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Abstract: A new feature extraction method for iris recognition in non-subsampled contourlet transform (NSCT) 
domain is proposed. To extract the features a two-level NSCT, which is a shift-invariant transform, and a 
rotation-invariant gray level co-occurrence matrix (GLCM) with 3 different orientations are applied on both 
spatial image and NSCT frequency subbands. The extracted feature set is transformed and normalized to 
reduce the effect of extreme values in the feature matrix. A set of significant features are selected by using 
the minimal redundancy and maximal relevance (mRMR) algorithm. Finally the selected feature set is 
classified using support vector machines (SVMs). The classification results using leave one out cross-
validation (LOOCV) on the CASIA iris database, Ver.1 and Ver.4 show that the proposed method performs 
at the state-of-the art in the field of iris recognition. 

1 INTRODUCTION 

Iris recognition is regarded as one of the most 
reliable and accurate biometric identification 
technologies because of the unique, aging invariant 
and non-invasive characteristics of iris. This resulted 
in development of a large number of automatic iris 
recognition algorithms. Daugman (Daugman, 1993) 
first introduced a prototype system for automatic iris 
recognition based on multi-scale Gabor wavelets and 
extracted the phase information of iris textures. 
Wildes (Wildes, 1997) applied a gradient-based 
binary edge map and the Hough transform to detect 
the iris and pupil boundaries. In (Roy et al., 2011), a 
wavelet transform was applied to extract the textural 
features and a genetic algorithm was employed to 
select the subset of informative features.  

Even though, the wavelet transform is popular, 
powerful and familiar among the iris processing 
techniques, it has its own limitations in capturing 
directional information in images such as smooth 
contours and the directional edges. This problem is 
addressed by Contourlet Transform (CT) (Do and 
Vetterli, 2001). In addition to multi-scale and time-
frequency localization properties of wavelets, CT 
offers directionality and anisotropy. A 4-level CT 
method for iris feature extraction was described in 

(Li et al., 2010), in which normalized images are 
partitioned into multi-scale and multi-directional 
subbands. The normalized energy of subbands are 
calculated as features to train a support vector 
machine (SVM) classifier. Due to downsampling 
and upsampling, the CT lacks shift-invariance. To 
overcome this limiting factor, Cunha et al. (Cunha et 
al., 2006) proposed a shift-invariant version of CT 
designated non-subsampled contourlet transform 
(NSCT). 

In this paper a new scale, shift and rotation 
invariant feature extraction method for iris 
recognition in NSCT domain is proposed. After 
normalizing the selected regions of interest, some 
textural features are extracted from the gray level 
co-occurrence matrix (GLCM) of both spatial image 
and frequency subbands which resulted from NSCT 
decomposition. To improve the recognition rate, the 
extracted features are transformed and normalized, 
then fed into the minimal redundancy and maximal 
relevance (mRMR) feature selection process. Finally 
the selected feature set is classified using SVMs. 

2 PROPOSED APPROACH 

The  proposed  iris recognition system includes four 
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Figure 1: Overall System Architecture. 

major phases: a) iris preprocessing, b) feature 
extraction, c) feature transformation and 
normalization, and d) feature selection and 
classification. Figure 1 shows the architecture of the 
system. 

2.1 Iris Pre-processing 

For the purpose of iris recognition some irrelevant 
parts such as eyelid, sclera, eyelashes and pupil 
should be removed. In addition, even for the iris of 
the same eye, the size may vary depending on 
camera-to-eye distance as well as light brightness. 
Therefore, the original image needs to be pre-
processed to localize, normalize and enhance the iris 
regions, and reduce the influence of the mentioned 
factors. 
Localization and regions of interest selection: To 
locate the inner (iris/pupil) and the outer (iris/sclera) 
boundaries, the following steps should be 
performed:  

1) Reflection removal: Specular reflections 
(light spots in the eye image) can cause some 
problems in the localization process. To remove the 
reflections, the eye image is binarized (using a 
threshold = 190). The binarized eye image is then 
dilated to consider all possible affected regions. 
Then the resulted mask is complemented and applied 
to the eye image for marking the reflections spots. 
Finally, the detected specular reflections are 
“inpainted” (Shah and Ross, 2009) using the 8 
surrounding neighbours.  

