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Abstract: Despite Hu’s invariants were proven not to be independent nor complete long time ago, their use in computer
vision applications is still broad, mainly because of their diffusion among common CV libraries and ease of
use by inexperienced users. In this paper I want to investigate whether, given their mathematical flaws, they
are nevertheless good enough to justify such a wide diffusion, also considering that more sophisticated tools
have been developed over the years.
In order to do this, I am going to test the robustness of Hu’s invariants in a comparative way against the more
modern wavelet invariants, in a hand gesture recognition application. Finally, I am going to discuss, basing
my considerations on the experimental data, whether Hu’s invariants are still a viable option for small scale,
amateurish applications, or if the time has come to abandon them for more effective solutions.

1 INTRODUCTION

Image invariants can be defined as characteristic val-
ues of an image, chosen to be invariant to some kind
of distortions, usually a combination of translation,
rotation and scaling. Albeit invariants suffer of var-
ious weaknesses, such as the inability to be used to
match occluded objects, they are still considered one
of the main benchmark references for all other shape
descriptors. Over the course of the years, moment
invariants have become one of the most famous and
common tools in shape recognition. Moment invari-
ants find their roots in the theory of algebraic invari-
ants, and they have been used for the first time in
pattern recognition from Hu (Hu, 1962), who devel-
oped the very same set of invariants whose robustness
I am going to examine in this paper. After that, many
authors have either improved and generalized Hu’s
work, or applied his results to many different appli-
cation fields, from satellite images (Wong and Hall,
1978) to hand writing recognition (Flusser and Suk,
1994). Flusser (Flusser, 2000), probably inspired by
the previous work of Reiss (Reiss, 1991), developed
a method to derive a complete set of independent in-
variants for every image, and proved mathematically
that Hu’s invariants are not independent, nor com-
plete. Nevertheless, their use in the field of computer
vision is still broad, mainly because of their ease of
use, being implemented in many of the available li-
braries, such as the widely used OpenCV library (Wil-
lowGarage, 2011). On the other hand, we see very

few implementations, in those very same libraries, of
more recent and effective sets of invariants, such as
Hermit-Gaussian’s, Li’s, Zernike’s or wavelet invari-
ants. Therefore, a non-expert user of those libraries,
who might be willing to implement his own ideas, will
probably be using, consciously or not, Hu’s set rather
than other ones. My aim is to test whether this is a vi-
able choice for small scale, amateurish applications,
given the low complexity and the ease of use of Hu’s
set, or if the tradeoff is too extreme, and it is time,
after 50 years since their invention, to start making
pressure on the CV libraries maintainers to have them
deprecate Hu’s set, placing it side by side with the
more recent tools. To address this question, I am go-
ing to compare the performance of Hu’s set with the
one of a subset of the wavelet invariants, in a config-
uration where the performance of the acquisition de-
vice is comparable to those of amateurish devices, i.e.
low resolution and low frame rate, and the application
is hand gesture recognition.

2 THEORETICAL DESCRIPTION

In this section I am going to give to the reader some
theoretical background about the general procedure
in order to obtain a set of invariant features, immune
to Translation, Rotation and Scaling (TRS) modifica-
tions, as well as describe Hu’s and wavelet sets more
specifically.

Let f(x,y) by a 2-D binary image object in the (x,y)
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Cartesian coordinate space, while its corresponding
polar representation is f(r;q). We can achieve TS in-
variance by using two new coordinates, that are de-
fined as:

x
0
=

x�X0

a
;y
0
=

y�Y0

a

where (X0;Y0) are the coordinates of the center of
mass of the object of interest, and a is the square
root of the ratio between the object’s size and its ex-
pected size. From now on, I am going to refer to f(x,y)
and f(r;q) as the TS normalized version of the origi-
nal image, respectively in Cartesian and polar coordi-
nates.

R normalization is achieved as follows: Let

Fpq =
Z Z

f (r;q)gp(r)e jqq
rdrdq (1)

being gp(r) a function of the radial variable r, and p
and q are integer parameters. The demonstration of
the rotation invariance of

����Fpq
���� is achieved as fol-

lows: if the image f(r;q) is rotated of an angle b,
its corresponding moment becomes FbRot:

pq = Fpqe jqb,
that as we know doesn’t affect the value of the norm
of the vector. Thus,

����Fpq
���� is a rotation invariant.

