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Abstract: Protein coevolution has emerged as an important research topic. Several methods and scoring systems were 
developed to quantify coevolution, though the quality of the results usually depends on the completeness of 
the biological data. To simplify the computation of coevolution indicators from the data, we have 
implemented a fully integrated and automated workflow which enables efficient analysis of protein 
coevolution, using the Python scripting language. Pycoevol automates access to remote or local databases 
and third-party applications, including also data processing functions. For a given protein complex under 
study, Pycoevol retrieves and processes all the information needed to undergo the analysis, namely 
homologous sequence search, multiple sequence alignment computation and coevolution analysis, using a 
Mutual Information indicator. In addition, friendly output results are created, namely histograms and 
heatmaps of inter-protein mutual information scores, as well as lists of significant coevolving residue pairs. 
An illustrative example is presented. Pycoevol is platform independent, and is available under the general 
public license from http://code.google.com/p/pycoevol. 

1 INTRODUCTION 

Protein coevolution has emerged as an important 
research topic, being applied successfully to predict 
the structure of RNA (Freyhult et al., 2005) and 
proteins (Yeang and Haussler, 2007); to predict 
intermolecular interactions (Pazos et al., 1997); to 
identify functionally important regions of molecules 
(Saraf et al., 2003); and to identify energetic 
pathways through molecules (Süel et al., 2003). 
Overall, protein coevolution corresponds to the 
accumulation of structural/functional changes 
through evolutionary lineages, which are 
compensated by changes in other regions of the 
same protein or in another protein (Pazos and 
Valencia, 2008). Since many proteins have evolved 
performing mutual interactions and consequently 
forming specific molecular complexes (Pazos and 
Valencia, 2008), inter-protein coevolution 
corresponds to mutual evolutionary constraints 
imposed by each protein on the other partner and 
accordingly, protein sequences must reflect this 
evolutionary process (Pazos et al., 1997).  

Coevolving residues are detected in a three-step 
process: 1) search for homologue sequences; 2) 
computation of a multiple sequence alignment 

(MSA) for each protein; 3) calculation of a 
coevolution score for each pair of sites in the MSAs. 
The first step involves the selection of orthologues 
and the matching of the correct protein pairs along 
organism lineages. One approach can be a PSI-
BLAST search (Altschul et al., 1997), which is a 
reliable source for distant relatives and favours 
orthologues over paralogues, reducing one source of 
errors. The second step involves the computation of 
MSAs for each protein. The MSA is a rich source of 
sequence-function relationships and attempts to 
represent the evolutionary relations between the 
homologous sequences by aligning them under the 
assumption that mutations are independent. 
Although the MSA relies in computationally 
complex algorithms (Elias, 2006), considering the 
number and the variability of a set of homologous 
sequences, supplemented with the assumed 
independence of mutations, this often leads to poor 
alignments, and becomes an important problem for 
identifying coevolution. Finally, a coevolution score 
is calculated for each pair of sites in the MSAs. 

Coevolution analysis depends on the 
completeness of the biological data and, given the 
complexity of MSA computations, sometimes made 
worse by insufficient evolutionary divergence and 
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the presence of too many indels (gaps), a large 
number of methods and scoring functions have been 
proposed in the literature to estimate protein 
coevolution, including phylogenetic independent and 
phylogenetic dependent methods (see (Halperin et 
al., 2006) and (Caporaso et al., 2008) for extended 
reviews). It is likely that different applications 
would require different methods and it can be 
difficult to choose from them, as they exhibit subtle 
yet significant differences. Unfortunately, there isn’t 
any survey or benchmark assessing the accuracy of 
each approach.  

