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Abstract: In social networks, estimation of the degree of trustworthiness of a target agent through the information ac-
quired from a group of advisor agents, who had direct interactions with the target agent, is challenging. The
estimation gets more difficult when, in addition, there is some uncertainty in both advisor and target agents’
trust. The uncertainty is tackled when (1) the advisor agents are self-interested and provide misleading ac-
counts of their past experiences with the target agents and (2) the outcome of each interaction between agents
is multi-valued. In this paper, we propose a model for such an evaluation where possibility theory is used to
address the uncertainty of an agent’s trust. The trust model of a target agent is then obtained by iteratively
merging the possibility distributions of: (1) the trust of the estimator agent in its advisors, and (2) the trust of
the advisor agents in a target agent. Extensive experiments validate the proposed model.

1 INTRODUCTION

Social networking sites have become the preferred
venue for social interactions. Despite the fact that
social networks are ubiquitous on the Internet, only
few websites exploit the potential of combining user
communities and online marketplaces. The reason
is that users do not know which other users to trust,
which makes them suspicious of engaging in online
business, in particular if many unknown other parties
are involved. This situation, however, can be allevi-
ated by developing trust metrics such that a user can
assess and identify trustworthy users. In the present
study, we focus on developing a trust metric for es-
timating the trust of a target agent, who is unknown,
through the information acquired from a group of ad-
visor agents who had direct experience with the target
agent, subject to possible trust uncertainty.

Each entity in a social network can be represented
as an agent who is interacting with its network of
trustees, which we refer to as advisors, where each
advisor agent in turn is in interaction with an agent of
interest, which we refer to as a target agent. Each
interaction can be considered as a trust evaluation
between the trustor agent, i.e., the agent who trusts
another entity, and the trustee agent, i.e., the agent

whom is being trusted. In the context of interactions
between a service provider (trustee) and customers
(trustors), some companies (e.g., e-bay and amazon)
provide means for their customers to provide their
feedback on the quality of the services they receive,
under the form of a rating chosen out of a finite set
of discrete values. This leads to a multi-valued do-
main of trust, where each trust rating represents the
level of trustworthiness of the trustor agent as viewed
by the trustee agent. While most of the web applica-
tions ask users to provide their feedbacks within such
a multi-valued rating domain, most studies (Jøsang,
2001), (Wang and Singh, 2010), (Reece et al., 2007)
and (Teacy et al., 2006) are restricted to binary do-
mains. Hence, our motivation for developing a multi-
valued trust domain where each agent can be evalu-
ated within a multi-valued set of ratings.

An agent may ask its advisors to provide infor-
mation on a target agent who is unknown to him.
The advisors are not necessarily truthful (e.g., com-
petition among market shares, medical records when
buying a life insurance) and therefore may manipu-
late their information before reporting it. In addition,
the advisor agents’ trustworthy behavior may differ
from one interaction to another, leading to some un-
certainty about the advisors’ trustworthiness and the

180 Honari S., Jaumard B. and Bentahar J..
MERGING SUCCESSIVE POSSIBILITY DISTRIBUTIONS FOR TRUST ESTIMATION UNDER UNCERTAINTY IN MULTI-AGENT SYSTEMS.
DOI: 10.5220/0003754301800189
In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (ICAART-2012), pages 180-189
ISBN: 978-989-8425-95-9
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



accuracy of information revealed by them.
Possibility distribution is a flexible tool for mod-

eling an agent’s trust considering such uncertainties
where the agent’s trust arises from an unknown prob-
ability distribution. Possibility theory was first in-
troduced by (Zadeh, 1978) and further developed by
Dubois and Prade (Dubois and Prade, 1988). It has
been utilized, e.g., to model reliability (Delmotte and
Borne, 1998). We use possibility distributions to rep-
resent the trust of an agent in order to consider the
uncertainties in the agent’s trustworthiness. Later, we
propose merging of the possibility distributions of an
agent’s trust in it’s advisors with the reported possi-
bility distributions by the advisors on a target agent’s
trust. The resulted possibility distribution is an esti-
mation of the target agent’s trust. Finally, we intro-
duce 2 evaluation metrics and provide extensive ex-
periments to validate our proposed tools.

The rest of the paper is structured as follows: Sec-
tion 2 describes the related works. In Section 3, we
provide a detailed description of our problem environ-
ment. Section 4 discusses some fusion rules for merg-
ing possibility distributions considering the agents’
trust. In Section 6, we propose our merging approach
of the possibility distributions in order to estimate the
target agent’s trust. Extensive experimental evalua-
tions are presented in Section 7 to validate the pro-
posed trust model.

2 RELATED WORK

Considerable research has been accomplished in
multi-agent systems providing models of trust and
reputation, a detailed overview of which is provided
in (Ramchurn et al., 2004). In reputation models, an
aggregation of opinions of members towards an indi-
vidual member which is usually shared among those
members is maintained. Starting with (Zacharia et al.,
2000), the reputation of an agent can be evaluated and
updated by agents over time. However, it is implic-
itly assumed that the agent’s trust is a fixed unknown
value at each time slot which does not capture the un-
certainties in an agent’s trust. Regret (Sabater and
Sierra, 2001) is another reputation model which de-
scribes different dimensions of reputation (e.g. “indi-
vidual dimension”, “social dimension”). However, in
this model the manipulation of information and how
it can be handled is not addressed.