2) Pupillary boundary detection: To detect the 
pupillary boundary, the eye image is first binarized 
using a threshold value, M+25 (Shah and Ross, 
2009) where M is the minimum fixed value of the 
inpainted image. In addition to the pupil, other dark 
regions of the eye image such as eyelashes fall 
below this threshold value. In order to eliminate the 
regions corresponded with the eyelashes, a 2-D 
median filter with a 10x10 convolution mask is 
applied on the binary image. This reduces the 

number of candidate regions detected as a 
consequence of thresholding (Shah and Ross, 2009).  
The remaining regions in the median-filtered binary 
image are labelled and the region with the largest 
area and the smallest eccentricity is determined as 
the pupil region. Finally, the pupil radius and 
centroid are calculated by (1) and (2) respectively: 

( 4 ) 2pupilRadius A π= ×  (1) 

( , ) ( , )x yC C xdA A ydA A= ∫ ∫  (2) 

where (Cx, Cy) denote the center coordinates of the 
pupil and A is the area of the pupil. 

3) Limbic boundary detection: Before locating 
the outer boundary, gamma threshold (Masek et al., 
2003) is adjusted to the iris edge map (extracted by 
Canny edge detector) to enhance the iris contrast. 
Then the weak edge pixels are set to zero using non-
maxima suppression; thus only the dominant edges 
are extracted. Finally, the hysteresis thresholding is 
applied to the image. Having the pupil center 
coordinates, the radius and centre coordinates of the 
iris boundary can be deduced using circular Hough 
transform. 

To disregard the iris regions occluded by the 
eyelid and eyelashes and to avoid loss of 
discriminative features, four regions of interest 
(ROI) are selected: 

I) right side of the iris circle, a sector between 
angles –π/4 and π/4 with a radius equal to iris radius 
(Figure 2 (a)). II) left side of the iris circle, a sector 
between angles 4π/5 and 4π/3 with a radius equal to 
iris radius (Figure 2 (a)). III) bottom side of the iris 
circle, a sector between angles 4π/3 and –π/4 with a 
radius of 1/2 of the iris radius (Figure 2 (b)). IV) a 
disk around the pupil with a radius of 1/3 of the iris 
radius to cover the pupillary area (Figure 2 (c)).  
Normalization and enhancement: To compensate 
several external factors such as illumination 
variations and imaging distance, the partial iris 
images are normalized using “Daugman Rubber 
Sheet” model (Daugman, 1993). 
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(a) (b) (c) 

Figure 2: Selected regions for normalization. 

 
 

(a) (b) 

Figure 3: (a) Tiled normalized image. (b) Enhanced iris 
image by histogram equalization and Wiener filtering. 

Since the original iris image has low contrast and 
may have non-uniform illumination caused by the 
position of the light sources, some enhancements 
need to be applied. The histogram equalization is 
used to enhance the normalized iris images. The 
enhancement involves tessellating the normalized 
iris into 32x32 tiles (Figure 3(a)) and subjecting 
each tile to histogram equalization. Then for noise-
removal, the Wiener filter is applied to each tile 
(Figure 3(b)). 

2.2 Feature Extraction 

A reliable iris recognition system should extract 
features that are invariant to scaling, shift and 
rotation. The scale invariance is obtained by 
unwrapping the selected iris regions into four fixed 
size rectangles. To achieve shift invariance, the 
enhanced images are transformed into the frequency 
domain using the NSCT which is a shift-invariant 
transform and can capture the geometry of the iris 
texture. Finally, the GLCM is calculated on both 
spatial image and NSCT frequency subbands. The 
proposed method is described as follows. 
Non-subsampled contourlet transform: In 
contourlet transform, the Laplacian Pyramid (LP) is 
first used to capture point discontinuities, and then 
followed by a Directional Filter Bank (DFB) to link 
point discontinuities into linear structures (Po and 
Do, 2006). The overall result is an image expansion  
using basic elements like contour segments, and thus 
called contourlet transform, which is implemented 
by a Pyramidal Directional Filter Bank (PDFB) (Do 
and Vetterli, 2001). The LP decomposition at each 
level generates a down sampled low pass version of 
the original image, and the difference between the 

original image and the prediction results in a 
bandpass image. Due to downsampling and 
upsampling presented in both LP and DFB, 
contourlet transform is not shift-invariant. The 
NSCT is built upon nonsubsampled pyramids and 
nonsubsampled directional filter bank (NSDFB); 
thus, it is a fully shift-invariant, multi-scale, and 
multi-direction image decomposition that has a fast 
implementation (Cunha et al., 2006). 
Primary features: The enhanced iris image is 
decomposed into 6 directions using NSDFB at 2  
different scales. Afterward some textural features are 
extracted from the spatial iris image and all NSCT 
frequency subbands. Textural features mentioned in 
Figure 1 are computed on the basis of statistical 
distribution of pixels’ intensity at a given position 
relative to others in a matrix of pixels called GLCM 
(Haralick et al., 1973). Since the GLCM is 
computed for different orientations, the rotation of 
the iris can be captured by one of the matrices. 
Feature extraction based on GLCM is a second-order 
statistic that can be employed to analyze an image as 
a texture. Although GLCM captures properties of a 
texture, it cannot be directly used for further 
analysis, such as the comparison of two textures; 
thus numeric features which contain significant 
information about the textural characteristics are 
obtained from the GLCM in three different 
directions (Haralick et al., 1973), (Soh et al., 1999) 
and (Clausi et al., 2002).  

