
DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS
A Review of the Feasibility of Dynamic Data Processing on Wireless Platforms

Alexander Dannies, Javier Palafox-Albarrán, Walter Lang and Reiner Jedermann
Institute for Microsensors, -actuators and -systems, University of Bremen, Otto-Hahn-Allee NW1, Bremen, Germany

Keywords: Java, Data Processing, Wireless Sensors, OSGi, Dynamic Components, Pervasive Computing.

Abstract: A wireless sensor network (WSN), which is one type of pervasive system, has the goal of networking
heterogeneous systems and communicating through a gateway. However, it is also necessary to provide
dynamic features to wireless nodes for updating applications and services during runtime. Dynamic updates
can be handled either by the intrinsic features of Java or by advanced frameworks such as MIDP or OSGi.
This paper investigates the software background and the feasibility of these three options in the context of
WSNs. Java Virtual Machines were tested on sensor nodes and gateways currently available on the market.
Two synthetic benchmarks were utilized to compare their performance. In addition, we tested the
performance of an exemplary algorithm for a real life application during transportation in food logistics.
Our experimental results showed that the performance of the benchmarks varied by a factor of more than
50, depending on the platform. Nevertheless, our chosen example algorithm could be executed on all
platforms within an acceptable amount of CPU time. Pre-processing of data can be applied on wireless
devices to reduce communication volume and provide conclusions instead of raw data. However the use of
advanced frameworks, enabling extended dynamisation, are so far very limited.

1 INTRODUCTION

The vision of omnipresent information processing in
everyday environments, for example in logistic
transport and production processes by a network of
pervasive systems, becomes more and more feasible
with the decreasing cost and increasing
computational power of wireless devices.

Pervasive systems have the aim of networking
everyday life by the use of intelligent objects. They
can utilize different technologies and systems with
different computational capabilities. Wireless sensor
networks (WSN) are examples where different
hardware types are involved. These devices
communicate with the external world through a
gateway which possesses extended communication
and processing capabilities.

The nodes are placed in an environment in order
to sense physical parameters, communicate with the
network’s neighbours and determine useful actions.
One of the most important challenges is to deploy
applications in which families of hardware devices
interact with each other. As mentioned by Vazquez,
Almeida, Doamo, Laiseca and Orduña (2009), it is
desirable to implement monitoring solutions based

on WSNs with distributed intelligence in which
sensor populated scenarios may communicate with
internet-based solutions.

Our vision of an intelligent network, in the
project “Intelligent Container” (IMSAS, 2011),
includes the capability to handle dynamic changes in
the environment. The network nodes should be able
to interpret and to react to environmental data and
situations that were unknown at the time of their
installation and initial programming as access to the
container is not possible during transport. Therefore
it is necessary to provide dynamic features in
wireless network nodes to allow updating during
runtime, not only of one application but also the
services provided. For example, the sensor can be
moved to a new environment, which requires a
modified network protocol to make the best use of
the available gateways, whereas the remainder of the
software remains unchanged. Alternatively, the
intelligent data processing may consist of multiple
services which are updated at different time
intervals.

The concept of the Open Source Gateway
initiative (OSGi) enables Java software modules to
be updated or replaced on a system during runtime,
for example remotely over an internet-connection.

58 Dannies A., Palafox-Albarrán J., Lang W. and Jedermann R..
DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS - A Review of the Feasibility of Dynamic Data Processing on Wireless Platforms.
DOI: 10.5220/0003802300580066
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 58-66
ISBN: 978-989-8565-00-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Research has been carried out including OSGi in
pervasive systems, but the main focus is telematics
systems (Lee et al., 2006) and mobile agents (Lee et
al., 2010) as its merits make it suitable for these
purposes.

Implementing dynamic features in WSNs is even
more complicated. The difference between WSNs
and other pervasive systems is that the main concern
is the energy consumption of the application. In
Rellermeyer et al., (2008) they go one step further,
making the concept of OSGi compatible with
resource-constrained devices. They propose OSGi-
like services in devices with no JVM and with
limited operating system support. The only full
OSGi framework exists on the gateway.
The question arises whether it is possible to have a
full OSGi heterogeneous system which is energy
aware and intelligent, or whether pure Java without a
middleware on top is sufficient at the lower levels.