Some trust models try to capture different dimen-
sions of trust. In (Griffiths, 2005) a multi-dimensional
trust containing elements like success, cost, timelines
and quality is presented. The focus in this work is
on the possible criteria that is required to build a trust

model. However, the uncertainty in an agent’s behav-
ior and how it can be captured is not considered.

The work of (Huynh et al., 2006) estimates the
trust of an agent considering “direct experience”,
“witness information”, “role-based rules” and “third-
party references provided by the target agents”. Al-
though the latter 2 aspects are not included in our
model, it is based on the assumption that the agents
are honest in exchanging information with one an-
other. In addition, despite the fact that the underlying
trust of an agent is assumed to have a normal distribu-
tion, the estimated trust is a single value instead of a
distribution. In other words, it does not try to measure
the uncertainty associated with the occurrence of each
outcome of the domain considering the results of the
empirical experiments.

In all of the above works the uncertainty in the
trust of an agent is not considered. We now re-
view the works that address uncertainty. Reeceet al.
(Reece et al., 2007) present a multi-dimensional trust
in which each dimension is binary (successful or un-
successful) and corresponds to a service provided in a
contract (video, audio, data service, etc.). This paper
is mainly concentrated on fusing information received
from agents who had direct observations over a sub-
set of services (incomplete information) to derive the
complete information on the target entity while our
work focuses on having an accurate estimation when
there is manipulation in the acquired information.

Yu and Singh (Yu and Singh, 2002) measure the
probability of trust, distrust and uncertainty of an
agent based on the outcome of interactions. The un-
certainty measured in this work is equal to the fre-
quency of the interaction results in which the agent’s
performance is neither highly trustworthy nor highly
untrustworthy which can be inferred as lack of both
trust and distrust in the agent. However, the uncer-
tainty that we capture is the change in the agent’s de-
gree of trustworthiness regardless of how trustworthy
the agent is. In other words, when an agent acts with
high uncertainty it’s degree of trustworthiness is hard
to predict for future interactions. We do not consider
uncertainty as lack of trust or distrust, but the variabil-
ity in the degree of trustworthiness. In both works of
(Yu and Singh, 2002) and (Reece et al., 2007) the pos-
sibility of having malicious agents providing falsified
reports is ignored.

The works of (Jøsang, 2001) and (Wang and
Singh, 2010) provide probabilistic computational
models measuring belief, disbelief and uncertainty
from binary interactions (positive or negative). Al-
though the manipulation of information by the re-
porter agents is not considered in these works, they
split the interval of[0,1] between these 3 elements
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measuring a single value for each one of them. We do
not capture uncertainty in the same sense by measur-
ing a single value, instead we consider uncertainty by
measuring the likelihood of occurrence of every trust
element in the domain and therefore catch the possi-
ble deviation in the degree of trustworthiness of the
agents.

One of the closest works to our model which in-
cludes both uncertainty and the manipulation of infor-
mation is Travos (Teacy et al., 2006). Although this
work has a strong probabilistic approach and covers
many issues, it is yet restricted to binary domain of
events where each interaction, which is driven from
the underlying probability that an agent fulfills it’s
obligations, is either successful or unsuccessful. Our
work is a generalization of this work in the sense that
it is extended to a multi-valued domain where we as-
sociate a probability to the occurrence of each trust
value in the domain. Extension of the Travos model
from binary to multi-valued event in the probabilis-
tic approach is quite challenging due to its technical
complexity. We use possibility theory which is a flex-
ible and strong tool to address uncertainty and at the
same time it is applicable to multi-valued domains.

3 MULTI-AGENT PLATFORM

In this section, we present the components that build
the multi-agent environment and the motivation be-
hind each choice. We first discuss the set of trust
values (Section 3.1), the agent’s internal trust distri-
bution (Section 3.2) and the interactions among the
agents (Section 3.3). Later, we describe the forma-
tion of the possibility distribution of an agent’s trust
(Section 3.4) and the possible agent information ma-
nipulations (Section 3.5). Finally, the game scenario
in this paper is discussed (Section 3.6).

3.1 Trust Values

Service providers ask customers to provide their feed-
backs on the received services commonly in form of a
rating selected from a multi-valued set. The selected
rating indicates a customer’s degree of satisfaction or,
in other words, its degree of trust in the provider’s
service. This motivates us to consider a multi-valued
trust domain. We define a discrete multi-valued set
of trust ratings denoted byT, with τ being the low-
est,τ being the highest and|T| representing the num-
ber of trust ratings. All trust ratings are within[0,1]
and they can take any value in this range. However,
if the trust ratings are distributed in equal intervals,
the ith trust rating equals to:(i − 1)/(|T| − 1) for

i = 1,2, . . . , |T|. For example, if|T|= 5, then the set
of trust ratings is{0,0.25,0.5,0.75,1}.

