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Abstract: Monitoring temporal relationships among events in event streams has wide scale applicability in health 
information systems. From detecting violations of privacy policies in message sequences to diagnosing 
conditions in physiological data streams real-time event monitoring of temporal invariants is becoming an 
important tool for system design. We developed an Active Real-Time Event Monitoring and Integration 
System (ARTEMIS) capable of integrating event streams and monitoring the existence of temporal 
invariants among events expressed in a safety fragment of metric first-order temporal logic (MFOTL). The 
paper discusses the mathematical foundations of the monitor, and demonstrates the application concepts in a 
physiological alarm generator and clinical information workflow system. 

1 INTRODUCTION 

The concept of policies is a widely used abstraction 
in health information system design. Policies may be 
defined with different purposes. For example, 
privacy policies (Bartha et al., 2006) express 
restrictions on information flows among actors of a 
care delivery environment. Alert policies define the 
rules for signalling alerts in clinical environments. 
Treatment policies capture the decision rules for 
applying and ordering treatment activities. These 
policies share some common characteristics, namely, 
all of them can be modelled by formal logic and 
most of the time they contain temporal relationships. 
Huge difference is found however in time scales 
(from seconds to years), and whether they are only 
passive monitors or active integrators of event 
streams. Policies defined for passive monitoring 
express logical and temporal invariants over event 
streams. The passive monitors observe the event 
sequences and indicate if the invariants are violated. 
However, most treatment policies and several alert 
policies need active participation, for generating new 
events and integrating policy groups via the 
generated events (Figure 1). This is necessary for 
requesting actions (e.g. approvals in privacy policies 
or tests in treatment policies) that may be time and 
resource consuming and must be scheduled only by 
demand. The request events {ݎଵ, …  ௠} and theݎ

outcome of the requested activities{ݐଵ, …  ௠} may beݐ
used for integrating other policies in the monitoring 
process. The interplay between the different policies 
leads to the concept of Active Real-Time Event 
Monitoring and Integration System, (ARTEMIS) 
which monitors different events, displays or logs 
policy violations and starts up activities, which may 
also affect other policies.  

 

Figure 1: Schema of Active Real-Time Monitoring 
System: large arrows denote the access points to external 
resources, small arrows represent data flow. Monitor can 
activate Tester Unit on demand, and the feedback 
mechanism is provided to the Monitor. 

Policies may be modelled with two different 
approaches, rule-based and statistical based. Due to 
space limitations we do not discuss statistical based 
methods here. Temporal logic is often used to 
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describe rule-based policies (Basin, Klaedtke, and 
Muller, 2010) and to monitor events in a rule-based 
fashion. Our choice based on algorithmic 
considerations fall on a subset of temporal logic 
called Metric First Order Temporal Logic (MFOTL) 
(Basin et al., 2008). MFOTL can be used to specify 
a broad set of complex temporal constraints, while 
real-time operation and reasonable computation 
complexity is achievable. We built our monitor 
based on the concepts defined in their work, but over 
an extended MFOTLI language and using a 
significantly different monitoring algorithm. 

The structure of the paper is the following: in 
Section 2 we introduce MFOTLI language and 
MFOTLI monitoring. Section 3 details the concept 
of ARTEMIS, and in section 4 we show a clinical 
workflow example. Finally, in section 5 we give the 
conclusions. 

2 BACKGROUND 

2.1 Syntax of MFOTLI Language 

We define the logic MFOTLI as a superset of 
MFOTL (Basin et al., 2008), such that point and 
interval based semantics are both supported. 
MFOTLI may also be considered as the union of 
metric temporal logic (MTLN) (Alur and Henzinger, 
1991); (Koymans, 1990) and metric interval 
temporal logic (MITL[a,b]) (Nickovic and Maler, 
2007); (Alur et al., 1991) extended with predicates 
and quantification. The past temporal modalities are 
interpreted on possibly infinite intervals, while the 
future temporal modalities are bounded. Description 
of the MFOTLI language is based on the work of 
Basin et al., (2008) and Nickovic and Maler, (2007). 

Formulae of MFOTLI are inductively defined in 
Backus-Naur Form by the following grammar: ݌ ∶= .ݔ∃ | ଶ݌ ∧ ଵ݌ | ݌ ¬ | ݐ ଵ݌ | ݌ ூܷ݌ଶ | ݌ଵ ூܵ݌ଶ, 
where I is a possibly singular time interval and t is a 
basic term, i.e. a function compared to a constant 
value, or a boolean predicate value. The operators 
represent the standard negation, conjunction, 
existence, until and since operators, respectively. 

