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Abstract: Denatured proteins are mostly partially folded and compact proteins. A statistical analysis on 
thermodynamic properties is presented to describe and characterize denatured proteins. Conformational free 
energy, energy, entropy and heat capacity expressions are derived using the Rotational Isomeric States 
model of polymer theory. The state space and the probabilities of each state are comprised from a coil 
database. Properties for the denatured state are obtained for a sample set of proteins taken from the Protein 
Data Bank. Thermodynamic expressions of denatured state are derived. 

1 INTRODUCTION 

Random configurations of protein chains are 
obtained under the constraints imposed by chain 
connectivity and the torsion states of the backbone 
torsion angles  and   in the absence of sequence-

distant long-range interactions. The term ‘randomly 
coiled proteins’ describing this state have been 
studied in detail by Flory and collaborators, based on 
the Rotational Isomeric States (RIS) Model of 
polymer theory (Flory, 1969); (Brant and Flory, 
1965); (Brant et al., 1969); (Conrad and Flory, 
1976); (Flory and Jernigan, 1965); (Rehahn et al., 
1997); (Engin et al., 2009).The RIS model for a 
protein chain consists of two major components: (1) 
The statistical weights of the torsion states of the 

 and    angles, and (2) The proper matrix 

multiplication operations leading to the partition 
function of the chain. Thermodynamics of the single 
chain then follows upon proper matrix operations 
based on the partition function and its derivatives 
(Callen, 1985); (Flory, 1974). Understanding the 
random configurations of proteins is important due 
to several reasons: Firstly, the set of random 
configurations covers all possible initial 
conformations of proteins. Depending on the 
primary sequence, some conformations emerge as 
highly probable due to the amino acid specific 
regions of the ( ,  )  angles. Secondly, under 
strongly denaturing conditions, a wide range of 
values become available to  and   , and 

conformations are close to those of the random coil 
(Dill and Shortle, 1991); (Tanford, 1968). These 
conformations are many in number, and therefore a 
statistical characterization is required to understand 
the thermodynamics of the denatured state. Thirdly, 
the functionally important ‘intrinsically disordered 
protein’ concept where the primary sequence 
prohibits the folded state, may suitably be analyzed 
by the tools used to understand the random 
conformations (Tompa, 2011); (Orosz and Ovádi, 
2011). 

Thus, a better statistical understanding of 
denatured proteins is required for answering 
questions referring to functional properties of 
proteins. The number of states available to the 
denatured chain may vary from an enormous set to 
only a few in numbers as observed in switches. The 
general statistical mechanical model that we adopt is 
not restricted with this variation. The size of 
available states is determined by the probabilities of 
the latter, and several sources for such probabilities 
are either available and may be extracted from 
various databases, or may be generated by suitable 
training techniques of bioinformatics, depending on 
the constraints and requirements of the problem at 
hand. In the present study, we extract the 
probabilities from the Ramachandran plots obtained 
from the coil library (Fitzkee et al., 2005) which is 
accepted to be representative of the random coiled 
state of proteins (Ormeci et al., 2007); (Engin et al., 
2009); (Unal et al., 2010). Having characterized the 
probabilities from the knowledge data base, we 
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apply the matrix multiplication technique to obtain 
the partition function, and the thermodynamic 
functions such as energy, entropy and heat capacity 
for the denatured state. Finally we present random 
coil results for thermodynamic functions for several 
proteins whose primary sequences are chosen from 
the Protein Data Bank. 

2 STATISTICAL EVALUATION  

A denatured protein assumes a multitude of 
conformations, each subject to a certain probability 
determined by the configurational features of the 
residues which are either of local or nonlocal nature. 
Local effects result from interactions among 
neighboring amino acids along the chain. We refer 
to this state the random coiled state of the protein. 
Determination of the conformation of a chain using 
near neighbor interactions only reduces the problem 
to a Markov process. Nonlocal effects are those 
among residues separated by more than two residues 
along the chain. Having adopted the probabilities 
from the coil library, where the sequence-distant 
long-range interaction are absent because secondary 
or tertiary structures are lacking, is a good 
approximation to the Markov nature of the coiled 
state. 