Mutual Information (MI) (Martin et al., 2005) is 
a standard measure to identify sites of correlated and 
compensatory mutations in a set of homologous 
sequences and can be used to identify correlated 
positions between two interacting proteins. MI is a 
measure based on Information Theory, which 
quantifies the mutual dependence between two 
random variables, and is a “tree-ignorant” method 
(Caporaso et al., 2008), since it does not account for 
likelihoods or shared ancestral correlations. In a 
MSA, the MI between two columns (positions) 
reflects the extent to which the existence of one 
specific amino acid residue at one position allows us 
to predict the identity of the residue at the other 
position. MI scores are high if substitutions at the 
two positions show positive correlation.  

Since protein-protein coevolution analysis 
involves the execution of the specified steps, and for 
each step there is a multitude of options, we have 
implemented a fully integrated and automated 
workflow which combines these steps and enables 
efficient analysis of coevolution among proteins, 
using the Python scripting language. Pycoevol aims 
at automating the computation of coevolution 
indicators, speeding up data-mining and improving 
the accuracy of the results. Pycoevol automates 
access to remote or local databases and third-party 
applications and includes data processing functions, 
thus enabling a flexible use of the workflow. 

As a proof-of-concept we present the complete 
analysis of coevolution in a protein complex formed 
by transforming growth factor beta 3 (TGF-β3) and 
extracellular domain of TGF-β receptor type II 
(TGF-β receptor) (Hart et al., 2002). TGF-β3 is a 
protein that controls cellular proliferation and 
differentiation by signalling through kinase 
receptors, namely serine/threonine receptors as 
TGF-β receptor. The execution of the Pycoevol 
workflow pinpointed several coevolving pairs of 
residues. Most residues identified were at the surface 
of the protein complex, and 13% of them were 
located at the complex interface. This example 

further illustrates how computing inter-protein 
coevolution can improve the accuracy of constrained 
docking algorithms (e.g. BiGGER (Palma et al., 
2000)) assisting the demanding task of protein 
docking. 

2 METHODS 

As described in the previous section, protein 
coevolution analysis involves the execution of a 
series of steps, and for each step there is a multitude 
of options. To congregate these steps in a system 
which enables an efficient analysis of protein 
coevolution, we developed a Python workflow 
consisting of a set of scripts, which includes 
connectors to local or remote databases, enabling 
also the execution of third party applications through 
the command line, for both PSI-Blast search and 
computation of MSAs. Furthermore, we have used 
the Biopython module (Cock et al., 2009), for 
general manipulation of biological data. 

The analysis starts with the input of Protein Data 
Bank accession numbers (PDB ID), for each protein 
partner. Alternatively, accession numbers for NCBI 
reference sequence identifiers (GI) or UniProt 
primary (citable) accession number can be also used, 
as in the case of proteins without available 3D 
structures. For each protein a collection of 
orthologous sequences is searched. This is done by a 
PSI-BLAST search (Altschul et al., 1997) against 
NCBI Reference Proteins database. The reason for 
using PSI-BLAST instead of a simple BLAST 
search is that we need to start with a large number of 
ortologous sequences and PSI-BLAST allows us to 
find more distant relatives. PSI-blast uses the default 
configuration, but alternative configurations can be 
also specified. Protein sequences of both partners are 
then matched by comparing the source organisms for 
each sequence. The assumption is that, if the 
proteins are homologous and interact in one 
organism, they should also interact in the other 
organisms. This is a crucial step because proteins 
will only coevolve within the same lineage, and 
without matching the correct organisms the data 
obtained would be meaningless. A refined set of 
sequences for each interacting partner is obtained 
and three different MSAs are computed, using 
ClustalW (Chenna et al., 2003) and Muscle (Edgar, 
2004) in the default configuration, and Mafft (Katoh 
et al., 2002) with linsi (L-INS-i), the most accurate 
configuration. In order to compare the performance 
of the MSAs computed, we develop two scores: SP 
score, which scores each MSA (GOP 4.0, GEP 1.0 

BIOINFORMATICS 2012 - International Conference on Bioinformatics Models, Methods and Algorithms