3.2 Internal Probability Distribution of
an Agent’s Trust

In our multi-agent platform, each agent is associ-
ated with an internal probability distribution of trust,
which is only known to the agent. This allows mod-
eling a specific degree of trustworthiness in that agent
where each trust ratingτ is given a probability of oc-
currence. In order to model a distribution, given its
minimum, maximum, peak, degree of skewness and
peakness, we use a form of beta distribution called
modified pert distribution (Vose, 2008). It can be
replaced by any distribution that provides the above
mentioned parameters. Well known distributions,
e.g., normal distribution, are not employed as they do
not allow positive or negative skewness of the distri-
bution. In modified pert distribution, the peak of the
distribution, which is denoted byτPEAK

a , has the high-
est probability of occurrence. This means that while
the predominant behavior of the agent is driven by
τPEAK

a and the trust ratings next to it, there is a small
probability that the agent does not follow its domi-
nant behavior. Figure 1(a) demonstrates an example
of the internal trust distribution of an agent. The more
the peak of the internal distribution is closer toτ, the
more trustworthy the agent is and vice-versa.

3.3 Interaction between Agents

When a customer rates a provider’s service, its rating
depends not only on the provider’s quality of service
but also on the customer’s personal point of view. In
this paper, we just model the provider’s quality of ser-
vice. In each interaction a trustor agent, sayα, re-
quests a service from a trustee agent, sayβ. Agent
β should provide a service in correspondence with its
degree of trustworthiness which is implied in its inter-
nal trust distribution. On this purpose, it generates a
random value from the domain ofT by using its inter-
nal probability distribution of trust. The peak of the
internal trust distribution,τPEAK

a , has the highest prob-
ability of selection while other trust ratings inT have
a relatively smaller probability to be chosen. This will
produce a mostly specific and yet not deterministic
value. Agentβ reports the generated value toα which
represents the quality of service ofβ in that interac-
tion.
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(a) Internal Prob. Dist. ofa (b) Network of Agents

Figure 1: Multi-Agent Platform.

3.4 Building Possibility Distribution of
Trust

Upon completion of a number of interactions between
a trustor agent,α, and a trustee agent,β, agentα can
model the internal trust distribution ofβ, by usage of
the values received fromβ during their interactions.
If the number of interactions between the agents is
high enough, the frequencies of each trust rating can
almost represent the internal trust distribution ofβ.
Otherwise, if few interactions are made, the randomly
generated values may not represent the underlying
distribution ofβ’s trust (Masson and Denœux, 2006).
In order to model an agentα’s trust with respect to
the uncertainty associated with the occurrence of each
trust rating in the domain, we use possibility distribu-
tions which can present the degree of possibility of
each trust rating inT. A possibility distribution is de-
fined as:Π : T→ [0,1] with max

τ∈T
Π(τ) = 1.

We apply the approach of (Masson and Denœux,
2006) to build a possibility distribution from empir-
ical data given the desired confidence level. In this
approach, first simultaneous confidence intervals for
all trust ratings in the domain are measured by usage
of the empirical data (which in our model are derived
from interaction among agents). Then, the possibil-
ity of each trust ratingτ considering the confidence
intervals of all trust ratings inT is found.

3.5 Manipulation of the Possibility
Distributions

An agent, sayaS, needs to acquire information about
the degree of trustworthiness of agentaD unknown to
him. On this purpose, it acquires information from its
advisors likea who are known toaS and have already
interacted withaD. Agenta is not necessarily truthful
for reasons of self-interest, therefore it may manipu-
late the possibility distribution it has built aboutaD’s
trust before reporting it toaS. The degree of manip-
ulation of the information by agenta is based on its
internal probability distribution of trust. More specif-
ically, if the internal trust distribution of agentsa and

a′ indicate thata’s degree of trustworthiness is lower
thana′, then the reported possibility distribution ofa
is more prone to error thana′. The following 2 algo-
rithm introduced in this section are examples of ma-
nipulation algorithms:
Algorithm I

for eachτ ∈ T do
τ′← random trust rating fromT, according

to agenta’s internal trust distribution
errorτ = 1− τ′
Πa→aD(τ) = Π̂a→aD (τ)+errorτ

end for
where Π̂a→aD(τ) is the possibility distribution built
by a through its interactions withaD and Πa→aD(τ)
is the manipulated possibility distributions. In this
algorithm for each trust ratingτ ∈ T a random trust
value,τ′, is generated following the internal trust dis-
tribution of agenta. For highly trustworthy agents,
the randomly generated value ofτ′ is closer toτ and
the subsequent error (errorτ) is closer to 0. Therefore
the manipulation of̂Πa→aD(τ), is insignificant. On
the other hand, for highly untrustworthy agents, the
value ofτ′ is closer toτ and therefore the derived er-
ror, errorτ, is closer to 1. In such a case, the possibility
value ofΠ̂a→aD(τ) is considerably modified causing
noticeable change in the original values.

