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Abstract: This paper presents a study of the so called far field approximation to the problem of determining both the

direction to a number of transmittors and the relative motion of a single antenna using relative distance mea-
surements. The same problem is present in calibration of microphone and wifi-transmittor arrays. In the far
field approximation we assume that the relative motion of the antenna is small in comparison to the distances
to the base stations. The problem can be solved uniquely with at least three motions of the antenna and at
least six real or virtual transmittors. The failure modes of the problem is determined to be (i) when the an-
tenna motion is planar or (ii) when the transmittor directions lie on a cone. We also study to what extent the
solution can be obtained in these degenerate configurations. The solution algorithm for the minimal case can
be extended to the overdetermined case in a straightforward manner. We also implement and test algorithms
for non-linear optimization of the residuals. In experiments we explore how sensitive the calibration is with
respect to different degrees of far field approximations of the transmittors and with respect to noise in the data.

1 INTRODUCTION sensor network calibration is to manually measure the
inter-distance between pairs of microphones and use
Navigation covers a broad application area ranging Multi-dimensional scaling to compute microphone lo-
from traditional needs in the terrestrial, aerial and cations, (Birchfield and Subramanya, 2005). Another
naval transport sectors to personal objectives of find- OPtion is to use GPS, (Niculescu and Nath, 2001), or
ing your way to school if you are visually impaired, fouse add_monal transmittors (radio or audio), close to
to the nearest fire exit in case of an emergency, or to €ach receiver, (Elnahrawy et al., 2004; Raykar et al.,
specific goods in your local supermarket. Many po- 2005; Sallai et al., 2004). Sensor network calibra-
tential applications are however presently hindered by tion is treated in (Biswas and Thrun, 2004). In (Chen
performance limitations of existing positioning tech- €tal., 2002) itis shown how to estimate additional mi-
niques and navigation systems. crophones, once an initial estimate of the position of
Radio based positioning rely on either signal SOMe microphones are known. In (Thrun, 2005) the

strength, direction of arrival (DOA) or time-based in- far fjeld approximation is used to initialize the.cali-
formation such as time of arrival (TOA) or time dif- bration of sensor networks. However the experiments

ferences of arrival (TDOA), or a combination thereof. @nd theory was only tested for the planar case and

The identical mathematical problem occurs also N° Study of the failure modes were given. Initializa-
in microphone arrays for audio sensing. Using mul- tion of TOA networks has been studied in (Stewénius,

tiple microphones it is possible to locate a particu- 2005), where solutions to the minimal case of three

lar sound-source and using beamforming to enhancetransmittors and three receivers in the plane is given.

sound quality of the speaker. The minimal case in 3D is determined to be four re-

i d six transmittors for TOA, but this is not
Although TOA and TDOA problems have been CEIVers and SiX 1re P .
studied extensively in the literature in the form of lo- solved. Initialization of TDOA networks is studied

calization of e.g. a sound source using a calibrated in_ (Pollefeys and I_\li_ster, 2008), where squti_ons were
detector array, the problem of calibration of a sen- give to two non-minimal cases of ten transmittors and

sor array using only measurement, i.e. the initializa- ;!\é? d rgcelr\c/)er'rsﬁavt\{gﬁr%atsh'?eamtlenrlrgfel ;S'Oll::;%r;r?:t;?;
tion problem for sensor network calibration, has re- almd foﬂ?reﬁleivelrs In this pap X :
ceived much less attention. One technique used for '
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UNDERSTANDING TOA AND TDOA NETWORK CALIBRATION USING FAR FIELD APPROXIMATION AS

INITIAL ESTIMATE
In this paper we study far field approximation as base stations so that
an initialization to the calibration problem. We use a R S
similar factorization as (Thrun, 2005) but in three di- Dij=27n;-Cj,

mensions, and show that far field approximation is at Injll2=1
least four measurement positions, i.e. three motions, ) ]
and measurements to at least six real or virtual trans-Where G is a constant distance offset for each base
mittors. In this paper we describe the failure modes of Station.
the algorithm and show what can be done when suchLemma 1. A problem with m measurements to k base
configurations are present. We further propose two stations with unknown constanf €an without loss
optimization strategies for more thorough calibration of generality be converted to a problem with-ni
and evaluate them in regards to accuracy and conver-measurements to k base stations with known constant.
gence rate. Several test cases are simulated in which
we validate far field approximation, accuracy of the Proof. Note that because of the unknown consnt
proposed algorithms, optimization schemes and per-the problem does not change in character by modifi-
formance under noisy measurements. cationD; j = Dj j — K;. For simplicity we seD; j =

