/outdoor urban
scene reconstruction results, with quantitative analy-
ses to evaluate the GPU speedup of our algorithm.

This paper is organized as follows: Section 2 dis-
cusses previous work, together with our contribution.
Section 3 gives an overview of the proposed algo-
rithm. Sections 4 and 5 describe the planar and point
reconstruction method, respectively. Section 6 pro-
vides experimental results with discussion, followed
by a conclusion in section 7.

255

GPU-FRIENDLY MULTI-VIEW STEREO FOR OUTDOOR PLANAR SCENE RECONSTRUCTION.

DOI: 10.5220/0003825502550264

In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP-2012), pages 255-264

ISBN: 978-989-8565-04-4

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)



VISAPP 2012 - International Conference on Computer Vision Theory and Applications

2 RELATED WORK AND
CONTRIBUTION

Robust Planar Reconstruction. A key feature in
our work is our robust planar reconstruction method
using color segmentation. Most segmentation-based
algorithms rely on initial matched pairs in each seg-
ment, as discussed earlier. However in a scene con-
taining T-junctions or large parallax motions, the ini-
tial matched pairs may contain numerous outliers,
which can cause incorrect plane fits.

Our approach is more robust and overcomes many
potential problems such as T-junctions due to a wide-
baseline, since we find an optimal plane by directly
remapping each segment, using the homographies
from the candidate plane, onto all visible target im-
ages. One related approach is Patch-based Multi-
View Stereo (PMVS2) (Furukawa and Ponce, 2009)
that uses small patches (e.g., 5 5) on which to fit
planes. PMVS?2 also relies on initial matched pairs
(e.g., Harris corner with LoG operators) so the algo-
rithm may lead to incorrect patches. When PMVS2
fails to expand a patch’s size, holes or gaps may also
occur.

In addition, most segmentation-based stereo algo-
rithms use a disparity map between a stereo-rectified
image pair. This is not practical in multi-view cases
where we find a plane that satisfies multiple images in
which the segment is visible. Moreover, in multi-view
cases with widely different camera positions and di-
rections, camera poses cannot be manipulated to pre-
vent large distortions after stereo-rectification.

Another related approach is lIterative Plane Fit-
ting (Habbecke and Kobbelt, 2006) by computing a
plane that approximates part of the scene. However,
this method requires manual plane initialization. In
addition, since it relies on intensity differences be-
tween reference and comparison images, it may not
be sufficient to find the correct plane in wide-baseline
stereo. Our method, on the other hand, improves
planar reconstruction by exploiting several matching
constraints. The Iterative Plane Fitting method does
not detect occlusion, whereas our method simultane-
ously detects occluded planar segments in the recon-
struction process.

Plane Sweeping is another approach to reconstruct
planar scenes. Gallup et al. (Gallup et al., 2007)
proposed a real-time plane sweeping stereo method
for outdoor scenes. However, their method requires
initial sparse correspondences and uses intensity dif-
ferences only, which has limitations in wide-baseline
stereo, as mentioned earlier.

In addition, our method use a simple segment
graph to filter out plane outliers, that is, any segment
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that has a large 3D discontinuity between adjacent
plane segments is filtered out. Some papers such as
(Taguchi et al., 2008) use similar techniques that op-
timize segment planes. However, their optimization
again uses a simple energy function based on a dis-
parity map between a stereo image pair, which is not
applicable to multi-view cases. We believe it is more
practical and reliable to directly look at planes in 3D
instead of a disparity map in an image domain.

Hybrid Reconstruction with Segmentation. We
also seek an integration of two heterogeneous meth-
ods for aerial and outdoor urban scene reconstruction.
Our algorithm uses color segmentation to obtain seg-
mented regions to-be categorized by potential 3D ge-
ometry. We define a simple planarity criterion by seg-
ment color and size so that each segment, treated as
either planar or non-planar, is reconstructed as a plane
or a set of points, respectively.

GPU-friendliness. For a CPU implementation, our
planar reconstruction could potentially be slower than
other matching approaches when a segment is too
large, since for every pixel in the segment, bilinear in-
terpolation at its reprojected target position is required
for every target view. Likewise, the descriptor com-
parison for point-to-point matches can be very expen-
sive when a scene demands many per-pixel matches.
Our algorithm is portable to GPU systems, where it
produces matches in a fraction of the time of a CPU
version, using the texture mapping hardware in the
GPU to do the bilinear interpolation for the remap-

ping.