As shown by Shen (Shen, 1999), we can derive
that Hu’s moments, Li’s moments and Zernike mo-
ments are all special cases of (1) and that the extracted
features are global features.

2.1 Hu’s Invariants

For the complete theoretical explanation of Hu’s
work, I address the reader to the original paper by Hu
(Hu, 1962), and the following work by Reiss (Reiss,
1991) and Flusser (Flusser, 2000). The set of the
7 original Hu’s moment invariants can be directly
derived from the geometrical center moments:

f1 = h20 +h02

f2 = (h20�h02)
2 +4h2

11

f3 = (h30�3h12)
2 +(3h21�h03)

2

f4 = (h30 +h12)
2 +(h21 +h03)

2

f5 = (h30 � 3h12)(h30 + h12)((h30 +h12)
2 �

3(h21 +h03)
2) + (3h21 � h03)(h21 +

h03)(3(h30 +h12)
2� (h21 +h03)

2)

f6 = (h20 � h02)((h30 +h12)
2 � (h21 +h03)

2) +
4h11(h30 +h12)(h21 +h03)

f7 = (3h21 � h03)(h30 + h12)((h30 +h12)
2 �

3(h21 +h03)
2) � (h30 � 3h12)(h21 +

h03)(3(h30 +h12)
2� (h21 +h03)

2)

where
hpq =

µpq

µ
(1+ p+q

2 )
00

and

µpq =
Z +¥

�¥

Z +¥

�¥

(x�X0)
p(y�Y0)

qf(x;y)dxdy

is the central moment of the function f(x,y) . One of
the main weaknesses of the set is its explosive com-
plexity, and thus its usage is almost always limited to
these 7 invariants, albeit higher order moments have
been constructed, for example by Li (Li, 1992) and
Wong et Al (Wong et al., 1995), respectively up to or-
der nine and five. Flusser (Flusser, 2000) proved that
the above mentioned set is not independent: let cpq
be the pq-order complex moment in polar coordinates
denoted by:

cpq =
Z +¥

0

Z 2p

0
r

p+q+1ei(p�q)qf(r;q)drdq

Under this representation, Hu’s invariants can easily
be rewritten as:

f1 = c11,
f2 = c20c02,
f3 = c30c03,
f4 = c21c12,

f5 = ´(c30c12
3),

f6 = ´(c20c12
2),

f7 = `(c30c12
3)

From this representation we can see that:

f3 = c30c03 =
c03c21

3c30c12
3

(c21c12)
3 =

f5
2 +f7

2

f4
3

and therefore the invariants are not independent.

2.2 Wavelet Invariants

A detailed explanation of the wavelet invariants can
be found in Shen (Shen, 1999), while some of their
applications for image matching can be found in
Zhang et al (Zhang et al., 2009).
Wavelet Transform is a method for obtaining local-
ized analysis, but unlike the traditional short-time
Fourier Transform, Wavelet Transform can provide
both time and frequency localization. While dealing
with the wavelet based approach, we are going to treat
gp(r) from (1) as the wavelet mother function, and
consider the wavelet family:

y
a;b(r) =

1p
a

y(
r�b

a
) (2)
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where a;b 2 R+ are, respectively, the dilatation pa-
rameter and the shifting parameter. In the experiment
I am going to use the cubic B-spline in Gaussian ap-
proximation form (Unser et al., 1992), given by:

y(r) =
4an+1p

2p(n+1)
sw cos(2p f0(2r�1))e

� (2r�1)2

2s2w(n+1)

where n = 3;a = 0:697066; f0 = 0:409177;s2
w =

0:561145 . This choice was based on the properties
illustrated in (Ahuja et al., 2005).
The values of the a and b parameters in (2) are usu-
ally discrete, and discretization is achieved by choos-
ing a = am

0 with m integer and a0 6= 1 while b is dis-
cretized by taking the positive and negative multiples
of b0a0m, with b0 chosen so to cover the whole do-
main of y((r� b)=a) for different values of m or, in
other words:

a = am
0 ;b = nb0a0m

with n,m integer. But since the image size ha been
normalized in the domain r � 1 , one can set a0 and
b0 both to 0.5, and restrict the domain for m and n as:

m = 0;1;2;3;n = 0;1; :::;2m+1;

in this way, we obtain a simplified form of the
wavelet, defined along a radial axis in any orientation:

ym;n = 2
m
2 y(2m

r�0:5n)

Now, if we let this function sweep through all the an-
gular rotation in the moment computation, it will ex-
tract global or local features according to the values
of m and n.
The general form of a wavelet invariant is given by:������Fwavelet

m;n;q

������= ��������Z Z
f (r;q)ym;n(r)e jqq

rdrdq

��������
where ym;n(r) replaces gp(r) in (1), m =

0;1;2;3;n = 0;1; :::;2m+1;q = 0;1;2;3. There-
fore in our case we have 136 possible wavelet
invariants, while Hu’s are only 7. In order to make
the comparison fairer, one has to choose a reduced
set of the wavelet invariants.

