THE THORNY PATH TO AN ARTIFICIAL BRAIN - How to Build a Bridge between Neurophysiology and Network Modeling

Elena Saftenku

2012

Abstract

Humanoid robots are created to imitate some of the tasks that humans undergo, but no current robot can emulate the cognitive capabilities of even the simplest mammals. One approach to developing computing platforms for cognitive robotics is to make use of experimental characterizations of the neurobiological substrate for action and perception systems and simulate brain functions designing real-time spiking neural networks. Biologically detailed network models are a powerful tool to understand how molecular and cellular mechanisms determine high level network processing. Recent advances in experimental and theoretical studies of the dynamic organization of neuronal populations suggest that our further success in creation of higher intelligence robots will depend on the ability to incorporate such basic principles of brain functioning as (i) stochastic dynamics and intrinsic nonlinearities in input-output transformation of neurons, (ii) structural and functional plasticity, (iii) signaling through neuromodulator networks.

References

  1. Abraham, W. C., Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci, 19, 126-130.
  2. Azevedo, F. A., Carvalho, L. R., Grinberg. L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E. (...), Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol, 513, 532-541.
  3. Cannon, R. C., O'Donnell, C. O., Nolan, M. F. (2010). Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol, 6, e1000886.
  4. Cingolani, L. A., Goda, Y. (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci, 9, 344-356.
  5. Colgin, L. L., Leutgeb, S., Jezek, K., Leutgeb, J. K., Moser, E. I., McNaughton, B. L., Moser, M. B. (2010). Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. J Neurophysiol, 104, 35-50.
  6. Cunha, C., Brambilla, R., Thomas K. L. (2010). A simple role for BDNF in learning and memory? Front Mol Neurosci, 3, 1.
  7. Dillon, C., Goda, Y. (2005). The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci, 28, 25-55.
  8. Dorval, A. D., White, J. A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci, 25, 10025-10028.
  9. Edelman, G. M. (1993). Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron, 10, 115-125.
  10. Edelman, G. M., Gally, J. A., Baars, B. J. (2011). Biology of consciousness. Front Psychol, 2, 4.
  11. Galimberti, I., Gogolla, N., Alberi, S., Santos, A. F., Muller, D., Caroni, P. (2006). Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience. Neuron, 50, 749-763.
  12. Giocomo, L. M., Zilli, E. A., Fransén, E., Hasselmo, M. E. (2007). Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science, 315, 1719-1722.
  13. Grossman, A. W., Churchill, J. D., Bates K.E., Kleim, J. A., Greenough, W. T. (2002). A brain adaptation view of plasticity: is synaptic plasticity an overly limited concept? Prog Brain Res, 138, 91-108.
  14. Haider, B., McCormick, D. A. (2009). Rapid neocortical dynamics: cellular and network mechanisms. Neuron, 62, 171-189.
  15. Hasselmo, M. E., Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 36, 52-73.
  16. Hebb, D. O. (1949). The Organization of Behavior. New York: Wiley.
  17. Henneberger, C., Papouin, T., Oliet, S. H., Rusakov, D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature, 463, 232-236.
  18. Holtmaat, A., Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci, 10, 647-658.
  19. Hutcheon, B., Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci, 23, 216-222.
  20. Imaizumi, K., Priebe, N. J., Sharpee, T. O., Cheung, S. W., Schreiner, C.E. (2010). Encoding of temporal information by timing, rate and place in cat auditory cortex. PLoS One, 5, e11531.
  21. Lambrecht, R., LeDoux, J. (2004). Structural plasticity and memory. Nat Rev Neurosci, 5, 45-54.
  22. Le Bé, J. V., Markram, H. (2006). Spontaneous and evoked synaptic rewiring in the neonatal neocortex. Proc Natl Acad Sci USA, 103, 13214-13219.
  23. Markram, H. (2006). The Blue Brain project. Nat Rev Neurosci, 7, 153-160.
  24. Markram, H., Gerstner, W., Sjöström, P. J. (2011) A history of spike-timing-dependent plasticity. Front Syn Neurosci, 3, 4.
  25. Oláh, S., Füle, M., Komlósi, G., Varga, C., Báldi, R., Barzó, P., Tamás, G. (2009). Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature, 461, 1278-1281.
  26. Pavlov, I., Scimemi, A., Savtchenko, L., Kullmann, D. M., Walker, M. C. (2011). Ih-mediated depolarization enhances the temporal precision of neuronal integration. Nat Commun, 2, 199.
  27. Pawlak, V., Wickens, J. R., Kirkwood, A., Kerr, J. N. (2010) Timing is not everything: neuromodulation open the STDP gate. Front Syn Neurosci, 2, 146.
  28. Perin, R., Berger, T. K., Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proc Natl Acad Sci USA, 108, 5419-5424.
  29. Remy, S., Beck, H., Yaari, Y. (2010). Plasticity of voltage-gated ion channels in pyramidal cell dendrites. Curr Opin Neurobiol, 20, 503-509.
  30. Schultz, W. (2010). Multiple functions of dopamine neurons. F1000 Biol Rep, 2, 2.
  31. Schweighofer, N., Doya, K., Kuroda, S. (2004). Cerebellar aminergic neuromodulation: towards a functional understanding. Rrain Res Rev, 44,103-116.
  32. Silver, R. A. (2010). Neuronal arithmetic. Nat Rev Neurosci, 11, 474-489.
  33. Song, I., Savtchenko L., Semyanov, A (2011). Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons. Nat Commun, 2, 376.
  34. Vartanian, G. A., Pirogov, A. A., Shabaev, V. V. (1986). Hypothesis of the information switching of conditioned reflex activity. Zh Vyssh Nerv Deiat Im I P Pavlova, 36, 1168-1179.
  35. Zhang, W., Linden, D. J. (2003). The other side of engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci, 4, 885-900.
Download


Paper Citation


in Harvard Style

Saftenku E. (2012). THE THORNY PATH TO AN ARTIFICIAL BRAIN - How to Build a Bridge between Neurophysiology and Network Modeling . In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems - Volume 1: PECCS, ISBN 978-989-8565-00-6, pages 170-176. DOI: 10.5220/0003824901700176


in Bibtex Style

@conference{peccs12,
author={Elena Saftenku},
title={THE THORNY PATH TO AN ARTIFICIAL BRAIN - How to Build a Bridge between Neurophysiology and Network Modeling},
booktitle={Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems - Volume 1: PECCS,},
year={2012},
pages={170-176},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003824901700176},
isbn={978-989-8565-00-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems - Volume 1: PECCS,
TI - THE THORNY PATH TO AN ARTIFICIAL BRAIN - How to Build a Bridge between Neurophysiology and Network Modeling
SN - 978-989-8565-00-6
AU - Saftenku E.
PY - 2012
SP - 170
EP - 176
DO - 10.5220/0003824901700176