Markov statistics of denatured proteins have an 
important place in protein statistics in general, 
because: (i) This is the first approximation to the 
difficult problem of non-Markov behavior, (ii) 
Markov behavior is responsible for a large body of 
observed phenomena, (iii) There is already a 
powerful and successful Markov model of 
characterizing the conformations of polymers, i.e., 
the Rotational Isomeric States (RIS) model that has 
been studied in some detail. The specific aim of the 
present paper is to extend the RIS model to calculate 
the thermodynamic properties of denatured chains 
using data generated from the denatured components 
of chains from the PDB. 

Rotational Isomeric State (RIS) formalism 
(Flory, 1969) replaces the continuous distribution of 
backbone torsion angles by a distribution over 
several discrete states, and integrals over the energy 
surface are approximated by summations over these 
states. The native state of a protein is obtained when 
each torsion angle selects a single unique value. Two 

torsion angles around the alpha carbon, C , 
describe the local conformation of a residue. The 
Flory isolated pair hypothesis suggests that each pair 
of torsion angles is independent of the angles 

occupied by neighboring pairs (Brant and Flory, 
1965); (Flory, 1969). Rose and coworkers. Zaman et 
al., (2003), Jha et al., (2005) and Keskin et al., 
(2004), Esposito et al., (2005) and Colubri et al., 
(2006) showed the existence of significant 
correlations between neighboring torsion angle 
pairs. In a recent work it has been shown that the 
usage of  1,i i   provides more information on 

backbone behavior as opposed to independent usage 
of residues (Lennox et al., 2009). 

Some values of torsion angles are more favorable 
than others, and different amino acid types have 
different propensities to occur in different angles 
(Karplus, 1996). The dependence between the 
torsion states of two neighboring residues is a 
function of the type of the residues (Keskin et al., 
2004). We elaborate further on this point in 
discussing the construction of energy maps below. 

 
Figure 1: Torsion angles of the ith amino acid. 

The frequency of occurrence of a given amino 
acid at a given torsion state leads to the probabilities. 
For calculations of the random denatured 
conformations of proteins, a coil library serves as the 
source of information where torsion angle data is 
taken from the set of amino acids those are not in 
helical or beta structures. In this paper, we use the 
Rose Protein Coil Library (Fitzkee et al., 2005). 

2.1 States 

The backbone torsion angles for the ith amino acid 
are shown in Figure 1. Each bond can assume 
different angles, with different preferences. Each 
residue has three torsion angles, , , and    . The 

occurrence of a residue in a given  and    state, 

irrespective of its type is presented in Figure 1. An 
examination of this figure shows that the choice of 
isomeric states for the  and    angles is more 

complicated than the choice in synthetic polymer 
applications. In the latter, usually there are a few 
states like trans, gauche+ and gauche-, and their 
combinations for two successive bonds along the 
chain. In the protein case, there are several discrete 
states centered on different regions for the 
successive and    angles, and for different amino 

acids. 
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We construct state probabilities over the 
Ramachandran map for each residue. 13 states are 
identified for the following   axis intervals: (-180,-

150), (-150,-120), (-120,-105), (-105,-75), (-75,-40), 
(-40,-20), (-20,-10), (-10,30), (30,70), (70,105), 
(105,130), (130,155), (155,180). The corresponding 
intervals over   axis are: (-180,-160), (-160,-135), 

(-135,-105), (-105,-75), (-75,-40), (-40,-15), (-15, 
20), (20, 60), (60, 90), (90,110), (110,130), 
(130,160). For the    angle, there are two states, 
one is either (-180,-160) or (160,180), and the other 
is (-20, 20). The states chosen in this manner are 
representative of the regions given by Karplus 
(1996) and also in (Unal et al., 2009). Thus, we 
identified 13 states for the angle  , 13 states for  , 

and 2 states for   as rotational isomeric states.  