Based on the basic formulae we can express 
other standard logic operators and constants, such as 
true (⊤), false (ܨ), disjunction (݌ଵ ∨ ݌ଶ) and 
universality (∀ݔ.  Also, we can express release .(݌
and trigger operators, eventually and always 
operators, and their past versions, once and 
historically: ݌ଵܴூ݌ଶ ≔ ଵ݌¬)¬ ூܷ¬݌ଶ) 

ଵ݌ ூܶ݌ଶ ≔ ଵ݌¬)¬ ூܵ¬݌ଶ) 

◇I݌ ≔ ⊤ ூܷ ݌ ◆I݌ ≔ ⊤ ூܵ ݌ 

I݌ ≔ F ܴூ ݌ █ I݌ ≔ F ூܶ ݌ 
 

Here we illustrate the MFOTLI language with a 
frequently arising example: the policy declares that a 
patient p had to give their consent in the last 8 days 
to disclose their lab results prior to the disclosure 
taking place. The purpose of the monitor is to detect 
if illegal disclosure happened. The policy is easily 
expressed using MFOTLI: disclosedt(x) → ◆[8days,0]consentt(x) 

If this expression is not satisfied at any time t with 
respect to patient x, the policy was violated for that 
patient. 

2.2 MFOTLI Monitoring Algorithm 

The main idea behind online monitoring is to 
incrementally build an inner representation of 
previous states without storing all the unnecessary 
details. A possible solution is to introduce auxiliary 
relations describing these past states. Satisfiability in 
the current state is answered by evaluating only 
these additional relations, i.e. answering the 
satisfiability of a first-order logic expression. Our 
monitoring algorithm works by transparently 
building and evaluating these auxiliary relations. 

3 ARTEMIS ARCHITECTURE 

ARTEMIS systems are built from three different 
kinds of components (Figure 1), sources, testers, and 
monitor. Sources are independent event generators 
(e.g. measurement devices or audit systems), which 
set up relations and functions used by the MFOTLI 
monitor. The sources send all the necessary 
information to the monitor, which automatically 
extracts and stores the relevant data. The monitor 
continuously checks whether the policies are 
satisfied and on satisfaction the appropriate testers 
(e.g. treatment procedures, lab tests) are activated. 
Finally, the results of testers are fed back to the 
monitor, which may lead to other coupled actions. 

The controller actions are declared in the form of 
Horn clauses (head(x) ← body(x)), where the head 
is the action and body is the conditions leading to 
the action. We can define any number of such 
expressions as long as the body of the Horn clause is 
temporal sub-formula domain independent (Basin et 
al., 2008). 

The expressions are ordered which defines the 
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Figure 2: Snapshot from our test application showing the relations of SIRS alert. Left side shows the relations of 
ARTEMIS, right side shows the ground-truth data (signal high represents true, signal low represents false). 

order of evaluation. Expressions may refer to each 
other: any expression may use the past values of any 
other expression including themselves or the current 
results of any expressions defined earlier in the 
order. 

ARTEMIS shows several advantages over 
systems built with low level languages (Table 1). 
The fact that policies are well represented in formal 
logic leads to a compact, readable and easily 
maintainable policy code in ARTEMIS. The 
optimized monitoring algorithm results in high 
performance and optimal resource management. 
Furthermore, extensibility is easily achieved by 
using formal logic conjunction and disjunction 
operators without touching any of the previously 
written code. 

Table 1: Advantages of ARTEMIS. 

 
ARTEMIS with 

MFOTL 
monitoring 

Traditional system 
built with a low level 

language 
Policy code 
complexity 

Very compact Highly complex 

Performance 
Automatically 
high, optimal 

High, if optimized 

Extensibility Easily extensible 
Extensible, but 

complicated 

Maintenance 
Easy 

maintenance 
Cumbersome 
maintenance 

 

Comparison to rule-based workflow management 
systems like Drools does not show this great 
difference. The main advantage of ARTEMIS is its 
MFOTL engine which can evaluate temporal logic 
with complex temporal expression. Although Drools 
is very efficient to describe simple temporal policies, 
it cannot handle compound temporal operators, 
which may seriously limit its applicability in some 
scenarios (e.g. signal processing). 