3 RECONSTRUCTION
OVERVIEW

Our reconstruction process begins with a color seg-
mentation, in particular, mean-shift color segmenta-
tion (Comaniciu and Meer, 2002). Once segmenta-
tion is completed, any tiny segment inside a larger
segment that has a similar color is merged with
it. Sparse feature-point matching using SURF (Bay
etal., 2008), followed by triangulation, is additionally
performed to determine an approximate 3D bounding
box of the scene. This bounding box is later used to
limit the extent of plane candidates in the planar re-
construction and to filter outliers in the point recon-
struction.

During the reconstruction process, each segment
is classified as either planar or non-planar. How-
ever, it is extremely difficult to automatically recog-
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Figure 1. Reconstruction process overview.

nize whether or not a segment is planar without ex-
plicit prior knowledge. Instead, we define a simple
planarity criterion by segment size and color.  For
outdoor urban scenes, most building walls and roof,
roads, and other artificial structures consist of planes,
where our planar reconstruction (Section 4) is used.

In the case of small segments (even ones as parts
of larger planes), our point reconstruction method
(Section 5) is used. Since small planar objects are
more difficult to fit by a plane due to higher ambi-
guity in matching projections, we treat them as a set
of points to be reconstructed. If the segment color is
close to green when examining it in both RGB and
HSV format, the point reconstruction is also used, as
this is likely a tree, bush, or similar non-planar object.
Also, the point reconstruction is applied to any seg-
ment where the planar reconstruction fails. A seman-
tic classification approach with more intricate object
definitions could be used for a more robust classifica-
tion. Figure 1 gives an overview of our reconstruction
process.

4 PLANAR RECONSTRUCTION

An initial plane for a given segment is found among
all possible planes by sampling the epipolar 3D rays
of three corners of the segment, taking all planes
through one sample on each ray, and choosing the
best. More optimal planes are then searched in a hi-
erarchical coarse-to-fine manner. This whole search
narrows down the set of candidate planes for faster
computation. A later filtering step gets rid of any out-

liers by checking adjacent segment planes for geomet-
ric consistency.

4.1 Model

Let I; and I; denote, respectively, the reference im-
age and i-th image in the set | of target images. For
each segment S 2 I, we find an optimal plane P that
satisfies several constraints described below among I,
and the I; 2 I in which S is visible. (Visibility is de-
scribed in the “visibility detection” section below.) In
other words, we look for a plane P that has a good in-
tensity/color matching with as many target images as
possible. These constraints are defined as an energy
function to be minimized.

Color Matching. The first constraint determines if
a plane segment is matched to other images in which
it is visible by its color (or intensity in gray-scale im-
ages). An optimal segment plane P should have a
lower color difference with its homography-projected
region in a target image. The color energy function,
based on the root mean square difference, is defined
as

s
_ 21V (H)Ci(P)
Ecolor (P) = m 1)

where C;(P) is the sum of squared color differences
between reference segment S and target image I;, and
N;(P) is the number of pixels in the segment visible
in target image l;. V(i) determines whether or not S
is visible in target image I;, and is described later in
equation (8). C;j(P) and N;(P) are defined as

Ci(P) = WiHiGIMiGG Y Hi(y))  (2)
(xy)2s
Ni(P) = Wi(Hi(x;y)) (©)
(xy)28
where S is the axis-aligned bounding box of the seg-
ment S and Hj(x;y) is the image of (x;y) under the
homography between I, and ;. The boundary clip-
ping function W; indicates whether or not a pixel is
within target image I;, and M; measures the squared
difference between the reference color of a pixel (x;y)
and the bilinear interpolation of the target color at the
homography mapped position (x';y") of the pixel in a
target image I;. The definitions of W; and M; are

1 ifehy) 21

Ny —
Wi(xy) = 0 otherwise @
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Boundary Matching. The second constraint deter-
mines if boundary pixels from the reference segment
are likely to be remapped into target boundary pixels.
We define the energy function as

Ebound (P) = NNsgp Bi(Hi(x:y))  (6)

1i21 (x;y)2Sp

where N is the total number of target images, Sy is the
set of the boundary pixels in the reference segment,
and Ngp is the size of Sp. Bi(x";y") is 1 if (;y") is on
or near boundary pixels (within 3 pixels in our exper-
iments) in a target image lj, and O otherwise.