2.3 Choosing the Invariants

All of Hu’s invariants were kept, due to their limited
number. Besides, the purpose of this test is to verify
the set’s robustness as it is, including the dependent
values. For the wavelet invariants, the first reduction
I have chosen is the restriction of the domain of the
q parameter to the single 0 value. Albeit this might
seem like a drastic choice, we must remember that we
want to go from 136 dimensions to 7, and no matter

what reduction we choose, we are going to lose a lot
of information in the process. At least, this choice al-
lows to avoid working with complex numbers, reduc-
ing the computational load on that part, and allowing
to increase the resolution of the dr and dq values of
the discretization of the polar integral, thus reducing
numerical instabilities.
After some exploration of the parameters space, I
found out that the invariants with lower variance over
the training set in the 34 remaining options were (for
each of them, q=0 and therefore I report only the val-
ues of m and n):

������Fwavelet
0;0

������, ������Fwavelet
1;3

������, ������Fwavelet
2;0

������,������Fwavelet
2;1

������, ������Fwavelet
2;2

������, ������Fwavelet
3;0

������, ������Fwavelet
3;1

������,
which are distributed over all the values of m.

3 EXPERIMENTAL SETUP

The acquisition device I am going to use in this ex-
periment is the Mesa Imaging SwissRanger SR4000
Time of Flight camera (Imaging, 2011). It acquires a
black and white, 176x144 resolution, 16bit depth im-
age, providing reliable information about the distance
of each pixel from the camera when the pixel is lo-
cated in the 30 – 300 cm distance range. The camera
frame-rate used is 20 FPS.
Since the design of an effective hand-detection algo-
rithm is beyond the purpose of this paper, the hand
segmentation is performed using distance informa-
tion, in order to create a scanning layer and obtain
a binary image. Eventual remaining holes and noise
are then subjected to morphological transformations
for filling and filtering. A similar approach for seg-
mentation has already been used for touch-less inter-
faces, with excellent results (Soutschek et al., 2008).
At the start of the experiment, I generate a number N
of agents, each one storing the K = 7 invariant val-
ues of a specific gesture out of the M gestures in the
database, independently perturbed by a uniformly dis-
tributed mutation, which magnitude is in the �V % of
the reference value. Each agent stores the signature of
only one gesture, therefore there are at least bN=Mc
agents evaluating each gesture. I am going to refer to
a set of agents evaluating the same gesture as “com-
mittee”.
The evaluation is performed using the following pro-
cedure: for each frame, for each agent, I am going
to calculate the average percentage variation of the
logarithms of the invariants of the image, compared
to those of the reference, which is the ”distance” be-
tween the stored reference and the current image. If
the result is bigger than a given tolerance T , then the
shape is considered as not matching the shown ges-
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ture, yes otherwise. This very same decision policy
is used even in the OpenCV libraries implementation
of Hu’s invariants (WillowGarage, 2011). At the end
of this preliminary evaluation, I am going to calcu-
late the number of agents that recognized their gesture
in the current frame, but only when a minimum per-
centage of agreement was reached in their committee,
assign at each gesture a probability accordingly and
randomly extract the output. If no committee reaches
P% recognition, then no gesture is recognized in that
frame.

4 EXPERIMENTAL RESULTS

User dependency is a very big issue in gesture recog-
nition, as proven by the success in identification ap-
plications (Schmidt et al., 2010), and the evaluation
of its effects is clearly outside the scope of this pa-
per. Therefore, I am going to use the same users for
both training and testing. Albeit the gesture database
is very limited, consisting only of 5 gesture performed
with both hands, the experiment should be able to give
us some useful material for discussion. I performed 3
different experiments, testing the performances of the
sets over still images, moving images, and still images
with added noise respectively.
Due to the users’ inability to stay perfectly still in
posture, slight changes in the perceived image oc-
curred. In order to avoid setting the value of T too
high to compensate, testing was performed also over
a “Noise” gesture, i.e. a gesture not matching any of
the database ones, but which looked similar to many
of them under different perspective angles, shown ro-
tating on all possible axis.