Di,j —D1,j. By also settings = (0 0 O)T, we get

C; = 0. This is equivalent to choosing the origin of

2 DETERMINING POSE the unknown coordinate system to the first poinil

For simplicity we will in the sequel assume that
In the following treatment, we make no difference be- Cj = 0 and assume that the one measurement has al-
tween real and virtual transmittors or base stations. ready been used to resolve the ambiguity. Denote by
Assume that the base station is stationary at posi- D the matrix after removing that said point. This con-
tionb= (bx by b;) and that the antenna is at po- Verts the FFTDOA problem into a FFTOA problem,
sition z= (% 2z z). By measuring the signal '€
with known base band frequency one obtains a com- Problem 2. Given measurements ;R i =
plex constant, whos phase depends on the distancel,...,m,j = 1,...,k from the antenna at m dif-
d = |b— 7 between the antenna and the base station. ferent positions to k base stations, determine both the
By tracking the phase during small relative mo- both the positions; of the antenna during the relative
tions of the antenna, it is feasible to determine the motion and the direction from the base stationsso
relative distancele (t) = d(t) + C, whereC is an un- that
known constant for each base station. This is the so Dij=2zn;.
called TDOA setup. Furthermore if during measure-
ments the relative motion is small in comparison with
the distancel between the antenmaand the base sta- Lemma2. The matrix D with elements;Dis of rank
tion bitis reasonable to approximate the distadee at most3.
lb—2z~ |b—2|+(z—2)"n=2"n+(|b— 2| —Zn).
—_————

lInjll2=1

Proof. The measurement equations &g = z' nj.

c By setting
Here zy is the initial position of the antenna amd ZI
is the direction from the base station towards the an- oA
tenna, now assumed to be constant with unit length. zZ=1|:
By settingC = C + C one obtains the far field approx- :
imation yaR
drer(n,2) ~Z'n+C. and
N = (nl np ... nk)

In this paper we are interested in the following far
field time difference of arrival (FFTDOA) type prob- We see thab = ZN. BothZ andN have at most rank
lem that arise from this approximate relative distance 3. therfore the same holds fbr. O

measurement. .
Assuming thak andm are large enough and as-

Problen 1. Given measurements iR i = suming that the motion and the base statioms are
1,....,m and j=1,...,k from the antenna at m ingeneral enough constellation the mafixvill have
different positions to k base stations, determine both rank 3. If so it is possible to reconstruct batlandN
the positions z...,zy of the antenna during the up to an unknown linear transformation. This can be
relative motion and the directions; ...ny from the done using singular value decompositibn= USVT.
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Even with noisy measurements, the closest rank 3 ap-Theorem 2. The minimal case for reconstructing m
proximation in thelL, norm can be found using the orientationsn; and k positions jzfrom relative dis-
first 3 columns olU andV. By settng Us and tance measurements; Pas formulated in Problem
N = S3V3 we get all possible solutions By = AN, 2 is for m= 4 and k= 6. As long as the orien-
with A a general full rank X 3 matrix. ChangingA tations nj do not lie on a common quadratic cone
corresponds to rotating, affinely stretching and pos- nTQnJ = 0 and the measurement positiongdp not
sibly mirroring the coordinate system. The true re- I|e on a plane, there will not be more than one solu-
construction also fquiIIan-Tnj =1, which gives con-  tion to the problem of determining both structurg
straints onA of type and motion zup to an unknown translation, orienta-
nTATAN; =1, tion and reflection of the coordinate system.

Proof. The algorithm can fail if the measurement ma-
T trix D has rank 2 or lower. This could e.g. happen if
njBnj =1 either all measurement positiopdie in a plane or if
in the unknown elements d8. Since symmetric  all directionsnj lie in a plane (or both). The algorithm
3 x 3 matrices have 6 degrees of freedom we need atcan also fail if there are two solutions to the maix
least 6 base stations to determine the matrix uniquely.in nJBn; = 1. But then the differenc® = B; — B
OnceB has been determingdican be determined by ~ of these two solutions is a three by three matrix for
Cholesky factorization. This gives the transformation Which

which after substitutio® = AT A becomes linear

A up to an unknown rotation and possible mirroring Tan =0,
of the coordinate system. We summarize the above inwhich in turn implies that the directions; lie on a
the following theorem. common conic as represented by the marix O

Theorem 1. The minimal case for reconstructing m

positions z and k orientations; from relative dis- et ggeiner type of fgilure mode of the algorithm

tance measurements Das formulated in Problem 2 is if the data is corrupted by noise or far field approxi-
s.p mation is not vaild, so that the matiobtained is not

s m=4 an.d k=6. _ _ positive definite. Then the algorithms fails because
Accordingly, we have the following algorithm for  there is no Cholesky factorization Bfinto ATA. If B
the minimal case of the problem: is unique, there are no real solution to the problem in

Algorithm 1. this case.
Given the measurement matrix D of size 6.