2.2 State Probabilities 

The pair wise dependent probabilities of observed 
states of angles are defined as 
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where  ,X i iN   is the number of residue type X 

observed in the indicated states, and XN  is the 

total number of conformations (Keskin et al., 2004); 
(Unal et al., 2009). Similarly,  1,XY i iN     is the 

number of dipeptides of XY in the given 
conformations. Here,  ,X i iP    and  ,X i iP    

are the probabilities of observing residue X to be in 
state  ,i i  , and in state  ,i i 

 
respectively. 

 1,XY i iP     is the joint probability of observing 

residue X in state  i  and Y in state  1i  . The 

neighbor-dependence introduced in the third of (1) is 
a dependence that originates from the residue type 
differences. Otherwise, (1) acknowledge the Flory 
isolated pair hypothesis. The conformational 
energies are defined as 

   
   

   
   

   
   

0 0

0 0

1
1 0 0

1

,
, ln

,
, ln

,
, ln

X i i
X i i

X i X i

X i i
X i i

X i X i

XY i i
XY i i

XY i XY i

P
E RT

P P

P
E RT

P P

P
E RT

P P

 
 

 

 
 

 

 
 

 





 
  
 
 
 
  
 
 
 
  
 
 

(2)

where the superscript 0 indicates the uniform 
distribution probabilities. Hence, they are directly 
proportional to the size of the angular intervals; 

   0 0 1 13X i X iP P    and  0 1 2X iP   . 

Statistical weights 
i i

u ,
i i

u  , and 
1i i

u  
 

corresponding to the energies may be defined by  
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where R is the gas constant, T is the temperature. 
The statistical weight matrix for a configuration 

can be written as a product of statistical weights of 
each bond pair,      , , , , and ,      . For this 

purpose, the statistical weight matrix for a given 

residue X is defined as 
i iX X

U u
    , 

i iX X
U u

     , and 
1i iXY XY

U u
 

    . Depending 

on the number of states of each angle, dimensions of 

the statistical weight matrices XU  , XU , and 

XYU , are 13×13, 13×2, and 2×13, respectively. The 

superscripts  ,  ,  ,  , and  ,   identify the 

bond pairs over which statistical weights are 
calculated.  

2.3 Calculation of the Thermodynamic 
Quantities 

The partition sum of statistical weights for all 
configurations of the chain is given by (Flory, 1974) 

*
21 1 1 2 n nZ J U U U U U U U J         (4)

where  * 1 0 0J   ,  1 1 1J column  . 

The thermodynamic properties, and the 
coefficients derived from them depend not only on a 
single conformation of the peptide, but on all 
possible configurations. In the remaining equations, 
we give the relevant expressions for calculating 
these averages. 

2.3.1 Helmholtz Free Energy 

Since the Helmholtz free energy in canonical 
formalism is additive over the energies, it can be 
calculated using the partition function of the chain 
(Callen, 1985). 

lnF Z   (5)
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where, 1 / kT  . 

2.3.2 Mean Energy 

The average energy is given by 

  1
ln

d dZ
E Z

d Z d 
     (6)

The matrix multiplication formalism of the partition 
function leads to matrix multiplication scheme of its 
derivatives in the following way 

 * ˆ
i
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   (7)

where * * 0 0L J    ,  0 0L column J   

and Û is the super matrix whose elements are 
matrices 
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 (8)

dU
U

d 
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Therefore, the mean energy can be obtained using 
the following multiplication scheme 

 *1
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Z
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where  
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 (11)

2.3.3 Entropy 

The entropy of the chain can be expressed in terms 
of Z and its derivatives with respect to β. Following 

the equality 2S k dF d  , is obtained. 

2
2
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 (12)

Using the matrix multiplication formalism of Z and 
its first derivative with respect to  , the entropy can 

be calculated as 
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2.3.4 Heat Capacity 

The heat capacity is one of the most important 
properties of the proteins, both native and denatured. 