Rock Paper OK Stop Pointing Noise

I report only the best results, over all the param-
eters combinations tested. In all cases, training was
performed using 15 seconds long recordings of the
gesture, recorded in a static pose, while testing was
done using 10 seconds long recordings (which are
long times, considering the application). Training
consisted in calculating the invariants of each frame
of the training sample, and then averaging the output
only when the value was not further than �50% of
the median value, in order to filter out training noise.
Due to the comparative nature of this study, the very
same data-set for training and experiment were used
for both Hu’s and wavelet approaches.

Table 1: Static gestures; Hu’s invariants; N=300; M=5;
V=5%; T=7.5%; P=75%.

Gesture Correct Opposite Total Wrong

R. Rock 96.9 0.0 96.9 0.0
R. Paper 89.3 0.0 89.3 0.0
R. OK 97.2 2.1 99.3 0.0
R. Stop 93.7 0.0 93.7 0.0
R. Pointing 95.7 0.0 95.7 0.0
L. Rock 92.2 0.0 92.2 0.0
L. Paper 97.3 0.0 97.3 0.0
L. OK 99.2 0.0 99.2 0.0
L. Stop 73.7 25.2 99.3 0.0
L. Pointing 97.1 0.0 97.1 0.0
Noise – – – 7.5

Average 93.2 2.8 96.0 0.8

Table 2: Static gestures; Wavelet invariants; N=300; M=5;
V=10%; T=15%; P=75%.

Gesture Correct Opposite Total Wrong

R. Rock 50.4 46.5 96.9 0.8
R. Paper 83.9 0.0 83.9 5.4
R. OK 7.1 0.7 7.8 0.0
R. Stop 44.4 23.8 68.3 6.3
R. Pointing 64.0 3.6 67.6 1.4
L. Rock 53.5 42.9 96.3 1.2
L. Paper 84.6 0.0 84.6 2.0
L. OK 84.1 3.8 87.9 0.0
L. Stop 46.1 52.0 98.0 0.0
L. Pointing 20.1 0.0 20.1 2.2
Noise – – – 21.5

Average 53.8 17.3 71.1 3.7

4.1 Static Experiment

All gestures were presented frontally, with the palm
of the hand towards the camera. Each table repre-
sent the percentage of the ratio between the number of
frames where a gesture was output, and the total num-
ber of frames. Rows represent which gesture sample
was shown to the camera. “Correct” means a correct
hand and gesture recognition, “Opposite” means cor-
rect gesture but wrong hand. These two columns were
summed in the “Total” column, for ease of the reader.
“Wrong” means a completely wrong gesture recog-
nized, while no-output frames are not reported in this
tables. The results are shown in Table 1: Hu’s invari-
ants matching ratio for static gestures is very high,
with complete lack of error when a real gesture is
shown to the system. In the second phase of the first
experiment the test was repeated using the wavelet in-
variants approach. The results are shown in Table 2:
as we can see, the performance of the wavelet invari-
ants is generally lower than Hu’s, which is probably
due to both the discretization process for the radial
integrals in such a low-resolution environment, prone
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Table 3: Moving gestures; Hu’s invariants; N=300; M=5;
V=5%; T=7.5%; P=75%.

Gesture Correct Opposite Total Wrong

R. Rock 37.4 1.0 38.4 1.4
R. Paper 45.3 1.1 46.4 0.0
R. OK 51.0 0.0 51.0 3.5
R. Stop 69.1 0.0 69.1 0.0
R. Pointing 83.9 0.0 83.9 0.0
L. Rock 39.4 0.0 39.4 0.0
L. Paper 43.5 13.0 56.5 0.0
L. OK 43.6 12.8 56.4 0.0
L. Stop 71.3 13.1 84.4 0.0
L. Pointing 77.9 3.2 35.2 0.0
Noise – – – 2.5

Average 56.2 4.4 56.1 1.1

Table 4: Moving gestures; Wavelet invariants; N=300;
M=5; V=10%; T=15%; P=75%.