1. Selﬁi,j =Djj —Dyj

2.2 Analysisof Failure Modes

2. Remove the first row @f / If the rank of the matripD is 2, this could be because
3. Calculate a singular value decompositith= the pointsz lie on a plane or that; lie on a plane.
UsV'. In this case of coplanar it is still possible to esti-
4. SetZ to first 3 columns of U antll to first three ~ mate the planar coordinat&s= U,A andN = ASV,’
columns of SV. up to an unknown 2 2 matrixArepresenting a choice
5. Solve for the six unknowns in the symmetric ma- Of affine coordinate system. Here we do get inequality
trix B using the 6 linear constraint Bfi; = 1. constraints that
6. Calculate A by Cholesky factorization of B, so that ’A (nj,x) <1
ATA=B. Niy)| ="
7. Transform motion according to Z ZA™* and Each suchA is a potential solution. It is possible to
structure according to N= AN. extend with a third coordinate in the normal direction

Note that using minimal informatiom = 4 and according to
k =6 results in estimates that fulfill the measurements Njz=+y/1—n2 —n?
. - : 2= =Fy/
exactly (up to machine precision) even if the measure- Iy
ments are disturbed by noise. Another possibility is that the directioms lie on
a plane. In this case it is possible to reconstruct two
2.1 FailureModes of the Algorithm of the coordinates for both the positiogsand the
directionsn;j. Since the normals are assumed to lie
It is interesting and enlightening to know the failure in a plane, we can exploit the equality constraints
modes of the algorithm. This is captured by the fol- nTATAnJ =1 similar to the rank 3 case. In this par-
lowing theorem. t|cular case we only need three directionsi.e. the
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minimal case is fom = 3 andk = 3. This gives the initialization for subsequent optimization algorithms
full reconstruction of both points and directions up to we present in this section. We discuss how to use al-
an unknown choice of Euclidean coordinate system ternating optimization and Levenberg-Marquardt al-
and unknown choice of z-coordinate for the points  gorithm (LMA) to obtain better solution. The first
If the rank is 1, this could be because the direc- algorithm starts with an initial feasible solution for
tions are parallel. In this case. Similar to the discus- Z and N, and then it alternates between optimizing
sions above we can obtain one of the coordinates ofZ given N and vice versa. The latter is essentially
the positions, but this is trivial since the measure- a method combining Gauss-Newton algorithm and a
mentsD; j are such coordinates by definition. gradient descent that improve the solution locally. For
If the rank is 1 because the points lie on a line, both methods, we need to treat the constraints on the
we obtain a one-parameter family of reconstructions direction vectors properly to ensure convergence.
based onZ = Uja andN = aSlvlT, wherea is an
unknown constant that has to fulfél < 1/l, where =~ 2.3.1 Alternating Optimization
| =may|S;Vy,j|. For each suchitis possible to ex-
tend the directions; so that they have length one, but In order to find the local minima of Problem 3, we

there are several such choices. can use a coordinate descent scheme. Specifically, we
would like to iteratively optimize the cost function in
2.3 Oveadetermined Cases Problem 3 with respect t@ given N, and then find

the optimal feasibléN with fixed Z. If we initialize
When more measurements are available than the min-N such that it satisfies the norm constraints, we can
imal case discussed in the previous section, we needeasily see that the alternating procedure is converging
to solve an overdetermined system in least-square(Algorithm 2).
sense or with robust error measures elg-norm.

Here we focus on the following least-square formu- Algorithm 2. _ _
lation for the pose problem: Given the measurement matrix D withoad and k>