2.3 Feature Transformation and 
Normalization 

The extracted features are transformed and 
normalized in order to reduce the influence of 
extreme values. The transformation methods applied 
to each feature are described in (Becq et al., 2005). 
After a thorough experimental evaluation of each 
transform operator over extracted features, it was 
empirically verified that the best classification 
results were attained with the transform		ࢄ =  ,ࢅ√/1
where Y denotes the feature matrix, and 	ࢄ =൛ݔ; ݅ = 1,2, … ,ܰ	and		݆ = 1,2, …  ൟ (where N andܯ,
M denote the number of subjects and features 
respectively) is the transformed feature matrix.  
Thereby this transform was adopted in the overall 
iris recognition system. To avoid features in greater 
numeric ranges dominating those in smaller numeric 
ranges, each feature of the transformed matrix Χ  is 
independently normalized to the (0, 1) range by 
applying  

π/4 4π/5

4π/3 -π/4 -π/4 4π/3 
Pupillary 
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ݔ̅ = ݔ ൫݉ܽݔ൫࢞൯ − ݉݅݊൫࢞൯൯⁄  (3) 

where xj is a vector of each independent feature 
(Aksoy et al., 2001).  

2.4 Feature Selection and Classification 

Larger numbers of high-dimensional feature vectors 
make the classification process more complex and 
less reliable due to features redundancy. To reduce 
these effects the mRMR feature selector is used 
(Peng et al., 2005). 

Support vector machines (SVMs) (Burges, 1998) 
are adopted as classifier in this study, given that 
neural networks and other classifiers cannot show 
reliable classification results in too noisy data. 

3 EXPERIMENTAL RESULTS 

The performance of the proposed algorithm was 
assessed using CASIA iris image databases Ver.1 
and Ver.4–Lamp (CASIA Iris Image Database). 
CASIA Ver.1 contains a total of 756 grayscale iris 
images, from 108 subjects, captured in two sessions 
with at least one month interval. CASIA Ver.4-
Lamp was collected using a hand-held iris sensor in 
one session. It contains 16213 grayscale iris images 
from 411 subjects. CASIA-Ver. 4-Lamp is suitable 
for studying problems of non-linear iris 
normalization and robust iris feature representation 
because of elastic deformation of iris texture due to 
pupil expansion and contraction under different 
illumination conditions. 

In our experiments, a two-level NSCT 
decomposition was adopted with 2 and 4 directions 
for each pyramidal level respectively. Three GLCMs 
were calculated on all NSCT frequency subbands 
and the spatial image both in 0o, 90o and 135o. The 
normalized iris images were decomposed by the 
NSPDFB. We have used “pyrexc” and “pkva” as 
NSLP and NSDFB filter in NPDFB decomposition 
(Non-subsampled Contourlet Toolbox ver.1.0.0) 
given their good performance.  SVM-KM toolbox 
(SVM and Kernel Method Toolbox) with Gaussian 
kernel was used in the classification phase. The 
Gaussian kernel degree and C parameters were set to 
6 and 100 respectively as suggested by the best 
empirical results. Experiments were carried out over 
2000 images of 200 randomly selected classes, with 
10 images per class and 756 images of 108 classes 
for CASIA Ver.4 and Ver.1 respectively.  

To estimate the accuracy of classification, leave 
one out cross-validation (LOOCV) was used.  

 
Figure 4: Comparison of selecting different iris ROI in the 
localization process over the CASIAVer.4. The parameters 
of method I are Ө = (0,2π), r = IrisR, method II Ө = (0,2π), 
r = 1/3×IrisR and method III are ӨLeft = (3π/4, 5π/4), ӨRight 
= (-π/4, π/4), r = IrisR. 