The aim of this paper is to investigate the
feasibility of OSGi and Java implementation in
several WSN platforms. Verifying this would allow
a shift in the paradigm from a centralised WSN – in
which the majority of sensors are just collecting
environmental data and transmitting these to one
processing unit – to a WSN with sensors which are
pre-processing data to reduce network traffic and
save energy. The requirements for a specific
application can differ from our selected application
domain of interest, which is monitoring during
transportation in food logistics. The main issues to
be taken into account are the time needed for the
platforms to perform complex computer operations
and the limitations of each of them regarding
resource requirements for enabling a dynamic
platform.

First, in section 2 we will provide an overview of
Java and dynamic components. Section 3 will
explain the methods used to test the performance
and the configuration, followed by section 4 which
describes the hardware platforms used in the
experiments. In section 5 we discuss the results and
finally offer conclusions.

2 STATE OF THE ART

Java and OSGi are two promising technologies for
solving the challenge of dynamic software updates.
The former is well-known to be portable and
independent of platform. Pervasive Java (also called
wireless Java and mobile Java) attempts to bridge
the gap between different devices and platforms.
However, Java Standard Edition (JavaSE) was

conceived for personal computers and is not suitable
for resource constrained devices. Realising this
need, Sun Microsystems introduced the Java 2
Platform, Micro Edition. The second system, OSGi,
is based on Java with a focus on modular, service-
oriented architecture (SOA) as well as dynamic
installation and updates of bundles.

2.1 Java as Dynamic Language

Java is the most common language that meets the
requirement of the ability to extend software with
dynamic code segments, because dynamic class
loading is one of its intrinsic features. Some of the
additional benefits one obtains by choosing Java are
object-oriented programming and automated
memory and heap management (garbage collector).
Furthermore, using Java as a programming language
is programming platform-independent. This so
called concept of “write once, run anywhere”
(WORA) becomes possible through the use of a Java
virtual machine (JVM) which is adapted to specific
hardware architecture, e.g. x86 or ARM. The JVM
does not execute a compiled program, but rather a
Java bytecode which will be interpreted differently
on each platform.

2.1.1 Limitations of JavaME

It has to be questioned whether JavaME is still
sufficient for the increasing demands of data
processing algorithms. The situation-dependent
loading and installation of new software bundles
requires flexible class loaders. Storage of recorded
data and knowledge might require a file system.
Most data analysis algorithms require floating or
even double precision arithmetic.

JavaSE is the standard platform for programming
in the Java language. It consists of a Java virtual
machine for executing the compiled class-files (the
Java program) and a set of libraries which makes it
possible to access, e.g. the file system, graphical or
network interfaces from a Java program.

The Java Micro Edition (JavaME) is aimed at
embedded systems, e.g. mobile phones with limited
resources. A developer programming for a platform
using JavaME has to keep in mind that he is
restricted to the features of JRE 1.3. Three
components belong to the JavaME-stack: the
configuration which contains the Java virtual
machine, the profile, which adds a certain set of
API, and optional packages for additional
functionality in regards to the profile scope. There
are two configurations: The Connected Device

DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS - A Review of the Feasibility of Dynamic Data
Processing on Wireless Platforms

59

Configuration (CDC) includes almost the entire
scope of JavaSE except for GUI-related libraries. In
contrast, the Connected Limited Device
Configuration (CLDC) only contains the minimum
amount of classes necessary to enable the operation
of a JVM. In version CLDC 1.1, the previous
version has been extended by the classes double and
float, so that floating-point operations now are
enabled. On the other hand, the Java-math-library is
still not available.

On top of the configuration, a profile can be
chosen which fits the desired target application. For
example, the Mobile Information Device Profile
(MIDP) for mobile devices such as mobile phones,
or the Personal Profile for consumer electronics.
Applications written based on the former profile are
called MIDlets.

2.2 Java Virtual Machines

In this paper, four selected JVMs are installed in
diverse sensor nodes in order to be tested, namely
JamVM (Lougher, 2010), JamaicaVM (Siebert,
2002), Squawk (Oracle, 2011a) and SwissQM
(Müller, Alonso and Kossmann, 2007). The first two
JVMs are based on the JavaSE standard. The third is
based on the JavaME standard, and the fourth was
specifically developed for sensor nodes.