Gesture Correct Opposite Total Wrong

R. Rock 44.6 42.9 87.6 2.8
R. Paper 49.2 1.1 50.3 9.0
R. OK 8.1 6.6 14.7 3.6
R. Stop 17.5 12.4 29.9 25.2
R. Pointing 23.2 6.7 29.9 3.1
L. Rock 45.7 42.8 88.5 3.8
L. Paper 23.6 1.4 25.0 4.6
L. OK 9.6 6.9 16.5 3.7
L. Stop 40.8 33.6 74.3 10.
L. Pointing 12.2 6.5 18.7 1.6
Noise – – – 21.5
Average 25.9 15.7 41.6 8.1

to numerical instabilities. As a matter of fact, in order
to obtain these results I had to use a very high value
of the tolerance T parameter, which led to a big false
positive ratio. To be noted is also the inability of the
wavelet set to distinguish between mirrored images
(in this case left or right hand) properly. Hu’s set, in-
stead, can do this better, being the sign of f7 sensitive
to mirroring.

4.2 Moving Experiment

This time, gestures in the sample were shown trans-
lating all over the camera plane, but without any rota-
tion. Involuntary rotation and shape change happened
due to users’ movement, which is the cause for worse
results. Results are shown in Table 3: as we can see,
they are sensibly worse. Upon close inspection of
the errors for the gestures that had a poorer perfor-
mance (“Pointing”, “OK”), I noticed that this is due
to their similar outer silhouette, which is confused by
the algorithm in most of the non-static situations. The
results for the wavelet invariants tested over moving
gestures are shown in Table 4. Wavelet invariants’
performance is again generally lower than its oppo-

Table 5: 2% Salt&Pepper noise; Hu’s invariants; N=300;
M=5; V=5%; T=12.5%; P=75%.

Gesture Correct Opposite Total Wrong

R. Rock 56.6 6.2 62.8 0.8
R. Paper 26.8 0.0 26.8 0.0
R. OK 61.7 9.2 70.9 0.0
R. Stop 56.4 0.8 57.1 0.0
R. Pointing 63.3 0.0 63.3 0.7
L. Rock 62.9 0.4 63.3 0.4
L. Paper 47.0 0.0 47.0 0.0
L. OK 81.1 0.0 81.1 0.0
L. Stop 47.4 20.4 67.8 0.0
L. Pointing 70.5 0.0 70.5 0.0
Noise – – – 2.5

Average 57.4 3.7 61.1 0.4

nent’s: wavelet invariants are too sensitive to shape
changes to outperform the more ”stubborn” Hu’s set
in this setting. Another thing that needs to be pointed
out is that, just like it happened with Hu’s set, some
gestures (for example “Rock”) are much more stable
than others (“OK”,“Pointing”). The reason for this is
probably in the fact that the user can perform those
gestures in a moving way with less involuntary ro-
tation than the others, which might be an interesting
consideration for a possible human interface applica-
tion.

4.3 Noise Experiment

The last part of the experiment consisted in testing
over the same static set as before, but including a 2%
Salt&Pepper noise, i.e. negating the binary value of
2% of the pixels of the image. It is important to state
that this disturbance was introduced before the mor-
phology operations, and therefore its effect reaches
the invariants extraction phase highly amplified, as
shown in this sample image:

Original Noisy

Results for this test are shown in Tables 5 and 6,
for Hu’s and wavelet invariants respectively. We can
see that the average performance is deeply affected
in both cases, but Hu’s invariants resist better than the
wavelet ones, albeit they required an increase of the T
parameter, while the wavelet’s did not. The reason for
this is the fact that wavelet invariants are much more
sensitive to the noise-induced shape differences than
Hu’s invariants, and are in fact used, for example, to
distinguish between very similar shapes (Shen, 1999).
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Table 6: 2% Salt&Pepper noise; Wavelet invariants; N=300;
M=5; V=10%; T=15%; P=75%.

Gesture Correct Opposite Total Wrong

R. Rock 27.1 35.7 62.8 22.5
R. Paper 41.1 0.0 41.1 48.2
R. OK 24.8 5.1 29.8 17.8
R. Stop 31.0 17.5 48.4 25.4
R. Pointing 35.3 5.8 41.0 31.0
L. Rock 30.6 30.2 60.8 20.0
L. Paper 43.0 2.0 45.0 28.2
L. OK 50.0 8.3 58.3 9.9
L. Stop 40.8 33.6 74.3 18.4
L. Pointing 12.2 6.5 18.7 17.3
Noise – – – 22.3
Average 33.6 14.4 48.0 23.6

5 CONCLUSIONS

The goal of this paper was to investigate whether Hu’s
moment invariants, despite their proven mathematical
imprecision, are still a viable option for non-expert
users and small scale applications, thanks to their sim-
plicity. To address this question, I compared their
performance with the more recent set of wavelet in-
variants, in a severe low-resolution environment that
emulates a possible amateurish hardware scenario.