Receiver operating characteristics (ROC) in 
Figure 4 show the comparison of different iris 
localization approaches on the Ver.4. Each curve is 
denoted by symbols r, Ө which represent normalized 
polar coordinates. Ө = (0,2π), r = IrisR refers to a 
disk around the iris with iris radius, which covers the 
whole iris region. Ө = (0,2π), r = 1/3×IrisR refers to 
a disk around the iris with 1/3 iris radius, similar to 
Figure 2 (c). ӨLeft = (3π/4, 5π/4), ӨRight = (-π/4, π/4), 
r = IrisR refers to a state similar to Figure 2 (a). The 
results illustrate the superior performance of the 
proposed approach over the other mentioned 
methods in Figure 4. 

From the feature extraction process, a total of 
2048 features for each sample resulted. The 
transformed and normalized feature matrix was fed 
into the feature selection method. The number of 
selected features based on the mRMR results, was 
set to 357 because it provided the best mean 
accuracy in a grid search. The most effective 
features were correlation and homogeneity and the 
least significant was maximum probability feature in 
the extracted group (Figure 1). From each ROI, the 
following numbers of features were selected: 68, 70, 
125, 94 which correspond to Figure 2 (a) left, (a) 
right, (b) and (c) respectively. These results 
demonstrate that the region between (4π/3,–π/4) with 
1/2 of iris radius contains more relevant features 
than other regions.   

Figure 5 shows the comparison of the proposed 
feature   extraction  method  using NSCT, contourlet  
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Figure 5: Performance of different feature extraction 
methods over the CASIAVer.4. 

and wavelet transforms. This diagram shows the 
highest accuracy obtained by NSCT due to its 
redundant structure. 

Figure 6: Comparison of classification accuracy for 
different frequency transformation with different numbers 
of features over the CASIAVer.4. 

Maximum classification accuracies of NSCT 
with two different kernels, contourlet and wavelet 
transforms with different number of features, are 
shown in Figure 6. For the wavelet transform the 
best mean accuracy of 93.40% was obtained for 322 
features; however this accuracy is lower than the 
case of using NSCT. For the contourlet transform 
the best mean accuracy of 96.55% was attained for 
490 features, which in comparison with NSCT has a  

Table 1: Performance comparison of some popular 
algorithms on CASIA database Ver. 1. 

Methodology Feature Extraction 
methods 

Accuracy 
Rate % 

Daugman  
(Daugman, 1993)  Gabor wavelets 100 

Qi M. et al.   
(Qi M. et al, 2008) Gabor filter  99.92 

Chen et al.  
(Chen et al., 2009) 1-D circular profile 99.35 

Poursaberi et al. 
(Poursaberi et al., 2007) 

wavelet 
Daubechies2 

 
99.31 

Our approach without 
LOOCV NSCT and GLCM 100 

Our approach by 
LOOCV  

(mean accuracy) 
NSCT and GLCM 98.29 

higher number of features. This diagram 
corroborates the high performance of our approach 
over the CASIA Ver.4 with the average and 
maximum accuracies of 96.55% and 100%, 
respectively. Furthermore, the comparison results of 
the classification accuracy over the CASIAVer.1 are 
as follow. The best mean accuracy of 91.40% with 
185 features and 97.35% with 565 features were 
achieved for the wavelet and contourlet transforms, 
respectively. The best mean accuracy of 98.29% was 
achieved with the NSCT using 424 features. 

Considering that there isn’t any reported result 
based on CASIA Ver. 4 lamp, the proposed method 
was compared with state of the art methods, just 
with CASIA Ver. 1. Table 1 shows the comparison 
results of the proposed method with the others. 
Some accuracy results are higher than our mean 
accuracy, however we highlight that our reported 
results were obtained using the LOOCV method in 
the testing process. 

4 CONCLUSIONS 

A new feature extraction method for iris recognition 
based on NSCT was presented. The described 
technique has some advantages over other 
techniques. First, this method selects four ROIs to 
make use of the most significant information in the 
iris texture. Second, the extracted features are 
invariant to scaling, shift and rotation, which are 
important properties in the iris recognition. Third, to 
reduce the effect of extreme values in the feature 
matrix the extracted feature set was transformed and 
normalized, which remarkably improved the 
recognition rate. Fourth, mRMR was   employed as a 
feature selector which has proven to be one of the 
most powerful and stable among known feature 
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selectors. Finally, to estimate the mean accuracy of 
the proposed method LOOCV was used. The 
obtained average accuracies on CASIA Ver.4 and 
Ver.1 were 96.55% and 98.29% respectively, and 
the accuracies without using LOOCV for both 
datasets were 100% which empirically illustrate the 
reliability and effectiveness of the presented method. 
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