Visibility Detection. The visibility of S under the
homography from a candidate plane P to a target
image |; is computed by checking the plane normal
(back-facing or not), the boundary clipping, and the
occlusion. We define the energy function as

Euvisibility(P) = N V(i) )
li21
8
% 0 if P is back-facing in I
v 0 if % <d @
)=
g0 if4® <y

1 otherwise

where Ng is the number of pixels within the seg-
ment’s bounding box. N! indicates the number of
good matching pixels in segment S and Ns is the num-
ber of pixels in S. The first constraint determines if
this plane is back-facing or not by checking the nor-
mal and the camera direction. The second one indi-
cates how much of the mapped H;(S) is clipped away
by the boundary rectangle of image I;. In our experi-
ments, d is approximately :5.

The third constraint measures the occlusion of
a segment by counting the number N(P) of good
matches. A good matching pixel is a pixel that has
a small color difference (e.g., < 20 for a range of 0
to 255) between the reference segment and the target
image. If the color difference is greater, we assume
that the 3D surface point projecting to the pixel is oc-
cluded in image l;. We want to choose a plane that
generates more visible pixels, which prevents us from
choosing a slanted plane that may have a low color
difference. In our experiments, g is approximately :7.

4.2 Initial Matching and Refinement
The initial matching process is as follows. First,

three corner pixels of each segment are selected, and
their camera rays (epipolar lines) in 3D are computed.
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Figure 2: Initial segment plane matching.

Each camera ray has a certain range, determined from
the precomputed 3D bounding box. Each camera
ray range is discretized into K samples and choosing
one sample on each ray results in K3 possible planes.
Given each possible plane, we compute its homog-
raphy and then check the energy functions defined
above by reprojecting the segment onto target views,
as shown in Figure 2.

The candidate planes are sorted by Eyisibitity (P) in
equation (7). Among the planes that are visible in
the most target images, that is, that have the smallest
Evisibility (P), we choose a plane that has the minimum
energy Ecolor (P) in equation (1) and also has at most
twice the minimum energy Epoung (P) in equation (6).
Once an initial plane is chosen, we again search the
camera rays in a hierarchical manner, by sampling
the rays in smaller intervals near the points defining
the optimal plane P, to obtain a better plane. Such
a coarse-to-fine matching increases the accuracy with
less computation time than a complete high resolution
search.

4.3 Filtering

Further steps filter out any outliers from the initial
plane matching. First, we filter out any bad plane
by examining the score from equations (1) and (7).
If the plane’s visibility energy Eyisibitity (P) is close to
N, which indicates the segment is occluded in most
target views, it is removed. If the plane’s color en-
ergy Ecolor (P) is more than 20, it is also filtered out.
We perform another filtering for the remaining planes,
using a simple segment graph where each node rep-
resents a segment and each edge represents a con-
nectivity between adjacent segments. By examining
each segment’s neighboring segments, any segment
plane that has no adjacent planes in 3D (i.e., a seg-
ment has a large 3D discontinuity with all adjacent
segments in the reference image) is also discarded.
Those discarded segments are again matched as indi-
vidual points in the following point reconstruction.
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Figure 3: GPU thread utilization for plane matching.

4.4 GPU Implementation

To achieve higher performance, the energy score eval-
uation for each plane candidate is independently ex-
ecuted in parallel, as illustrated in Figure 3. In gen-
eral, the number of GPU threads is equivalent to the
number of candidate planes. Candidate planes that are
invisible in any target view, however, are discarded
prior to the GPU computation for better workload bal-
ance in all GPU threads.

Initially, all required data such as images, camera
poses and segments are copied into the GPU mem-
ory so that they can be reused during the entire plane
matching process. All input images are loaded into
a single 3D texture (but used as an array of 2D tex-
tures) to use built-in bilinear texture interpolation in
the GPU. Each thread computes energy functions for
a certain candidate plane. Then all computed results
are simultaneously written to the global memory. For
the memory access coalescing, all allocated data (e.g.,
plane coefficients and energy results) in the global
memory are properly aligned.

Once all GPU threads compute the energy of all
the candidate planes, the result is copied back to the
CPU memory. We then choose several good planes
that have the minimum energy Euyisibitity(P). Among
the good planes, an optimal plane is chosen by the
criterion described in the last paragraph of section 4.2.