JamVM is an open source JVM which makes use
of the GNU Classpath (Lougher, 2010). The
developers claim that their implementation is
extremely small and still able to support the full
specification, including class-unloading and native
support. It supports several operating systems such
as Linux, Mac and Solaris as well as different
hardware architectures like PowerPC, ARM and
AMD64.

JamaicaVM is a commercial JVM of AICAS. It
provides, according to the developer, Hard Realtime
Execution, Realtime Garbage Collection, the best
trade-off between runtime performance and code
size, dynamic loading, multi-core support, and
native support. It is available for diverse operating
systems like Linux and Windows, and several
architectures like x86 and ARM. In addition to the
traditional method of building a JVM and executing
a class-file, the JamaicaVM Builder offers another
solution. All files relevant to the application (a set of
class files) and the Jamaica VM are combined into a
standalone application in a single executable file.

Squawk is a JavaME VM which targets small
resource constrained devices. Its core is mostly
written in Java. Classes are not transferred directly
to the execution environment but combined in a

suite and prelinked to each other, which results in a
reduced size of around one third of the original size.
The omission of dynamic class loading in these
immutable suites significantly decreases the start up
time of the applications. Squawk utilizes the concept
of isolates, where an application can be represented
as an object. This allows common suites to be shared
between multiple applications that run in the single
JVM which can lead to a significantly reduced
memory footprint.

Finally, SwissQM is a combination of a JVM
and a query machine (QM) that was developed
specifically to be run on platforms with TinyOS as
operating system, such as TelosB (Crossbow, 2011).
It is based on 16-bit integer values, and floating-
point types are not supported. It only supports 37
instructions of the instruction set of the JVM
specification, and adds 22 specific instructions
related to processing queries. Programs are executed
at every sampling period or when data from other
nodes arrive. It has a small footprint – 33kB of Flash
and 3kB of SRAM memory – and is able to execute
up to six QM programs concurrently in TelosB, but,
in principle, it can run an arbitrary number of
concurrent programs.

2.3 Management of Software Bundles

Furthermore, several Java based frameworks can be
found that make the exchange of software bundles
easier. Software agent platforms such as the Java
Agent DEvelopment Framework (JADE)
(Bellifemine et al., 2008), a Mobile Agent Platform
for WSNs based on JavaSun Spots (MAPS) (Aiello
et al., 2011), and the Agent Factory Micro Edition
(AFME) (Müller, 2007) are mainly found in
academic research.

There are two different application models (AM)
for the Java language. On the one hand, the
unmanaged approach exists, which is basically the
start of the static method main() when executing a
class file. On the other hand, there are several
concepts for managed AMs like applets (for web
browsers), Xlets (for advanced content on Blu-ray
discs), MIDlets (for mobile devices like mobile
phones), OSGi Bundles and the OSGi R4 Mobile
Expert Group (MEG) AM.

Here, we wish to compare the two concepts of
MIDlets and OSGi Bundles.

2.3.1 MIDlets

A device running a Mobile Information Device
Application (called a MIDlet) has an environment

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

60

which enables the user to choose MIDlets for
installing, starting and removing. This so called
Application Management Software (AMS) to control
the life-cycle is responsible for the interaction with
the user as well as for error handling. MIDlets have
three possible states: paused, active and destroyed.

To achieve modularity with MIDlets, a method
needs to exist which enables the communication
between different software modules which can be
updated independently of each other. For this the
following two approaches are possible. On the one
hand, the Record Management Store (RMS) enables
indirect communication between MIDlet-suites
(introduced in MIDP2.0) and on the other hand,
Inter-MIDlet-Communication (IMC) enables direct
communication between MIDlets (introduced in
MIDP3.0). However, at the moment there is no SDK
available, which supports MIDP3.0. The question
can be raised whether it will ever be available
because the standard was approved in the end of
2009 but has not yet been introduced in SDKs. This
is reasoned by the fact that the development of
applications for mobile devices has shifted to
android applications and the like. With the RMS-
approach, every MIDlet can access record stores
created of other MIDlets in the same suite. Starting
from MIDP2.0 it is also possible that MIDlets of a
second suite outside the first suite access the record
store, but only when allowed by the MIDlet which
created the record store. The data inside the record
store stays as long as the suite stays on the device,
independent of the status of the MIDlet (active or
paused). If the device is switched off and then on
later, the data is still available. When a MIDlet suite
is removed from a device the record store is no
longer available.