. . 6orm>4and k> 6,
Problen 3. Given measurements iR i = .
1,..., mand j=1,... .k from the antenna at m 1. ConstructD and initialize Z and N as in Algo-

different positions to k base stations, determine both ~ rithm 1
the relative motion of the antenzaand the direction 2. Fix N, find optimal Z

to the base stations; so that 3. Fix Z, solve the constrained minimization for each
minZ,N ||D_ZTN|||2:rob (1) nj» =1k . .
M 4. Repeat (2) and (3) until convergence or predefined
st.  |njll2=1,j=1,....k . \ .
number of iterations is reached

where||.||rrob denotes the Frobenius norm.
For the over-determined cases, thaims> 4 and To enable the alternating optimization, we need
k>6 orm> 4 andk > 6, it is possible to modify  to solve two separate optimization problems. The
Algorithm 1 to obtain an efficient but not necessarily first one is to find the optimaZ given N. This is
optimal algorithm that finds a reconstruction that fits the classic least squares problem and is known to be
the data quite good using the following three mod- convex and can be solved efficiently. On the other
ifications (i) the best rank 3 approximation can still hand, solving for optimah; given Z is not always
be found in step 4-5 using the singular value decom- convex due to the additional constraints on ihé&.
position, (ii) the estimate oB in step 6 can be per- In this case, we seek the local minima for eagh
formed in a least squares sense and (iii) re-normalizeas a constrained minimization problem. We solve the
the columns ofN to length 1. This results in a recon- small constrained problems (3 variables each) inde-
struction that differs from the measurements, but both pendently with interior point method. Alternatively,
steps are relatively robust to noise. The problem of we can solve the constrained optimization as solv-
B not being positive semi-definite can be attacked by ing polynomial equations. This can be related to the
non-linear optimization. Here we try to optimiZeso fact that for a giverg, level sets of the cost function
that 7%_, (nT ATAn; — 1) is minimized. This can be  with respect ton; are surfaces of a ellipsoid iR
achieved e.g. by initializing withh= 1 and then using  (the centers are in this case the solution from singu-
non-linear optimization of the error function. lar value decomposition). The norm 1 constraints on
Clearly, we lose any guarantee on the optimality nj geometrically means that the feasible solutions lie
of the solution when we enforce the constraints as in on the unit sphere centered at origin. Therefore, the
step (ii). However, the solution can serve as a good optimal solution ofn; is one of the points that the
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ellipsoid is tangent to the unit sphere, which can be
found by solving polynomial equations. While there
could exist multiple solutions, we can choose the one
with minimum euclidean distances to the center of
the ellipsoid. Unlike interior point solver, we always
find the global optimum. However, in practice, we
found that in the alternating procedure, interior point
method and polynomial solving give similar perfor-
mance.

Farfield Approximation performance
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It is well-known that alternating optimization as a co-
ordinate descent scheme converges slowly in practice.figure 1: Performance on minimal case solver. Bars show
Alternatively, we can solve the minimization problem failure rate (left y-axis) and curve shows the norm in esti-
by iteratively finding the best descent direction for N mated position as a function of distance (right y-axis).&Not
and Z simultaneously. The difficulty here is again thatbar height has linear scale.

the constraints on the direction vectors The key

idea here is to re-parameterize the orientation vec- l€ld approximation as well as the comparisons be-

tween solvers for overdetermined cases.

tors. Given a direction vectar having unit length,
any direction vectors can be representedibgxp(S),
whereSis a 3x 3 skew-symmetric matrix. This is due

to the fact that the exponential map of any such matrix
is a rotation matrix. In this case, if we use the (cur-
rent) orientatiom as axis direction, any local change
of the orientation on the sphere can be easily parame-
terized via the exponential map. Therefore, the gradi-
ent of Djj with respect taj can be expressed without
any constraints. We can then construct the Jacobian
for the Levenberg-Marquardt algorithm to compute
the optimal descent direction. In the following, we
usey to denote the vector formed by stacking vari-
ables inZ andN, d is the vectorized version dd
based on the ordering gof

Algorithm 3.
Given the measurement matrix D (over-determined),
initialize y and construct as in Algorithm 1,

1. Compute the Jacobian dfwith respect to/, J =
9Dy D 0D(m_1)k

(O_y""’W"'” oy ) _

. Calculate Ay = (JTJ + A - diag(d"J))~1JTAd,
whereAd is the residue and a damping factor.

. Yy=y+Ay

. repeat (1),(2) and (3) until convergence or prede-
fined number of iterations is reached

3 EXPERIMENTAL VALIDATION

In this section, we present comprehensive experimen-
tal results for simulated data. We focus on the per-
formance of the minimal solver, verification of the far
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3.1 Minimal Solver Accuracy

The numerical performance of the algorithm was
evaluated by generating problems where the far field
approximation is true and not degenerate. In essence
this constitutes generating directiong and relative
distance measuremerils j and culling cases where
the three largest singular values of the measurement
matrix aren’t above a threshold or the directions lie
on a conic. The error is then evaluated as the average
norm-difference of the estimated reciever positions.
The reciever positions were selected as the corners of
a tetrahedron with arc-length one. The average error
of 10000 such tests was8 10-1°, close to machine
epsilon.