144



 

and the BLOSUM62 scoring matrix (Henikoff and 
Henikoff, 1992)); and a column score (CS), which 
compares the MSAs column by column. These 
scoring systems are implemented in Python and are 
based on the ones developed for BaliBASE 
(Thompson et al., 1999). Instead of comparing the 
SP scores against a reference MSA, as in the case of 
BaliBASE approach, our implementation compares 
the scores obtained for each MSA computed with 
different MSA programs. For the MSAs 
corresponding to each protein partner, the ones with 
the best scores are selected to further analysis. 
Supplementing the SP, CS gives an overview on the 
similarity between MSAs, and the higher the CS; the 
higher the percentage of equal columns present on 
both MSAs. The selected MSAs are also inspected 
for misalignments and for specific destabilizing 
sequences, and are cropped by excluding portions 
not covered by the structures if a 3D structure is 
available, otherwise the complete sequences are 
used. The next step consists in estimating which 
pairs of residues show traces of coevolution. The 
MSA columns represent a snapshot of the 
evolutionary relations of all different protein 
sequences for that position. The estimation is 
calculated for all pairs of columns between two 
MSAs, by Mutual Information (MI), which is 
defined as follows (Martin et al., 2005): 
 

MI (X,Y) = H(X) + H(Y) - H(X,Y) (1)
 

The estimation is done summing the entropies H(X) 
and H(Y), corresponding to amino acid frequencies 
for each residue belonging to the columns in 
analysis, minus the joint entropy H(X,Y) for that 
pair of columns. The higher the estimation is, the 
higher the indication that compensatory mutations 
arose that mitigated the deleterious effects of 
mutations interfering with the stability of the 
interaction between that specific pair of residues. 
Estimation of MI (1) for all pairs of columns in both 
MSAs gives a matrix of scores and, to improve the 
detection of significant positions, the analysis is 
constrained to include only the residues belonging to 
the surface of the proteins. The assumption is that 
residues on the core of the protein are not 
susceptible to perform or sense the influence of 
residues at the interface of the other protein. We 
implemented a measure of accessible surface area 
(ASA) based on the surface calculations 
implemented in Hollow (Ho and Gruswitz, 2008). 
Alternatively, we implemented a measure of solvent 
excluded surfaces of molecules, using the MSMS 
program (Sanner et al., 1996). In any case, for each 
position in the MSAs there are a multitude of 

contacts and the results of this estimations show that 
for each residue in one protein the possible mutual 
propensity contacts between positions are usually 
variable.  

For each complex, the map of potential 
interactions is calculated using a MI calculator, and 
friendly output results are created, namely 
histograms and heatmaps of inter-protein mutual 
information scores, as well as lists of significant 
coevolving residue pairs. From the collection of MI 
scores (surface positions), only the best 20% scores 
are selected as significant coevolving residues, and 
are prone to further analysis. 

3 RESULTS AND DISCUSSION 

Pycoevol detects inter-protein coevolution, being 
therefore suitable to the study of protein complexes. 
Furthermore, this workflow is optimized to predict 
intermolecular interactions and to constraint the 
search space in protein docking. It can be also used 
to complement studies concerning the identification 
of functionally and structurally important regions of 
molecules as well as to predict the structure of 
proteins. It offers an easy implementation of the 
protein-protein coevolution analysis workflow 
(Figure 1), which congregates several tools and 
tasks, enabling the researcher to focus on biological 
problems, rather than repetitive execution or 
implementation of self-made codes. Only if special 
tools or specific tasks are needed, the user may need 
to edit or complement the Pycoevol source code. For 
the general user, Pycoevol runs like any other 
application or any other python script, called from 
the command line. The simplest usage is to type 
python pycoevol.py at the prompt of the operating 
system’s command line and select from the available 
options. The execution of the workflow takes from 
minutes to hours, depending on the extension of the 
data being processed. To analyse the traces of 
coevolution between the proteins in the complex, the 
user only have to specify the accession numbers of 
the protein sequences. After PSI-BLAST search, 
MSA computation and coevolution analysis, easy 
readable output results are generated.  