2.3.2 OSGi

Sometimes just running a Java-application on a
device is not enough because the modularity is
missing, for example when new implementations
have to be integrated into the running program. To
add this functionality, the Open Services Gateway
initiative framework (OSGi) can be used. This
concept enables the remote update or replacement of
Java software modules on a system during runtime,
for example over an internet-connection. So the
concept of OSGi enables a high degree of dynamics
because it is possible to update an existing piece of
software running on a device without being on site
or restarting the machine.

In order to be able to use the concept of OSGi an
OSGi framework on top of a Java Virtual Machine

(JVM) is necessary. This framework utilizes a so-
called Service Registry to make it possible to
modularise and manage applications and their
services with the help of a component model by
using bundles and services. On the one hand there
are open source frameworks available for the current
specification “OSGi Service Platform Release 4“
(R4), namely Apache Felix, Eclipse Equinox and
Makewave Knoplerfish and next to it a R3
implementation named Concierge from the Institute
for Pervasive Computing, ETH Zurich. On the other
hand there are commercial OSGi frameworks
available, e.g. ProSyst Software mBedded Server
and Makewave Knopflerfish Pro to name two of
them.

It is possible to run OSGi on mobile phones, e.g.
with Linux as an OS and JavaME VM with the CDC
configuration and FP 1.1. Even though OSGi was
originally designed for environments with CDC or
above, it is generally possible to implement OSGi in
a CLDC environment. The “mBS Mobile for
JavaME” from ProSyst proves that, but with the
limitation to version R3 of the OSGi specification.
The platform requirement is a J2ME CLDC/MIDP
2.0 compatible JVM. Typically OSGi R4 needs 8
MB volatile memory and a CPU clock speed of at
least 150 MHz to operate (Prosyst, 2010).

The basic feature of OSGi is to enable access to
certain Java classes which are published as services,
while protecting the remaining code against external
access, which largely depends on user defined class
loaders.

The inclusion of user defined class loaders
produces a lot of overhead for the JVM, which is the
reason why they were excluded from the CLDC
profile. This raises the challenge to find another
mechanism to implement code sharing and isolation
in an optimised OSGi framework.

The Request for Proposal (RFP) 126 (Bottaro
and Rivard, 2009) suggests a new approach – the
implementation of a new OSGi specification which
aims to replace a profile, e.g. MIDP. So on top of the
CLDC1.1 configuration, the OSGi ME Profile is
used to add an OSGi environment to resource-
constrained environments. In addition to keeping the
core features of the OSGi technology and the Java
ME CLDC compliance, the proposition includes a
strengthened robustness and a simplification which
requires much less resources and thus enables mass
deployment. Although the RFP sounds promising it
remains to be seen whether the concept offers what
it promises. In 2010 it was mentioned in Bottaro and
Rivard (2010) that the specification would soon be
public and that the company IS2T was about to sell

DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS - A Review of the Feasibility of Dynamic Data
Processing on Wireless Platforms

61

the first OSGi ME. In autumn 2011 the specification
was made public and IS2T has a reference
implementation and sells early solutions. The
question arises if and when an open-source solution
will be accessible.

3 METHODS

In order to have a reference point for the abilities of
the different platforms (see section 4) we are using
two synthetic benchmark-algorithms: Dhrystone
which uses integer values and LINPACK which uses
floating point values. Due to the fact that the
whetstone benchmark uses trigonometric functions it
is not possible to execute it on platforms with
CLDC1.1, at least without the use of external
classes. So as a replacement we used the LINPACK
benchmark.

In addition, we tested the performance of an
exemplary algorithm for the analysis of sensor data
as an example of a real life application.

3.1 Feedback-hammerstein

The exemplary algorithm estimates the three
parameters required for a model that represents the
factors affecting the temperature inside a
refrigerated container transporting perishable goods,
and does not need any matrix inversion. The so-
called Feedback-Hammerstein system takes into
account the effect of organic heat using a static non-
linear feedback system. In order to provide an
accurate prediction, the model parameters have to be
iterated over three days at a measurement interval of
one hour, equivalent to 72 cycles. Details of the
algorithm are described in Palafox-Albarrán,
Jedermann and Lang (2011).