After measuring the distribution ofΠa→aD(τ), it is
normalized and then reported toaS. The normaliza-
tion satisfies: (1) the possibility value of every trust
ratingτ in T is in [0,1], and (2) the possibility value of
at least one trust rating inT equals to 1. let̃Π(τ) be a
non-normalized possibility distribution. Either of the
following formulas (Delmotte and Borne, 1998) gen-
erates a normalized possibility distribution ofΠ(τ):
(1) Π(τ) = Π̃(τ)/h, (2) Π(τ) = Π̃(τ)+1−h,

whereh= max
τ∈T

Π̃(τ).

Here is the second manipulation algorithm:
Algorithm II:

for eachτ ∈ T do
τ′← random trust rating fromT, according

to agenta’s internal trust distribution
max errorτ = 1− τ′
errorτ = random value in[0,max errorτ]
Πa→aD(τ) = Π̂a→aD (τ)+errorτ

end for
As for algorithm I, the distribution ofΠa→aD(τ)

is normalized before being reported toaS. In al-
gorithm II, an additional random selection value is
added where the random value is selected uniformly
in [0,max errorτ]. In algorithm I, the trust rating of
τPEAK

a and the trust values next to it have a high proba-
bility of being selected. The error added toΠ̂a→aD(τ)
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may be neglected when the distribution is normal-
ized. However, in algorithm II, if an agent is highly
untrustworthy the random trust value ofτ′ is close
to τ and thereupon the error value of maxerrorτ is
close to 1. This causes the uniformly generated value
in [0,max errorτ] considerably random and unpre-
dictable which makes the derived possibility distri-
bution highly erroneous after normalization. On the
other hand, if an agent is highly trustworthy, the error
value of maxerrorτ is close toτ and the random value
generated in[0,max errorτ] would be even smaller,
making the error of the final possibility distribution
insignificant. While incorporating some random pro-
cess, both algorithms manipulate the possibility dis-
tribution based on the agent’s degree of trustworthi-
ness causing the scale of manipulation by more trust-
worthy agents smaller and vice-versa. However, the
second algorithm acts more randomly. We provide
these algorithms to observe the extent of dependency
of the derived results in respect to a specific manipu-
lation algorithm employed.

3.6 Game Scenario

In this paper, we study a model arising in social net-
works where agentaS makes a number of interac-
tions with each agenta in a setA= {a1,a2, . . . ,an} of
n agents (agentaS’s advisors), assuming each agent
a∈ A has carried out some interactions with agentaD.
Agent aS builds a possibility distribution of trust for
each agent inA by usage of the empirical data de-
rived throughout their interactions. Each agent inA,
in turn, builds an independent possibility distribution
of trust through its own interactions with agentaD.
When aS wants to evaluate the level of trustworthi-
ness ofaD, who is unknown to him, it acquires in-
formation from its advisors,A, to report their mea-
sured possibility distributions onaD’s trust. Agents in
A are not necessarily truthful. Therefore, through us-
age of the manipulation algorithms, they manipulate
their own possibility distributions of̂Πa→aD(τ) in cor-
respondence with their degree of trustworthiness and
report the manipulated distributions toaS. AgentaS

uses the reported distributions ofΠa→aD(τ) by each
agenta ∈ A and its trust distribution in agenta, rep-
resented byΠaS→a(τ), in order to estimates the possi-
bility distribution ofaD’s trust.

4 FUSION RULES CONSIDERING
THE TRUST OF THE AGENTS

Let τaS→a ∈ [0,1] be a single trust value of agentaS

in agenta andΠa→aD(τ),τ ∈ T represent the possi-

bility distribution of agenta’s trust in agentaD as
reported bya to aS. We now look at different fu-
sion rules for merging the possibility distributions of
Πa→aD(τ),a ∈ A, with respect to the trust values of
τaS→a,∀a∈ A, in order to get a possibility distribution
of ΠaS→aD (τ),τ ∈ T, representingaS’s trust inaD. We
explore three fusion rules, which are the most com-
monly used. The first one is the Trade-off (To) rule
(Yager, 1996), which builds a weighted mean of the
possibility distributions:

ΠTo
aS→aD(τ) = ∑

a∈A

ωa×Πa→aD(τ), (1)

where ωa = τaS→a/ ∑
a∈A

τaS→a for τ ∈ T, and

ΠTo
aS→aD (τ) indicates the trust ofaS in aD measured

by Trade-off rule. Note that the trade-off rule con-
siders all of the possibility distributions reported by
the agents inA. However, the degree of influence of
the possibility distribution ofΠa→aD(τ) is weighted
by the normalized trust of agentaS in each agenta
(which isωa).