As we noticed before, several methods and 
scoring systems were developed to detect traces of 
coevolution, though the quality of the results also 
depends on the quality of the source data. 
Accordingly, the detection of inter-protein 
coevolution relies on two main aspects. One is the 
computation of coevolution indicators and, to 
improve our application, we plan to include other 

PYCOEVOL - A Python Workflow to Study Protein-protein Coevolution

145



 

coevolution indicators as well as normalizations, 
increasing therefore the sensibility and allowing the 
cross-validation of the most significant results. 

 

Figure 1: Main steps implemented in the Pycoevol 
workflow. 

The other important factor is the quality of the 
data and MSA being processed, so we plan to 
include other MSA programs and a refining tool that 
accounts for the dependence of mutations, thus 
improving the quality of the MSAs. Beyond the 
advantages to the user, these improvements will 
eventually let us perform a survey assessing the 
accuracy of some coevolution indicators, as well as 
evaluate which MSA program is better suited to 
protein-protein coevolution analysis. T-Coffee 
Expresso (Notredame et al., 2000) is a good 
candidate to be included in our workflow, as it 
produces structural alignments, rather than sequence 
alignments, and is a powerful and accurate 
alignment tool based on the construction of libraries 
(local alignments), which then incorporates 
additional structural information to obtain the final 
MSA. In theory, the advent of structural information 
to constraint and to compute MSAs should be a 
more realistic source of information towards 

detection of inter-protein coevolution, since residues 
are aligned based on structural topologies rather than 
just to maximize a scoring function, as in the case of 
the classic Sum-of-Pairs (SP) scoring system usually 
implemented in MSA algorithms (Do and Katoh, 
2008). Although the details of which scoring 
function is better suited to co-evolutionary analysis 
or how to infer inter-molecular contacts from MSA 
data requires serious benchmarking, our workflow 
uses three standard MSA programs with different 
performances to compute the alignments. The MSA 
programs included are the widely used ClustalW and 
Muscle, and Mafft, ranked the best program in 
overall performance in a recent benchmark based on 
the BaliBASE database (Thompson et al., 2011). 
The comparison between the SP scores of each 
MSA, gives a preliminary measure on what MSA 
program may favour the detection of coevolution for 
the specific test case under study, accounting on the 
principle that an MSA with high SP score is better 
suited to MI analysis. This can be misleading, since 
the MSA algorithm can misplace coevolving sites in 
the alignment, while attempting to maximize a 
scoring function (as the SP score). 

Pycoevol was tested on the protein complex 
TGF-β3/TGF-β receptor. Figure 2A shows a 
histogram of MI score frequencies computed for all 
the pairs of positions on the MSAs computed for 
each protein. In this case, coevolution results were 
processed using MSAs computed by Mafft, as they 
scored best. Along with histograms, heatmaps were 
also generated (Figure 2B and 2C). These give a 
general view on the relative positions of highly 
scoring residues belonging to each protein. By 
selecting only the highest MI scores, the heatmap 
gives a clearer view on the positions of those 
residues. The structural analysis of the protein 
complex shows the location of interface residues for 
both protein partners (Figure 2D). Most residues 
presenting higher MI scores were located at the 
surface (Figure 2E bottom), and 13% of them (3 out 
of 23) were located at the interface (Figure 2E top). 
The interacting map obtained for the TGF-β3/TGF-β 
receptor complex (Figure 2F), i.e. the network of 
pairings relatives to the highest scoring positions, 
shows that TGF-β3 has 2 residues on the interface (2 
out of 8) and TGF-β receptor has 1 residue on the 
interface (1 out of 15). This finding is very 
interesting; given the complexity of protein-protein 
docking, finding even only one positive interface 
contact can help constraint the search space and 
improve the accuracy of constrained docking 
algorithms. 
To test the application of our coevolution measure-
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Figure 2: Protein coevolution analysis of complex TGF-β3/TGF-β receptor with mutual information. Every pair of positions 
on the MSAs was examined for coevolution using an analysis of MI. (A) Histogram of inter-protein mutual information 
scores. (B) The matrix of scores for each pair of positions in the alignment is plotted as a heatmap, according to the colour 
legend shown. (C) The matrix of scores for positions with highest MI scores (greater than 80% of the best MI score) is 
plotted as a heatmap. (D) Illustration of complex TGF-β3/TGF-β receptor (PDB ID 1KTZ) showing interface residues of 
TGF-β3 as blue spheres (top) and interface residues of TGF-β receptor as red spheres (bottom). (E) Illustration of 
coevolving residues of TGF-β3 (blue spheres) and TGF-β receptor (red spheres), located at the interface (top). Previous 
representation with remaining coevolving residues of TGF-β3 (light blue spheres) and TGF-β receptor (orange spheres), 
located at the surface (bottom). (F) Network of the pairings identified by MI, using the same colour scheme as in the 
previous panel (E). 