 
 

4 EVALUATION 

We evaluated ARTEMIS using the initial phases of 
the sepsis alert and treatment protocol (Figure 2). By 
monitoring several physiological data of patients we 
could express the Systemic Inflammatory Response 
Syndrome (SIRS) alert system (Shapiro et al., 2006). 
After SIRS alert was issued, ARTEMIS had to 
request the approval of a doctor to begin the sepsis 
treatment protocol. In case the approval arrived, a 
lab test request was issued to analyse additional 
conditions. Only after the receipt of approval and lab 
tests could the sepsis treatment start (Dellinger et al., 
2008). 

The SIRS alert protocol (Shapiro et al., 2006) 
defines validity ranges for physiological data. In 
case the measured function is outside the validity 
range, the measured data is abnormal. Abnormal 
body temperature and white-blood cell count are 
major criteria, abnormal respiration rate and heart 
rate are minor criteria. The protocol defines two 
kinds of alerts: high priority alerts are issued if two 
major criteria were met in the last 24 hours; low 
priority alerts are issued if at least one major and one 
minor criterion were met in the last 24 hours, and no 
alert were issued in the last 24 hours. 

Our system contained four measured functions 
interpreted on patients: temp (temperature), wbc 
(white-blood cell count), rr (respiratory rate) and hr 
(heart rate). Using these functions we could express 
the policy as seen in Table 2. The derived abnormal 
functions were satisfied for a patient x, if their 
measurement was abnormal (i.e. out of normal 
range). majorCriteria was true, if at least one major 
criterion held, minorCriteria was true if at least on 
minor criterion held. Based on these criteria we 
could define highPriority and lowPriority, which 
were satisfied when the high priority or low priority 
alert requirements (see above) were met 
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Table 2: Sepsis treatment policy expressed in ARTEMIS. ܾܾܹ݈ܽ݊ܿܽ݉ݎ݋(x) ← wbc(x)  < 4000 | (ݔ)ܾܿݓ > (x)݌݉݁ݐ ← (x)݌݈݉݁ܶܽ݉ݎ݋ܾ݊ܽ 20000  < 96.8 | (x)݌݉݁ݐ > (x)ݎݎ ← (x)ܴܴ݈ܽ݉ݎ݋100.4ܾܽ݊  > (x)ݎℎ ← (x)ܴܪ݈ܽ݉ݎ݋ܾ݊ܽ 20   > (x)ܾܹ݈ܿܽ݉ݎ݋ܾ݊ܽ ← (x)ܽ݅ݎ݁ݐ݅ݎܥݎ݋݆ܽ݉ 90  ∨ (x)ܴܴ݈ܽ݉ݎ݋ܾ݊ܽ ← (x)ܽ݅ݎ݁ݐ݅ݎܥݎ݋݊݅݉ (x)݌݈݉݁ܶܽ݉ݎ݋ܾ݊ܽ ∨ (x)ܾܹ݈ܿܽ݉ݎ݋ଶସ୦୰ୱ,଴ሿܾܽ݊]◆ ← (x)ݕݐ݅ݎ݋݅ݎℎ݅݃ℎܲ (x)ܴܪ݈ܽ݉ݎ݋ܾ݊ܽ ∧ ◆[ଶସ୦୰ୱ,଴ሿܾܽ݊݌݈݉݁ܶܽ݉ݎ݋(x) ݈ݕݐ݅ݎ݋݅ݎܲݓ݋(x) ← ◆[ଶସ୦୰ୱ,଴ሿm݆ܽܽ݅ݎ݁ݐ݅ݎܥݎ݋(x) ∧ ◆[ଶସ୦୰ୱ,଴ሿminܽ݅ݎ݁ݐ݅ݎܥݎ݋(x) ݅݃݅ܪ݁ݑݏݏℎݐݎ݈݁ܣ(x) ← ℎ݅݃ℎܲݕݐ݅ݎ݋݅ݎ(x) ݅ݐݎ݈݁ܣݓ݋ܮ݁ݑݏݏ(x) ← ݈ݕݐ݅ݎ݋݅ݎܲݓ݋(x) ∧ ¬◆[ଶସ୦୰ୱ,଴)൫݅ݐݎ݈݁ܣݓ݋ܮ݁ݑݏݏ(x) ∨ (x)ݐݎ݈݁ܣℎ݃݅ܪ݁ݑݏݏ൫݅ ← (x)ݐݎ݈݁ܣܴܵܫܵ ൯(x)ݐݎ݈݁ܣℎ݃݅ܪ݁ݑݏݏ݅ ∨ ൯(x)ݐݎ݈݁ܣݓ݋ܮ݁ݑݏݏ݅ ∧ ¬◆[ଶସ୦୰ୱ,଴)ܵݏ݅ݏ݌݁ܵ (ݔ)ݐݎ݈݁ܣܴܵܫ_݈ܾܽ(x) ← ݈ܽܽݒ݋ݎ݌݌(x) ܵ݁ݐ݊݁݉ݐܽ݁ݎݐ_ݏ݅ݏ݌(x) ← ቀ◆[ଶସ୦୰ୱ,଴ሿ݈ܽܽݒ݋ݎ݌݌(x)ቁ ∧  (x)݁݊݋݀_ݏݐݏ݁ݐܾ݈ܽ
 