3.2 Test Configurations

There are three options available to run Java code.
Option one is the compilation of the Java code

into the Java VM. This is mainly used for standard
functions and services. Whilst this approach results
in fast execution speed, it does have some
drawbacks. Firstly, it is no longer possible to update
the code. And secondly, the code size increases
because the compiled native code is less memory-
efficient than byte code. The second option is that
the code is interpreted at run-time by the VM. This
can be a class-file or jar-file. The third option is that
the code is compiled just-in-time (JIT) before
execution. This is especially beneficial for classes,

which are often called or contain a high number of
nested loops. Which of these options are available
depends on the implementation of the VM.

The open-source solution JamVM only enables
the second option. In constrast to the open-source
solution, the JamaicaVM implements the Realtime
Specification for Java (RTSJ) and a deterministic
garbage collection. It also supports all three options
described above. The footprint and execution time of
a built-in-application (option 1) can be influenced
immensely by choosing the correct settings for the
parameters in the building process, such as heapsize,
timeslicing, stack size, percentage compiled or
number of threads, just to name some of the many
options available.

3.2.1 OSGi

A preliminary OSGi implementation on the sensor
platform Imote2 (Memsic, 2011) was conducted by
Wessels, Jedermann and Lang (2010). Back then, an
executable was built with the JamaicaBuilder which
contains the Jamaica VM in version 3.4 and the
Equinox Framework in version 3.4.

In addition to this we used the current version (6)
of the JamaicaVM and the equinox framework in
version 3.7. The newer JamaicaVM has the
capability of creating a JVM with an integrated just-
in-time (JIT)-compiler. Furthermore an open-source
solution of a JVM was used, namely JamVM in
version 1.5.4 (with classpath in version 0.98). These
configurations were utilized for the tests on both
ARM-platforms (see section 4 for details). On the
x86- platform both JVM were tested.

3.2.2 MIDlets and Java Archives

On the other sensor platforms OSGi implementation
was not possible. On Preon32 and SunSPOT the
benchmarks were written in Java in their
corresponding development environments and then
transferred to the devices as MIDlets or Proglets
(Virtenio VM) respectively.

In SwissQM, the user query is run as a bundle in
the SwissQM gateway and not in the sensor node. It
sends bytecode to the sensor network for query
processing purposes on the sensor nodes. The
limited VM on the sensor nodes is not capable of
running complex operations; user defined functions
are possible but they are written in a C-like language
and only integer types and no arrays are supported.
This makes it very difficult to program even simple
algorithms like Feedback-Hammerstein as it requires
at least simple matrix operations like addition and
multiplication.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

62

4 INTRODUCTION OF TESTED
HARDWARE PLATFORMS

Tables 1 and 2 contain the different platforms we
used with their properties.

Table 1: 802.15.4 Wireless sensor platforms.

 TelosB Imote2 Sun SPOT Preon32

CPU

(MHz)

MSP 430
(8)

PXA 271
(416)

SAM 9G20
(400)

Cortex-M3
(72)

RAM 10 kB 32 MB 1 MB 64 kB

OS TinyOS Linux None None

JVM Swiss QM any Squawk Custom

Java
Edition

Reduced
byte code

SE
ME

CLDC 1.1

ME
almost

CLDC 1.1

Table 2: Telematics platforms.

 DuraNAV VTC6100

CPU

(MHz)

PXA255

(400)

N270

(1600)
RAM 64 MB 1 GB

OS Linux Linux
JVM Any Any

Java Edition SE SE
OSGi Any Any

4.1 Wireless Sensor Platforms

All the tested wireless sensor platforms (Table 1)
support the communication standard 802.15.4 (IEEE
Computer Society, 2006).

The sensor node TelosB with the smallest
memory footprint and the slowest CPU from our
selected test field runs TinyOS, a small, open-
source, energy-efficient software operating system.
It is an event driven OS designed for sensor network
nodes that have limited resources. TinyOS is an
embedded operating system written to provide
interfaces and components for common abstractions
such as packet communication, routing, sensing,
actuation and storage. Applications are built using
nesC, an extension of the C programming language
optimised for the memory limits of sensor networks.
Support, libraries are already available, such as the
nesC compiler.