The next two fusion rules belong to a family
of rules which modify the possibility distribution of
Πa→aD(τ) based on the trust value associated with it,
τaS→a, and then take an intersection (Zadeh, 1965) of
the modified distributions. We refer to this group of
fusion rules as Trust Modified (TM) rules. Therein,
if τaS→a = 1, Πa→aD(τ) remains unchanged, meaning
that agentaS’s full trust in a results in total acceptance
of possibility distribution ofΠa→aD (τ) reported bya.
The less agenta is trustworthy the less its reported
distribution is reliable and consequently its reported
distribution of Πa→aD (τ) is moved closer towards a
uniform distribution by TM rules. In the context of
possibility distributions, the uniform distribution pro-
vides no information as all trust values in domainT
are equally possible which is referred to as complete
ignorance (Dubois and Prade, 1991). Indeed, nothing
differentiates between the case where all elements in
the domain have equal probability and the case where
no information is available (complete ignorance). The
more a distribution ofΠa→aD (τ) gets closer to a uni-
form distribution, the less likely is would get to be
selected in the intersection phase (Zadeh, 1965). We
selected the following 2 TM fusion rules:

Yager (Yager, 1987):

ΠY
aS→aD (τ) = min

a∈A
[τaS→a×Πa→aD(τ)+1− τaS→a] .

Dubois and Prade (Dubois and Prade, 1992):

ΠDP
aS→aD (τ) = min

a∈A
[max(Πa→aD(τ),1− τaS→a)] .

In Yager’s fusion rule, the possibility of each trust
valueτ moves towards a uniform distribution as much
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as(1−τaS→a) which is the extent to which the agenta
is not trusted. In Dubois and Prade’s fusion rule, when
an agent’s trust declines, the max operator would
more likely select 1− τaS→a and, hence, the informa-
tion in Πa→aD (τ) reported bya gets closer to a uni-
form distribution.

Once a fusion rule in this Section is applied, the
resulted possibility distribution ofΠaS→aD(τ),τ ∈ T
is then normalized to represent the possibility distri-
bution of agentaS’s trust inaD.

5 MERGING SUCCESSIVE
POSSIBILITY DISTRIBUTIONS

In this section, we present the main contribution, i.e.,
a methodology for merging the possibility distribution
of ΠaS→a(τ) (representing the trust of agentaS in its
advisors) with the possibility distribution ofΠa→aD(τ)
(representing the trust of the agent setA in agentaD).
These 2 possibility distributions are associated to the
trust of entities at successive levels in a multi-agents
systems and hence giving it such a name.

In order to perform such a merging, we need to
know how the distribution ofΠa→aD(τ) changes, de-
pending on the characteristics of the possibility dis-
tribution of ΠaS→a(τ). We distinguish the following
cases for a proper merging of the successive possibil-
ity distributions.

Specific Case.Consider a scenario where∃!τ′ ,τ ≤

τ′ ≤ τ and ΠaS→a(τ) =

{
1, τ = τ′

0, otherwise
, i.e., only

one trust value is possible in the domain ofT and
the possibility of all other trust values is equal to 0.
Then, trust of agentaS in agenta can be associated
with a single value ofτaS→a = τ′ and the fusion rules
described in section 4 can be applied to get the pos-
sibility distribution ofΠaS→aD(τ).

Considering the TM fusion rules, for each agenta,
first the possibility distribution ofΠa→aD(τ) is trans-
formed based on the trust value ofτaS→a = τ′ as dis-
cussed in Section 4. Then, an intersection of the
transformed possibility distribution is taken and the
resulted distribution is normalized to get the possibil-
ity distribution ofΠaS→aD(τ).

General Case.For each agenta, we have a subset of
trust ratings, which we refer to asTPOS

a , such that:

1) TPOS
a ⊂ T,

2) If ΠaS→a(τ)> 0, thenτ ∈ TPOS
a ,

3) If ΠaS→a(τ) = 0, thenτ ∈ {T−TPOS
a }.

Each trust rating value inTPOS
a is possible. This

means that the trust of agentaS in a can possibly take
any value inTPOS

a and consequently any trust rating
τ∈TPOS

a can be possibly associated withτaS→a. How-
ever, the higher the value ofΠaS→a(τ), the higher the
likelihood of occurrence of trust ratingτ ∈ TPOS

a . We
use the possibility distribution ofΠaS→a(τ) to get the
relative chance of happening of each trust rating in
TPOS

a . In this approach, we give each trust ratingτ, a
Possibility Weight (PW) equal to:

PW(τ) = ΠaS→a(τ)/ ∑
τ′∈TPOS

a

ΠaS→a(τ′).

Higher value ofPW(τ) implies more occurrences
chance of theτ value. Hence, any trust ratingτ∈TPOS

a
is possible to be observed with a weight ofPW(τ) and
merged withΠa→aD(τ) using one of the fusion rules.