When force acting on the chain is taken as zero, 
denoted below by the subscript 0f  , the heat 
capacity can be calculated as 

2
2

0 2
0

ln
f

f
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C k

T
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 (14)

Similar to (7), second derivative can be obtained as 
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where * * 0 0 0 0 0 0M J     
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The second derivative of ln Z on the right hand side 
of the equation is written in terms of the first and 
second derivatives of the partition function: 

22 2

2 2 2
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Hence the heat capacity to be calculated by the 
matrix notation 
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
 

(19)

3 RESULTS 

In this section, the free energy, energy, entropy, and 
heat capacity of peptides of different sizes ranging 
from 10 to 800 amino acids are calculated using the 
RIS model, over a temperature range of 200-700 K. 
Table 1 lists the protein set taken from the PDB. 

The variation of the free energy, energy, entropy 
and heat capacity is evaluated by repeating the 
calculations. Results are presented in Figure 2. 

The curves shown in the four panels of Figure 2 
are not independent from each other, and are related 
by the thermodynamic relations given by (5), (6), 
(12), and (14). It is seen that the curves in the figures 
all scale with the number of residues N.  
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Figure 2: (a) The free energy as a function of temperature, 
T, for different length proteins. (b) energy as a function of 
T. (c) entropy as a function of T. (d) heat capacity as a 
function of T. The curves in parts (a),(b), and (c) are 
ordered from top to bottom represent proteins with the 
following numbers of residues: 10, 40, 120, 160, 226, 349, 
408, 456, 545, and 802, respectively. In part (d) they are in 
reverse order. 

In order to find analytical functions that will give 
the curves shown in Figure 2, we first chose an 
analytical form for the heat capacity as 

 3
0 ( , ) BT DT

fC T N NT Ae Ce    (20)

keeping in mind the thermodynamic postulates. We 
inspired the Debye model of heat capacity in a solid 
that shows the dependence of T3. Then, by 
integration subject to the conditions imposed by (5), 
(6), (12), and (14), we obtain the remaining 
thermodynamic functions as given in Eqs. (21)-(23). 
We obtain the coefficients of (20)-(23) by curve 

fitting as 61.5 10A   kJoules/K4 mol, 
37.2 10B    1/K, 52.6 10C   kJoules/K4 mol, 
22.3 10D    1/K, and 4083E   kJoules/mol. 

4 CONCLUSIONS 

The use of the RIS model depends critically on two 
items: (i) the choice of the states, and (ii) the choice 
of the database with which the probabilities of these 
states are evaluated. The states are described in 

terms of the populated regions on the Ramachandran 
map, and the possible states for the  and   angles 

of different amino acids are determined following 
the work of Karplus (Karplus, 1996). In order to 
apply the RIS model, however, the states available 
to the torsion angles , , and     are required 

separately. The state space is obtained in our 
formulation as 13 states for   and 13 states for , 

and two states for . Evaluation of the probabilities 
follows the choice of the state space. For proof of 
principle, we used a coil library for the 
determination of the probabilities. One could 
alternatively construct a databank of known 
denatured proteins, or a subset of them depending on 
the nature of the investigation. Once the states are 
determined, the RIS model is independent of the 
databases used. We observed that the per residue 
thermodynamic properties of proteins in the random 
coil state scales only with the temperature. While 
entropy and energy increases with the temperature, 
free energy decreases. Heat capacity represents a 
decrease around 340 Kelvin that implies an energy 
barrier for a possible transition state. The explicit 
expressions that we determined for the 
thermodynamic functions form a thermodynamically 
consistent set which may be used to obtain other 
thermodynamic potentials by applying the known 
Legendre transformation techniques (Callen, 1985).  
 

    

    
Figure 3: Comparison of (a) free energy, (b) mean energy, 
(c) entropy, and (d) heat capacity estimates. Exact values 
are calculated by matrix multiplication scheme, estimated 
values are calculated by fundamental relation. The lengths 
of chains are shown on each curve. 
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         
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 (21)

3 2 2 3 2 2

3 3 3 3

6 6
( 4 ) ( 4 )

( , ) 2

B T D TA D N e B T T C B N e D T T A CB DF T N N T E N
B D B D

           
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