5 POINT RECONSTRUCTION

Segments not categorized as planes are reconstructed
as a set of 3D points. The goal is to achieve an effi-
cient dense reconstruction at each non-planar segment
to better represent the complex geometry of the non-
planar surface.

Unless in the form of a stereo-rectified image

Reference Target

Epipolar Line I H
Descriptors to be
Copied

Epipolar
OO Descriptors DT

oo
o\
: Bummy Data

Figure 4: Epipolar descriptor arrangement.

pair, dense matching tends to require lots of non-
localized data access. This is exacerbated when us-
ing multidimensional descriptors. Efficient process-
ing on a GPU, with its limited memory size, demands
an efficient manner of accessing pixel descriptor data
to solve as many pixels as possible using the least
amount of data. Our method seeks to leverage epipo-
lar geometry in non-rectified images to increase the
efficiency of the point correspondence calculation.

The point reconstruction uses dense DAISY de-
scriptors (Tola et al., 2010) to match as many pixels
as possible in non-planar segments. The DAISY de-
scriptors are formed from appending the descriptors
at a given pixel across the color channels. That is,
each pixel (x;y) stores a set of channel-appended de-
scriptor vectors D(x;y), each of which is a descriptor
vector of a given color channel:

D(x;y) = [Dr(x;y) : Dg(x;y) : Dp(x;y)]  (9)

For a more computationally efficient data struc-
ture, we use the epipolar geometry to rearrange the
appended descriptors (hereafter referred to as simply
descriptors) into a linear array in the GPU memory,
which localizes data access to the descriptors.

For a given pixel p, in a reference image Iy, there
is an epiolar line I; in a target image I;. Similarly, a
pixel pj along I, corresponds to an epipolar line Ij in
reference image I. Epipolar geometry then stipulates
that if any pixel p; on I, has a match, it must appear
in I and vice versa. We develop the rearrangement of
descriptor data using this property.

5.1 Epipolar Data Localization

For the given reference image I, we select a pixel
pr from the set U of pixels from all segments to be
reconstructed as points, and find the epipolar line I; in
target image l;. We also calculate the epipolar line [
for image I, from a point on I,. We record the epipolar
line pair L = (I;1;), and also record the pixels that I;
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Figure 5: Coarse-to-fine pixel mappings.
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covers in U. This process is repeated until all pixels
in U are covered.

The epipolar line pairs are sampled such that the
number of samples remains constant. We sample
given epipolar line pair L in a fashion such that ev-
ery integer width and height in its path is covered at
least once.

This produces a line with a maximum sample
count equal to the larger of the width or the height
of the image. For lines with less than this maximum
amount of samples, their remaining points are given
dummy sample values, as shown in Figure 4.

We rearrange the DAISY descriptor data to fit the
epipolar line pairs such that adjacent memory loca-
tions contain the descriptors of adjacent pixels on the
same epipolar line. We give the dummy pixels added
to maintain consistent line sizes descriptors that are
distant numerically from what a descriptor could rea-
sonably be.

5.2 Coarse-to-fine Mapping

For a set of sampled epipolar lines in a given image,
we also calculate the lines as they appear in a down-
sampled version of the original image. Descriptors
created from the down-sampled version are then rear-
ranged in the epipolar fashion of the previous section.

During this process, we save a mapping of every
fine-level pixel in a reference image epipolar line to
its best representative sample in the down-sampled
version for the reference image, as shown in Figure
5. For a target image, we create mappings from every
coarse-level pixel to a range of pixels on the fine-level
epipolar line. This range should contain the points on
the fine level that a pixel at the coarse level could map
to.

5.3 Point-to-point Matching

Once descriptors are arranged at both coarse and fine
levels, we match pixels from a reference line to its
target line by minimizing the euclidean distance of the
associated descriptor vectors.

The candidate set of matched pixels at the fine
level for each reference pixel is modified by the
coarse-to-fine mappings. For a given reference pixel
and line pair, we first use the fine-to-coarse map-
pings and match the coarse version of the reference
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Figure 6: Coarse-to-fine search trajectory. (a) Map to
coarse. (b) Match coarse to coarse descriptors. (c) Fine
subset from coarse match. (d) Match fine in fine subset. (e)
Write out fine match.

pixel to the line of coarse-level candidate pixels. The
coarse-to-fine mapping of this coarse matched pixel
gives a subset of fine-level candidate pixels to be
matched. Figure 6 illustrates the coarse-to-fine de-
scriptor search.