Considering the General Case, there are a total
of |A| = n agents and each agenta has a total of
|TPOS

a | possible trust values. For a possible esti-
mation of ΠaS→aD (τ), we need to choose one trust
rating of τ ∈ TPOS

a for each agenta ∈ A. Having
|A| = n agents and a total of|TPOS

a | possible trust
ratings for each agenta ∈ A, we can generate a to-
tal of ∏

a∈A
|TPOS

a | = K possible ways of getting the

final possibility ofΠaS→aD(τ). This means that any
distribution out ofK distributions is possible. How-
ever, they are not equally likely to happen. If agentaS

chooses trust ratingτ1 for agenta1, τ2 for agenta2,
andτn for agentan, then the possibility distribution
of ΠaS→aD (τ) derived from these trust ratings has an

Occurrence Probability(OP) of
n
∏
i=1

PW(τi).

For every agenta, we have: ∑
τ∈TPOS

a

PW(τ) = 1,

then considering all agents we have:

∑
τ1∈TPOS

a

. . . ∑
τ∈∈TPOS

a1

. . . ∑
τn∈TPOS

an

PW(τ1)

× . . .×PW(τ)× . . .×PW(τn) = 1. (2)

As can be observed in (2), thePW is normalized
in such a way that, by multiplying thePW (associated
with the trust rating ofτ chosen inTPOS

a for agenta)
of all the agents inA, the OP of the set of trust rat-
ings chosen for the agents inA, that derive a specific
ΠaS→aD (τ), can be estimated.

Trust Event Coefficient. ThePW(τ) value shows the
relative possibility ofτ compared to other values in
T of an agenta. However, we still need to compare
the possibility of a given trust ratingτ, for an agent
a, compared to other agents inA. If the possibility
weights of two agents are equal, say 0.2 and 0.8 for
trust ratingsτ andτ, and the number of interactions
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with the first agent is much higher than the second
agent, we need to give more credit to the first agent’s
reported distribution ofΠa→aD(τ). However, the cur-
rent model is unable of doing so. Therefore, we pro-
pose to use a Trust Event Coefficient for each trust
valueτ, denoted byTEC(τ), in order to consider the
number of interactions, which satisfies:

1) If mτ = 0, TEC(τ) = 0

2) If ΠaS→a(τ) = 0, TEC(τ) = 0

3) If mτ ≥mτ′ , TEC(τ)≥ TEC(τ′)
4) If mτ = mτ′ andΠaS→a(τ) ≥ΠaS→a(τ′),

TEC(τ)≥ TEC(τ′),

whereτ ∈ TPOS
a , mτ is the number of the occurrences

of trust ratingτ in the interactions among agentsaS

anda. Considering conditions 1) and 2), if the num-
ber of occurrences of trust ratingτ or its correspond-
ing possibility is 0, thenTEC is also zero. Condition 3)
increases the value ofTEC by increasing the number
of occurrences of trust ratingτ. As observed in Con-
dition 4), if the number of observances of two trust
ratings,τ andτ′ are equal, then the trust rating with
higher possibility is given the priority. When com-
paring the number of interactions and the possibility
value ofΠaS→a(τ), the priority is given first to num-
ber of the interactions, and then, to the the possibility
value ofΠaS→a(τ) in order to avoid giving preference
to the possibility values driven out of few interactions.
The following formula is an example of aTEC func-
tion which satisfies the above conditions.

TEC(τ)=

{
0, mτ = 0 orΠaS→a(τ) = 0

[1/(γ×mτ)]
(1/mτ)+

ΠaS→a(τ)
χ , otherwise

where γ > 1 is the discount factor andχ ≫ 1.
Higher values ofγ impede the convergence ofTEC(τ)
to one and vice-versa.χ which is a very large value
insures that the influence ofΠaS→a(τ) on TEC(τ) re-
mains trivial and is noticeable only when the number
of interactions are equal. In this formula, asmτ grows,
TEC(τ) converges to one.TEC(τ) can be utilized as a
coefficient for trust ratingτ when comparing different
agents. Note that the General Case mentioned above
gives the guidelines for merging successive possibil-
ity distributions andTEC feature is only used as an
attribute when the number of interactions should be
considered and can be ignored otherwise.

6 POSSIBILITY DISTRIBUTION
OF AGENT aS’S TRUST IN
AGENT aD

We propose two approaches for deriving the final pos-
sibility distribution of ΠaS→aD (τ) considering differ-
ent available possible choices.

The first approach is to consider allK possibil-
ity distributions ofΠaS→aD(τ) and take the weighted
mean of them by giving eachΠaS→aD (τ) a weight
equal to its Occurrence Probability (OP), measured
by multiplying the possibility weight of the trust val-
ues,PW(τi), that are used to buildΠaS→aD (τ).

In the second approach, we only consider the trust
ratings,τ∈ T such thatΠaS→a(τ) = 1. In other words,
we only consider the trust ratings that have the high-
est weight ofPW in theTPOS

a set. Consequently, the
ΠaS→aD (τ) distributions derived from these trust val-
ues have the highestOP value which makes them
the most expected distributions. We denote byµa
the number of trust ratings,τ ∈ TPOS

a that satisfy
ΠaS→a(τ) = 1 for agenta. In this approach, we only
select the trust ratings inµa for each agenta in A and
build the possibility distributions ofΠaS→aD(τ) out of
those trust ratings. After buildingM = ∏

a∈A
µa differ-

ent possibility distributions ofΠaS→aD (τ), we com-
pute their average, since all of them have equalOP
weight.