issueHighAlert and issueLowAlert signalled, when a 
high priority or low priority alert had to be sent out 
for patient x. For any patient x, when we reached 
SIRSalert, we initialized the Verification tester (once 
in every 24 hours, because the test takes significant 
amount of time; also note that this is not part of the 
original protocol, we used it for demonstration 
purposes only) for that patient. Relation approval 
signalled the results of the verification. If approval 
was received, the patient was sent to lab tests by 
issuing Sepsis_lab. On the arrival of lab tests, 
relation labtests_done was updated. If lab tests were 
done within 24 hours after the approval of sepsis 
treatment, we could start the sepsis treatment action 
signalled by Sepsis_treatment.  

Even though the performance of the algorithm 
heavily depends on several factors, we simulated 
SIRS alert with 100000 distinct events affecting 100 
patients leading to 25074 issued SIRS alert to 
demonstrate the order of magnitude. The average 
performance was 0.21ms / event. 

5 CONCLUSIONS 

We showed the concept of Active Real-Time Event 
Monitoring and Integration System (ARTEMIS) 
which is an extension of traditional real-time 
monitoring systems with active participation from 
the part of the monitor. As a workflow management 
system ARTEMIS competes with systems like 
Drools, but supports a broader and more expressive 
set of temporal expressions which might show 
immediate advantages in signal processing 
scenarios. 
 

REFERENCES 

Barth, A., Datta, A., Mitchell, J. C., Nissenbaum, H., 
2006. Privacy and contextual integrity: Framework 
and applications. SP’06, pp.184-198. 

Basin, D., Klaedtke, F., Muller, S., 2010. Monitoring 
security policies with metric first-order temporal logic. 
SACMAT, pp.23-34. 

Basin, D., Klaedtke, F., Muller, S., Pfitzmann, B., 2008. 
Runtime monitoring of metric first-order temporal 
properties. FSTTCS, 2, pp.49-60. 

Chomicki, J., 1995. Efficient checking of temporal 
integrity constraints using bounded history encoding. 
TODS, 20(2), pp.149-186. 

Alur, R., Henzinger, T., 1991. Logics and models of real 
time: A survey. REX Workshop on Real Time: Theory 
in Practice, pp.74-106. 

Koymans, R., 1990. Specifying real-time properties with 
metric temporal logic. Real-Time Systems, 2, pp.255-
299. 

Nickovic, D., Maler, O., 2007. AMT: A property-based 
monitoring tool for analog systems. FORMATS, 4763, 
pp. 304-319. 

Alur, R., Feder, T., Henzinger, T. A., 1991. The benefits 
of relaxing punctuality. Tenth Annual Symposium on 
Principles of Distributed Computing, pp.139-152. 

Shapiro, N. I., Howell, M. D., Talmor, D. et al., 2006. 
Implementation and outcomes of the Multiple Urgent 
Sepsis Therapies (MUST) protocol. Critical Care 
Medicine, 34, pp.1025-1032. 

Dellinger, R., Levy, M., Carlet, J. et al., 2008. Surviving 
Sepsis Campaign: International guidelines for 
management of severe sepsis and septic shock. 
Intensive Care Medicine, 34, pp.17-60. 

ACTIVE MONITORING USING REAL-TIME METRIC LINEAR TEMPORAL LOGIC SPECIFICATIONS

373