The results, albeit few in quantity, show how Hu’s
invariants perform greatly over still images, definitely
better than the more advanced wavelet set. I have
then tried to have Hu’s and wavelet sets detect trans-
lating gestures: results were, obviously, much worse,
but still in the 40–60% range, with Hu’s invariants
performing generally better than the wavelet’s also in
this case. Finally the test was conducted over noisy
images. In both cases there is a worsening of the re-
sults of about absolute 30%, but Hu’s invariants are
definitely better in this case also. The reason for
this is dual: firstly, the low resolution leads to prob-
lems in the discretization of the radial integral steps
for the wavelet invariants calculation, and secondly
the wavelet set is much more sensitive to the shape
changes, intrinsic in this application, than Hu’s set.

In conclusion, it is my opinion that Hu’s invari-
ants have proven their robustness under difficult con-
ditions, and therefore they are still a great choice, es-
pecially in order to allow amateurs of the field to try
and implement their ideas. Nevertheless, this doesn’t
mean that one must think of them as the panacea of
all shape recognition problems: in other applications
other approaches have proven their superiority, and
CV libraries maintainers should indeed start imple-
menting the newer tools in their collections, leaving
the responsibility of picking the right tool for each
problem to the developer.

ACKNOWLEDGEMENTS

The author would like to thank Prof. Koichi Shinoda
at Tokyo Institute of Technology for his suggestions,
and all Shinoda Lab’s members for their cooperation.

REFERENCES

Ahuja, N., Lertrattanapanich, S., and Bose, N. (2005).
Properties determining choice of mother wavelet. Vi-
sion, Image and Signal Processing, IEEE Proceed-
ings, 152(5):659–664.

Flusser, J. (2000). On the independence of rotation moment
invariants. Pattern Recognition, 33(9):1405–1410.

Flusser, J. and Suk, T. (1994). Affine moment invariants: a
new tool for character recognition. Pattern Recogni-
tion Letters, 15(4):433–464.

Hu, M.-K. (1962). Visual pattern recognition by moment
invariants. In Information Theory, IRE Transactions
on, volume 8, pages 179–187. IEEE Computer Press.

Imaging, M. (2011). Mesa imaging product description,
2011.

Li, Y. (1992). Reforming the theory of invariant moments
for pattern recognition. Pattern Recognition, 25:723–
730.

Reiss, T. (1991). The revised fundamental theorem of mo-
ment invariants. IEEE Trans. Pattern Anal. Mach. In-
tell, 13(8):830–834.

Schmidt, D., Ki Chong, M., and Gellersen, H. (2010).
Handsdown: hand–contour–based user identification
for interactive surfaces. NordiCHI 2010 Proceedings
of the 6th Nordic Conference on Human-Computer In-
teraction: Extending Boundaries, pages 432–441.

Shen, D. (1999). Discriminative wavelet shape descriptors
for recognition of 2-d patterns. Pattern Recognition,
32:151–165.

Soutschek, S., Penne, J., Hornegger, J., and Kornhuber, J.
(2008). 3-d gesture-based scene navigation in medi-
cal imaging applications using time-of-flight cameras.
Computer Vision and Pattern Recognition Workshops,
2008. CVPRW ’08. IEEE Computer Society Confer-
ence on, pages 1–6.

Unser, M., Aldroubi, A., and Eden, M. (1992). On the
asymptotic convergence of b-spline wavelets to gabor
functions. IEEE Trans. Inform. Theory, 38(2):864–
872.

WillowGarage (2011). Opencv official documentation.
Wong, R. Y. and Hall, E. L. (1978). Scene matching with

invariant moments. Computer Graphics and Image
Processing, 8(1):16–24.

Wong, W., Siu, W., and Lam, K. (1995). Generation of
moment invariants and their uses for character recog-
nition. Pattern Recognition Letters, 16(2):115–123.

Zhang, F., Liu, S.-q., Wang, D.-b., and Guan, W. (2009).
Aircraft recognition in infrared image using wavelet
moment invariants. Image and Vision Computing,
27(4):313–318.

VISAPP 2012 - International Conference on Computer Vision Theory and Applications

316