Proposition 1. In both approaches, the conditions of
the general case described in the previous section are
satisfied.

Proof. Proof is omitted due to lack of space, how-
ever, it can be easily done by enumerating the differ-
ent cases.

Due to the computational burden of the first ap-
proach (which requires buildingK distributions of
ΠaS→aD (τ)), we used the second one in our experi-
ments as it only requires buildingM distributions.

To conclude this section, we would like to com-
ment on the motivation behind using possibility dis-
tribution rather than probability distributions. Indeed,
if probability distributions were used instead of pos-
sibility distributions, a confidence interval should be
considered in place of the single value of trust for
eachτ in T. Consequently, for representing the prob-
ability distribution of agentaS’s trust in each agent
a ∈ A a confidence interval should be measured for
eachτ ∈ T to consider uncertainty. The same repre-
sentation should be used for each agenta∈ A’s trust
in aD. Now, in order to estimate the probability distri-
bution of agentaD’s trust with respect to its uncer-
tainty, we need to find some tools for merging the
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confidence intervals of the probability distributions of
aS’s trust in A with the A’s trust in aD. To the best
of our knowledge, no work addresses this issue, ex-
cept for the following related works. In (Destercke,
2010), the number of the occurrences of each element
in the domain, which is equivalent to the number of
observance of eachτ value in the interactions between
agenta andaD, is reported by agents inA to aS and
then, the probability intervals on the trust of agentaD

is built. The work of (Campos et al., 1994) measures
the confidence intervals ofaD’s trust out of several
confidence intervals provided by agents inA. In both
works, the manipulation of information by the agents
in A is not considered and for building the confidence
intervals ofaD, the trust of agentaS in A is neglected.
Although no work addresses the trust estimation prob-
lem, we study here in the probability domain, we em-
ployed possibility distributions as they offer a flexible
and straightforward tool to address uncertainty.

7 EXPERIMENTS

We first introduce two metrics for evaluating the out-
comes of our experiments and then present the exper-
imental results.

7.1 Evaluation Metrics

Metric I - How Informative is a Possibility Distri-
bution? In the context of the possibility theory, the
uniform distribution contributes no information, as all
of the trust ratings are equally possible and cannot be
differentiated which is referred to as “complete igno-
rance” (Dubois and Prade, 1991). Consequently, the
more a possibility distribution deviates from the uni-
form distribution, the more it contributes information.
The following distribution provides the state of “com-
plete knowledge” (Dubois and Prade, 1991):

∃! τ ∈ T : Π(τ) = 1 andΠ(τ′) = 0, ∀τ′ 6= τ, (3)

where only one trust value inT has a possibility
greater than 0. We assign an information level of 1
and 0 to distribution of 3 and the uniform distribu-
tion, respectively. In the general case, the information
level ( denoted byI ) of a distribution having a total of
|T| trust ratings, is equal to:

I(Π(τ)) =
1

|T|−1 ∑
τ∈T

(1−Π(τ)). (4)

Here the distance of each possibility value ofΠ(τ)
from the uniform distribution is measured first for all
trust ratings ofT. Then, it is normalized by|T| −
1, since at least one trust rating must be equal to 1
(property of a possibility distribution).

Metric II - Estimated Error of the Possibility Dis-
tributions: In this section we want to measure the
difference between the estimated possibility distribu-
tion of agentaD’s trust, as measured in Section 6,
and the true possibility distribution ofaD’s trust. In
order to measure the true possibility distribution of
agentaD’s trust, the true probability distribution of
agentaD’s trust (which is its internal probability dis-
tribution of trust) should be transformed to a pos-
sibility distribution. Duboiset al. (Dubois et al.,
2004) provide a probability to possibility transfor-
mation tool. Through usage of their tool, the true
possibility distribution ofaD’s trust can be measured
and then compared with the estimated distribution of
ΠaS→aD (τ). Let ΠaS→aD (τ) denote an estimated dis-
tribution, as measured in Section 6, obtained from a
fusion rule and letΠF(τ) represent the true possibility
distribution ofaD’s trust transformed from its internal
probability distribution. The Estimated Error (EE) of
ΠaS→aD (τ) is measured by taking the average of the
absolute differences between the true and estimated
possibility values over all trust ratings,τ∈ T. The EE
metric is measured as:

EE(ΠF(τ)) =
1
|T| ∑τ∈T

|ΠaS→aD (τ)−ΠF(τ)| . (5)