The advantages of Imote2 are high processing
capabilities in comparison with TelosB, a large
memory, and power saving abilities by the scalable
processor. The design is modular and stackable with
interface connectors for expansion boards on both
the top and bottom sides, it allows the

interconnection of additional devices, such as
temperature sensor cards.

Regarding the operating system, it can run Linux
(e.g. built with OpenEmbedded) that allows
exhausting the possibilities of Imote2 and the
development of higher application software which
enhances single motes.

The company Virtenio has developed a new
concept of a sensor node (Preon32). By using a 32-
Bit ARM-Cortex-M3 microcontroller in
combination with a Java virtual machine for the
device it becomes possible to execute Java
applications on the sensor node. The limiting factor
is the power of the CPU which has a maximum
clock of 72 MHz and also RAM of 64 KB in size.
Access to hardware components like the radio is
written in C and can be used through the Java Native
Interface (JNI). For wireless communication the
ATRF231 radio chip is utilized. Support for IPv6 is
currently under development. In addition, this sensor
node has the possibility of being connected to the
CAN-Bus – the support for this feature is also
currently under development.

The Sun Small Programmable Object
Technology (SunSPOT) is a mote developed by Sun
Microsystems (Oracle, 2011b), currently available in
an 8th revision. It features support for IPv6. The
difference with respect to all the other platforms is
the built-in lithium-ion-battery, which can be
charged via the USB-interface.

4.2 Telematics

Beside the wireless sensor we also tested two
telematics units for two reasons: Firstly, they can
bridge the gap between the local sensor network and
the outside world. This becomes possible by the use
of WLAN or UMTS for enabling access to the
internet. In order to make it possible to connect the
telematics unit to the WSN, one wireless sensor acts
as a base station. The connection is established via a
serial connection (RS232 or USB). Secondly, we
include them as a reference for embedded platforms
with extended computation capabilities. Telematics
units are typically used to supervise goods inside
trucks or containers; they collect data from local
sensors and send compressed messages over the
GPRS network; but the typical hardware units are
not restricted to these applications.

We have not tested Java-enabled cell phones or
smartphones based on the Android operating system,
because we have only focused on embedded devices
which can operate without human involvement.

DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS - A Review of the Feasibility of Dynamic Data
Processing on Wireless Platforms

63

5 PERFORMANCE
MEASUREMENTS

Micro benchmarks or mini test applications can only
give a rough estimation of the capabilities of a
system. The performance of a real-world application
is almost always different. It should also be noted
that in cases where a JIT-compiler is used, some
warm-up-time is required, and the result of such
benchmarks is thereby affected. So the execution
time in the long run – after the warm-up phase – can
be much faster. Results of real-world tests at
extended periods of time are more meaningful.

Table 3 presents the results for the different
benchmarks executed on the reference platform
VTC.

Table 3: Results of the chosen benchmarks on the
reference platform (VTC).

Dhrystone Linpack Feedback-Hammerstein

523 ms 45,778 Mflops/s 7 ms

Combined with the resulting performances of the
chosen benchmarks on the other platforms, ratios
were calculated, which are displayed in the
following figures.

Figure 1: Results of the Dhrystone 2.1 benchmark.

As can be seen in Figure 1, the processing power
of the platforms is correlating with the CPU and
RAM at hand. Although the CPU clock-rate of
DuraNAV, Imote2 and SunSPOT are the same, the
performance seems to be linked to the available
RAM of the systems. So the order of the
performances is the same as the devices sorted by
memory in descending order.

In contrast to the previous benchmark, Figure 2
shows a different outcome. Here the requirement for
RAM seems to be less significant. The SunSPOT
performance is the best followed by DuraNAV and
Imote2. This could be explained by the newer CPU

architecture of SunSPOT which seems to have
improved floating-point processing power.

Figure 2: Results of the Linpack benchmark.

Figure 3 depicts the results for the exemplary
tested real-world algorithm. Here the best
performance is produced by the DuraNAV (96 ms)
followed by SunSPOT (108 ms) and Imote2
(139 ms). A correlation between the need for
memory or processing capabilities cannot be directly
determined.