After matching the pixels of a reference line I;, the
descriptor matches are translated back to the actual
image plane locations of the pixels and triangulated
to find the 3D points. In the matching process, we
use cross-checking to get rid of outliers (e.g., occlu-
sion), that is, given a matched point in the target im-
age, we apply the matching method in reverse to find
its matched point in the reference image. Then the
original reference point is compared with the matched
point to see if both are the same or similar within a
threshold. 3D points outside the bounding box are
also filtered out.

5.4 GPU Implementation

For the GPU implementation, we load the descriptor
data at the coarse and fine levels and the mappings
between them into GPU memory for a set of epipolar
line pairs. Because of each epipolar line pair has its
own data independent set of Epipolar Descriptor lines
(see Figure 4), we arrange GPU thread-blocks around
an individual pair of epipolar lines. Each thread
within one of these thread blocks attempts to solve at
least one pixel or more, depending on the maximum
number of threads allowable per thread block.

Threads in a block attempt to operate on adjacent
reference descriptors on the line and, after solving
for their pixel, refer to another descriptor in mem-
ory down the reference epipolar line to solve another
pixel if necessary. The dummy pixel descriptors are
processed exactly the same as the valid descriptors,
as the dummy descriptors are distant enough to never
be a closest match. Memory access for each thread
becomes more predictable as a result of the data and
thread arrangement.
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6 EXPERIMENTS AND
DISCUSSION

In this section, we evaluate the effectiveness of our
algorithm with aerial/outdoor image sets. Our appli-
cation was written in C/C++ with CUDA, OpenCL
and OpenGL. All experiments were performed on an
NVIDIA GeForce 9800 GT with 512 MB video mem-
ory, or an ATl Radeon HD 4850 with 512 MB video
memory (on Intel Core 150 2.66GHz).

Datasets. Figure 7 shows sample input images used
for our experiments. We used two sets of aerial pho-
tographs of urban scenes; Carlos (Kique) Romero’s
aerial images of Stockton, California, USA (Romero,
2009), and Brett Wayne’s aerial images of Walnut
Creek, California, USA (Wayne, 2007). We also used
three outdoor image sets that have been acquired in
our lab: coffee shack, building 1, and building 2. For
camera poses, we used Bundler (Snavely et al., 2008),
given known intrinsic camera parameters. To eval-
uate the accuracy of our planar reconstruction using
ground-truth information, we also generated two syn-
thetic scenes based on a simple OpenGL polygonal
model with slightly different textures, and then cap-
tured images from several camera views.

Reconstruction Results. Figure 8 shows how our
two reconstruction methods are integrated. The left
image is one of the reference images of the building
scene. The middle image shows a mask image for
the reference image, generated by using our classifi-
cation based on the segment size and color. The white
regions are reconstructed by our planar reconstruction
whereas black regions are reconstructed by our point
reconstruction. Thus two results are effectively inte-
grated, as shown in the right image.

Figure 9 shows our reconstruction results for the
two aerial scenes and the three outdoor scenes. As
shown in the aerial scene reconstruction, our pla-
nar reconstruction recovers roads, building roofs, and
other large planes whereas our point reconstruction
recovers trees, bushes, small building walls, and other
small objects. We then render the reconstructed
point cloud using Mesh Lab (Cignoni and Ranzuglia,
2011). For the Stockton data, although most roads are
extremely large segments where many pixels in the
segments are out of image windows in target images,
many roads are reconstructed properly. The outdoor
scene reconstruction results also look quite dense. In
particular, the coffee shack and building 1 show that
our reconstruction can work properly for textureless
regions. In the coffee shack data, most of the roof and

Table 1: Accuracy of the reconstructed synthetic scenes be-
tween our planar reconstruction and PMVS2. Error indi-
cates distance between the reconstructed and the ground-
truth surface.

Error Our Method PMVS2
Synthetic Min. 0.000 0.036
Scene 1 Max. 5.954  27.581
Mean 1.857 1.965
Synthetic Min. 0.000 0.057
Scene 2 Max. 29.589  18.900
Mean 2.446 2.234

walls are correctly reconstructed although they con-
tain textureless regions.