7.2 Experimental Results

Here we perform extensive experiments to evaluate
our merging approaches. We divide the setA of agents
into three subsets. Each subset simulates a specific
level of trustworthiness in the agents. The subsets
are: AFT subset of Fully Trustworthy agents where
the peak of the probability trust distribution is 1,AHT

subset of Half Trustworthy agents where the peak is
0.5 andANT subset of Not Trustworthy agents where
the peak is 0. We start withA = ANT and gradually
move the agents fromA = ANT to A = AHT such that
we reach the state ofA = AHT where all the agents
belong toAHT. Later, we move agents fromA= AHT

to A= AFT such that we finally end up withA= AFT.
Over this transformation, the robustness of the esti-
mated distribution ofΠaS→aD (τ) is evaluated with re-
spect to the nature of trustworthiness of the agents.
We carry out separate experiments by changing: (1)
The number of agents in the setA, (2) The number of
interactions between each pair of agents, and (3) The
manipulation Algorithm I and II. We intend to observe
the influence of each one of these components on the
final estimated distribution ofΠaS→aD (τ). In all ex-
periments, the number of trust rating events,|T|, is
equal to 5 (a commonly used value in most surveys).
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Table 1: Agent distribution corresponding tox values in Figures 2 and 3.

Agent Distribution in (b) and (c) Agent Distribution in (a)
x 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11

|AFT| 0 0 0 0 0 0 0 5 10 15 20 25 30 0 0 0 0 0 0 2 4 6 8 10
|AHT| 0 5 10 15 20 25 30 25 20 15 10 5 0 0 2 4 6 8 10 8 6 4 2 0
|ANT| 30 25 20 15 10 5 0 0 0 0 0 0 0 10 8 6 4 2 0 0 0 0 0 0

(a) Agent# 10, Interaction# 20 (b) Agent# 30, Interaction# 20 (c) Agent# 30, Interaction# 50

Figure 2: Algorithm I Experiments in Different Multi-AgentSettings.

(a) Agent# 10, Interaction# 20 (b) Agent# 30, Interaction# 20 (c) Agent# 30, Interaction# 50

Figure 3: Algorithm II Experiments in Different Multi-Agent Settings.

7.2.1 Manipulation Algorithm I’s Experiments

In the first set of experiments, the manipulation algo-
rithm I is used by agents inA. Diagrams of Figure
2 represent 3 different experiments where the number
of agents inA and the interactions among the network
of agents of Figure 1(b) have changed. Table 1 gives
the distribution of agentsA into AFT∪ANT∪AHT over
x axis values for Figures 2 and 3. Figure 2 demon-
strate that through migration of the agents fromANT

to AHT and later toAFT, the Information level (I ) in-
creases and the Estimated Error (EE) decreases. This
is a consequence of increase in the accuracy of infor-
mation provided by the agents inA as they become
more trustworthy.

Comparing the 3 experiments of Figure 2, increase
in the number of agents from Figures 2(a) to 2(b),
does not improve the results over high values ofx,
where the number of the agents inAFT subset is high.
This indicates that as long as the quality of the infor-
mation reported by the agents inA does not improve,
increase in the number of the agents will not improve
the estimated distribution ofΠaS→aD(τ). However,
from x = 2 to the case where all agents are inAHT

subsetEE reduces andI increases. It indicates that
if agents are not completely trustworthy, an increase
in the number of agents increments the quality of the

estimations. Comparing Figures 2(b) and 2(c), In-
crease in the number of interactions in-between the
agents improves the results in Figure 2(c) for bothI
andEE which is a consequence of higher information
exchanged between the agents. Thus, the possibility
distributions built by the agents are derived from more
information which enhances the results’ accuracy.

7.2.2 Manipulation Algorithm II’s Experiments

We repeat the same experiments with manipulation
algorithm II to observe the extent of influence of the
manipulation algorithm chosen by the setA on the fi-
nal distribution ofΠaS→aD (τ). Figure 3 represents the
results of these experiments. The graphs in Figure 2
demonstrate the same trends as algorithm I, However,
more volatility is observed in the graphs of Figure 3
compared to Figure 2 as the graphs are not monoton-
ically changing over thex axis. Indeed, this is a con-
sequence of the increased randomization of manipu-
lation algorithm II compared to algorithm I.

Comparing the fusion rules, DP outperforms other
fusion rules in all Algorithm I and II’s experiments
which is due to the fact that the DP rule is more cate-
goric in its ignorance of the agents who are not trust-
worthy compared to the 2 other fusion rules. We per-
formed additional experiments and the results show
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that through a higher number of interactions, increase
in the trust of agents, increment of the agents’ number
in A, and decrease in the number of trust ratings (|T|),
the quality of estimation results enhances.

8 CONCLUSIONS

In this paper, we defined tools for trust estimation in
the context of uncertainty. We addressed the uncer-
tainty, arising from the empirical data that are gen-
erated from an unknown distribution, through usage
of the possibility distributions. In addition, we ana-
lyzed the properties of merging successive possibility
distributions and introduced the Trust Event Coeffi-
cient for the cases where the number of agent interac-
tions should be considered. This is the first work that
merges successive possibility distributions generated
at different levels in a multi-agent system which we
used for estimating the trust of a target agent. Fur-
thermore, we provided 2 metrics for evaluation of the
target agent’s estimated possibility distributions. We
then applied the proposed tools in intensive experi-
ments to validate our trust estimation approach.
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