Non minimal Solver performance

—— 4 -s8

r4-s10 |
——1r5-510 |
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Figure 2: Performance on non-minimal cases. Bars show
failure rates, line is error as a function of distance in éogl
scale. Size of test-cases are noted in figure with rx-sy de-
noting x recievers and y senders. This plot is best viewed in
color. Note the scale difference to the graph in Figure 1.
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3.2 Far Field Approximation Accuracy o

L, o® B

o AlterOpt
2 LMA

3.2.1 Minimal Case

To evaluate the performance of the assumption that P
senders can be viewed as having a single common o 0] .
direction to receivers, data was generated using 3D ! "

positions for both senders and receivers at different
relative distances in-between receivers and senders 15
to receivers. The constellation of receivers is again
the tetrahedron and senders are randomly placed on a
sphere surrounding it. A graph showing the error, as 07 50 00 150
defined in section 3.1, as a function of radius of the _ ] Fa
sphere (that is relative distance), as well as the failure F;axre 3 _Colnve(rjgt_al_rgzg AOf alternating opt|m|hzat|on and
rate of the solvgr is s_hown in Figur_e 1.A f_ailure con- nite ﬁgi:én%u:agél)_ Heremn;efosgrnedr;e:mfolw't gagysian
stitutes a case in which ti@matrix in algorithm 1 is

not positive definite. As can be seen this is infrequent | \1a o decrease the reconstruction errors compared
even at small relative distances in when one would

far field S K to the minimal solver. On the other hand, from fig-
not expect a far field approximation to work. As can o 3, LMA converges much faster than alternating
be expected the approximation gets better when the

lative d: . scheme (20 vs. 150) and obtains relatively lower re-
relative distance Increases. construction errors. This verifies the superiority of
322 |nitialization for Overdetermined Cases LMA over coordinate descent. This observation is

consistent over different andk as well as a variety
As described in section 2.3 algorithm 1 can with some of noise levels. Note that here for all the experiments,
modifications be used on overdetermined cases with-We Set the damping factarto 1.
out guarantees on optimality of the solution. In these It it also of interest to view the complete sys-
situations the solutions serves as an initial guess of €M When the measuremerids; does not fulfill the
some other optimization method. The additional in- [ field approximation and when disturbed by noise.
formation should however give some numerical sta- 1h€ refative distances of the simulated senders and
bility and it is interesting to evaluate the algorithm for €CeIVers are set to idor a mediocre far field ap-
initial guess estimates in overdetermined cases. To doPfoXimation and 10for a good far field approxima-
this the synthetic dataset is augmented with additional i°"- TDOA measurementS; ; are then simulated,
randomly placed senders and receivers. The four firstP€rturbed with gaussian white noise. Figure 4 shows
receivers are again the tetrahedron and the rest ardn€ results. The pictures show that the initialization
randomly uniformly distributed within the unit cube. Method is fairly good, but in many cases the LMA
Senders are again placed on a sphere around the ret_)r_mgs down the position error. The system is also
ceivers. Results for different problem sizes are shown fairly robust to noise.
in Figure 2. One immediately notices that the fail-
ure ratio drops, in many cases to zero. One can also
see that adding more data will (in general) resultin 4 CONCLUSIONS
smaller errors, for the cases shown here up to one or-

der of magnitude smaller than a min case. In this paper we study the far field approximation to

the calibration of TDOA and TOA sensor networks.
The far field approximation of the problem results in

a factorization algorithm with constraints. The failure
We also investigate the performance of the two modes of the algorithm is studied and particular em-

schemes for over-determined cases. In all experi- phasis is made on what can be said when any of these
ments below, we initialize both the alternating op- failure conditions are met. The experimental valida-
timization and LMA based on the minimal solver tion gives a strong indication that a far field approx-
modified for over-determined case. The simulated imation is a feasible approach both for getting direct
data is of a true far field approximation with gaus- estimates as well as initial estimates for other solvers.
sian white noise, i.e. measurements are simulated a€Even considering that there are cases when the algo-
Dij = zinj + ¢ j whereg; j € N(0,0) i.i.d. In Fig- rithm fails, obtained solutions are good even at small
ure 3, we can see that alternating optimization and relative distances. This validation is done on 3D prob-

3.3 Overdetermined Cases
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Figure 4: Performance on non-minimal cases with simulal@@A measurements with gaussian white noise. The mean error
in position of the receivers are plotted against the noisedsird deviation. Here m=5 and k=10, and the relative distém
receivers and senders are’ {&ft) and 1@ (right). Failure rates for the initialization are also shofer completeness.
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