Comparison with PMVS2. Figure 10 compares
our results and PMVS2 results using several scenes.
Because of the larger plane regions (one segment is
a large plane region), our result looks more dense
and detailed without many holes or gaps, compared to
the results of PMVS2, which attempts to solve small
piecewise planes with no regard to expected geome-
try. For instance, our method produces more dense re-
constructions in the synthetic scenes which contain T-
junctions with large textureless planar regions. In the
PMVS2 results, on the other hand, there are incom-
plete surface patches, probably due to mismatched
keypoints or patch extension failure.

Table 1 gives a quantitative evaluation between
our planar reconstruction and PMVS2 that measures
the accuracy of the reconstructed results of the two
synthetic scenes, compared to the ground-truth infor-
mation. Although our results look more dense than
PMVS2 result as shown in Figure 10, both results
show similar accuracy.

The separation of reconstruction methods accord-
ing to expected scene geometry frees us to use the
more distinct pixel descriptors to solve non-planar
segments such as the bushes and trees in Figure 10,
which may not be well modeled as small planes. In
general, segment categorization by predicted geome-
try prevents us from having to optimize a single re-
construction method that may not be appropriate for
all scene geometries and textures.

GPU Speedup. We also evaluated the performance
gain of our GPU-based implementation. For this anal-
ysis, we also implemented a CPU version without
parallelization. Figure 11 shows performance differ-
ences between the CPU version and our GPU version
in the planar reconstruction of the Stockton dataset.
The speedup of our GPU-based planar reconstruction
is 8:7 onaverage (Min.: 0:4 , Max.: 39 ).

The GPU speedup of our point reconstruction is

261



VISAPP 2012 - International Conference on Computer Vision Theory and Applications

Figure 7: Input images for our experiments. From Ieft to right and top to bottom, Stockton (CA, USA), Walnut Creek (CA,
USA), coffee shack, building 1, building 2, synthetic scene 1 and synthetic scene 2.

Figure 8: Reconstructed results mtegrated from our planar- and point-reconstruction methods, rendered by Mesh Lab. One of
the reference images (left), the masked image (middle), the reconstructed scene (right).

Figure 9: Reconstructed results, rendered by Mesh Lab. From left to right and top to bottom, Stockton (CA, USA) (Ieft top),
Coffee shack (right top), Walnut Creek (CA, USA) (left bottom), building 1 (middle bottom) and building 2 (right bottom).

262



GPU-FRIENDLY MULTI-VIEW STEREO FOR OUTDOOR PLANAR SCENE RECONSTRUCTION

Figure 10: Comparison with PMVS2. Our reconstructed results (left column), and results from PMVS2 (right column).
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Figure 11: Performance comparison between the CPU- and the GPU-version in our planar reconstruction. In the graph, the
X-axis represents segment size (# of pixels) and the y-axis represents computation time (in seconds).
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Table 2: Epipolar matching execution time (in seconds) in
our point reconstruction.

Data Set CPU  GPU  Speedup

Stockton 5.279 0.824 641
Walnut Creek 5.276 0.823  6:41
Coffee shack 6.026 1.612 3:74

dependent on image resolution and the maximum
threads per block, with larger resolutions requiring
each thread to solve more points. Table 2 gives aver-
age time measurements to solve 5 epipolar line pairs.
The Stockton and Walnut Creek scenes required 4
pixels to be solved per thread, while the coffee shack
scene required 8 pixels to be solved per thread.

7 CONCLUSIONS

We described a hybrid reconstruction algorithm using
GPU parallelism that reconstructs aerial or outdoor
urban scenes in a point or in a planar representation.
The reconstruction process recovers a scene that con-
tains both planar objects (e.g., building roofs, roads)
and non-planar objects (e.g., trees), classified by the
segment color and size. Our algorithm is also useful
for a scene containing large planar regions. Both re-
constructions are efficiently performed in parallel on
a GPU.

For future work, one can optimize the planar re-
construction using a Markov random field with a
global energy minimization to reduce plane error be-
tween adjacent plane segments. For more robust clas-
sification between planar and non-planar objects, one
can apply a sophisticated semantic scheme by looking
up the object identification among a large number of
training objects and/or by analyzing the texture pat-
tern.
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