Figure 3: Results of the Feedback-Hammerstein algorithm.

In all three benchmarks, Preon32 has the poorest
performance which is obviously caused by the
extremely low amount of available RAM in
combination with a low clock-rate. It is possible to
pre-process data with this node with chosen
algorithms, whilst keeping in mind that the resources
are extremely limited. Although the execution time
for the Feedback-Hammerstein-algorithm was
around 285 times slower than on the reference
platform, the absolute value of 2027 ms is still fast
enough to be applicable, because it is only executed
every three days.

SunSPOT exhibits a good overall performance if
the algorithms are not dependent on large amounts
of memory.

Figure 4 compares the execution time on Imote2
and DuraNAV of the benchmarks as a class-file or
an OSGi-bundle. The execution time of the

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

64

Dhrystone benchmark on the Imote2 is around 8%
slower when deployed as an OSGi-bundle instead of
being executed from a class-file. In contrast, the
execution time of the Feedback-Hammerstein-
algorithm as an OSGi-bundle is around 10% faster
on DuraNAV and around 6.8% faster on Imote2 than
when executed from a class-file.

The dynamics is higly improved with the usage
of an OSGi-framework, so that a trade-off in a
reduction in execution time can be accepted.

It remains to be seen how the execution time
varies on SunSPOT when an OSGi implementaion is
possible.

Figure 4: Difference in execution time in % between OSGi
and class.

6 CONCLUSIONS

The selection of the right framework and platform
depends on the requirements of the application.
They can be divided into two: those requiring
computations of complex time-consuming
operations and those requiring large amounts of
memory.

At the moment, OSGi implementation is not
applicable for pervasive networks in the way that is
desired. Only Imote2 has enough resources for
making an OSGi-framework available on a sensor-
platform. It can manage complex mathematical
operations and store large amounts of data. But due
to discontinued development since it was introduced
to the market, its power consumption remains
relatively high. Therefore the platform can be used
for scientific evaluation but is not applicable for
remote WSNs where one of the main features should
be long battery life-time. The mentioned request for
proposal for a JavaME implementation of OSGi
sounds promising, but it is not yet available.

Data pre-processing of sensor nodes reduces
communications resulting in lower energy
consumption. Although the execution times of
Preon32 for the chosen algorithms were not the best,

it can be used for calculations which do not rely on a
lot of data because of the limited amount of RAM.
SunSPOT can be used for data-processing with even
more data because of the increased amount of
available memory. Especially on floating-point
algorithms, the newer CPU has its advantages. It
will have to be assessed how the OSGiME profile
changes the application of dynamic components in
WSNs.

ACKNOWLEDGEMENTS

The research project “The Intelligent Container” is
supported by the Federal Ministry of Education and
Research, Germany, under reference number
01IA10001, and by the German Research
Foundation (DFG) as part of the Collaborative
Research Centre 637 “Autonomous Cooperating
Logistic Processes”.

REFERENCES

Aiello, F., Fortino, G., Gravina, R. & Guerrieri, A. (2011).
A Java-based agent platform for programming
wireless sensor networks. Computer Journal, 54, 439-
454.

Bellifemine, F., Caire, G., Poggi, A. & Rimassa, G.
(2008). JADE: A software framework for developing
multi-agent applications. Lessons learned. Information
and Software Technology, 50, 10-21.

Bottaro, A. & Rivard, F. (2009). RFP 126 - OSGi ME: An
OSGi Profile for Embedded Devices. OSGi Alliance.

Bottaro, A. & Rivard, F. (2010). OSGi ME An OSGi
Profile for Embedded Devices. OSGi Community
Event, London, UK, September 2010.

Breymann, U., Mosemann, H. (2008). Java ME :
Anwendungsentwicklung für Handys, PDA und Co.
München; Wien: Hanser

Crossbow (2011). TelosB Datasheet [Online]. Retrieved
September 5 2011,
http://www.willow.co.uk/TelosB_Datasheet.pdf

IEEE Computer Society. (2006). Wireless medium access
control (MAC) and physical layer (PHY)
specifications for low-rate wireless personal area
networks (WPANs) [Online] Retrieved September 6,
2011, from http://standards.ieee.org/getieee802/
download/802.15.4-2006.pdf.

IMSAS, (2011). The intelligent container: Networked
intelligent objects in logistics“. [Online]. Retrieved
September 6, 2011, from http://www.intelligent
container.com

Jedermann, R., Palafox-Albarrán, J., Jabbari, A. and Lang,
W., (2011). Embedded intelligent objects in food
logistics -Technical limits of local decision making.
In: Hülsmann, M., Scholz-Reiter, B. and Windt, K.

DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS - A Review of the Feasibility of Dynamic Data
Processing on Wireless Platforms

65

(eds.) Autonomous cooperation and control in
logistics. Berlin: Springer

Lee, S., Kim, I., Rim, K. and Lee, J., (2006). Service
mobility manager for OSGi framework. In: Gavrilova,
M., Gervasi, O., Kumar, V., Tan, C., Taniar, D.,
Laganá, A., Mun, Y. and Choo, H. (eds.).
Computational science and its applications - ICCSA
2006. Berlin / Heidelberg: Springer.

Lee, J., Lee, S.-J., Chen, H.-M. & Lee, W.-T., (2010).
Telematics services through mobile agents. In: Zeng,
Z. & Wang, J. (eds.). Advances in neural network
research and applications. Berlin / Heidelberg:
Springer.

Lougher, R., (2010). JamVM [Online]. Retrieved
September 6, 2011, from http://jamvm.sourceforge.
net.

Memsic, (2011). Imote2 High-performance Wireless
Sensor Network Node [Online]. Retrieved September
5 2011, from http://www.memsic.com/support/
documentation/wireless-sensor-networks/category/7-
datasheets.html?download=134%3Aimote2.

Müller, R., Alonso, G. and Kossmann, D., (2007). A
virtual machine for sensor networks. Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems. Lisbon, Portugal: ACM.

Oracle. (2011a). Squawk Development Wiki [Online].
Retrieved September 6, 2011, from http://java.net/projects/

squawk/pages/SquawkDevelopment.
Oracle. (2011b). SunSPOT [Online]. Retrieved September

6, 2011, from http://www.sunspotworld.com.
Palafox-Albarrán, J., Jedermann, R. and Lang, W., (2011).

Energy-efficient parameter adaptation and prediction
algorithms for the estimation of temperature
development inside a food container. In: Cetto, A. J.,
Ferrier, J.-L. and Filipe, J. (eds.) Lecture Notes in
Electrical Engineering - Informatics in Control,
Automation and Robotics. Berlin: Springer.

ProSyst. (2010). The world’s smallest OSGi solution.
[Online]. Retrieved September 6, 2011, from
http://www.prosyst.com/index.php/de/html/news/detai
ls/18/smallest-OSGi.

Rellermeyer, J. S., Duller, M., Gilmer, K., Maragkos, D.,
Papageorgiou, D. and Alonso, G., (2008). The
software fabric for the Internet of Things. In:
Floerkemeier, C., Langheinrich, M., Fleisch, E.,
Mattern, F. & Sarma, S. E. (eds.) Proceedings of the
IEEE International Conference on the Internet of
Things. 26-28 March 2008, Zurich, Switzerland.

Schmatz, K.-D., (2007). Java Micro Edition Entwicklung
mobile JavaME-Anwendungen mit CLDC und MIDP.
Heidelberg: dpunkt.verlag GmbH

Siebert, F., (2002). Hard Realtime Garbage Collection,
Karlsruhe: aicas GmbH.

Vazquez, J., Almeida, A., Doamo, I., Laiseca, X. &
Orduña, P., (2009). Flexeo: An architecture for
integrating wireless sensor networks into the Internet
of Things. 3rd Symposium of Ubiquitous Computing
and Ambient Intelligence. 22-24 October 2008,
Salamanca, Spain.

Virtenio, (2011). 2.4 GHz Funkmodul „Preon32” mit

überlegener Technik [Online] Retrieved September 6,
2011, from http://www.virtenio.com/de/produkte/hard
ware/preon32.html.

Wessels, A., Jedermann, R. and Lang, W., (2010).
Embedded context aware objects for the transport
supervision of perishable goods. In: Zadeh, A. (ed.)
Recent advances in electronics, hardware, wireless
and optical communications. Cambridge, UK: Wseas
Press.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

66