ments on protein docking, we employed the 
coevolving residues identified on the complex TGF-
β3/TGF-β receptor, as constraints in BiGGER. This 
is a difficult complex to model because of the low 
contact surface. Using unbound structures of both 
TGF-β3 and TGF-β receptor (PDB structures 1TGK 
and 1MZ9, respectively), to simulate a real-life 
application, BiGGER could not retain, within the 
5000 highest scoring surface contacts, any model 
that placed the TGF-β receptor at the correct 
position (Figure 3A). This was no longer the case 
when constraining the docking simulation using 
coevolution data. From TGF-β3 we considered 8 
residues with higher MI score, in our coevolution 
criteria, two of which were truly at the interface. 
From TGF-β receptor there were 15 residues that 
fulfilled our selection criteria, with only one at the 
interface. One approach was to use both sets of 
residues, but imposing the constraint that there must 
be at least one contact between the 8 residues of one 
partner and the 15 of the other. Contact was defined 

as having the alpha Carbons at most 7Å apart. Panel 
B of Figure 3 shows one model obtained as a result, 
with TGF-β receptor placed at the correct point 
relative to TGF-β3, though not quite at the right 
orientation. This experiment shows that even 
without being able to identify exactly which are the 
correct contacts, the constraint requiring any one 
contact, at least, reduces the search space enough so 
that correct models are not lost during the filtering 
stage of docking. In Figure 3C we show one model 
obtained by forcing the specific contact between an 
interface residue of TGF-β3 (A93) and one interface 
residue of TGF-β receptor (R52). Since both 
residues are at the interface, all models are 
approximately at the right position. The interesting 
aspect of this experiment is that, with this constraint, 
the search space is so reduced that a docking takes 
less than five minutes, as opposed to nearly two 
hours for an unconstrained docking run. This means 
that it is feasible to test, individually, all potential 
residue contacts given by the coevolution measure-
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Figure 3: Summary of the docking results. (A) Correct structure of the complex TGF-β3/TGF-β receptor (PDB ID 1TGK 
and 1M9Z, respectively), surrounded by spheres representing the geometric centre of TGF-β receptor (red), where it was 
predicted in the 5000 models generated in the docking run. No model was found that places TGF-β receptor at the right 
position. (B) One of the models obtained by requiring an unspecified contact between the two groups of 8 and 15 candidate 
interface residues. In both cases, the resulting model was not very accurate, given the incorrect orientation of TGF-β 
receptor (red), but even so this was a significant improvement over the unconstrained docking in the modelling of this 
complex. (C) One of the models obtained by restricting the distance between residue A93 of TGF-β3(blue) and residue R52 
of TGF-β receptor (red), which run took less than five minutes. 

ments. Furthermore, since the docking runs are 
independent, the whole process is trivial to run in 
parallel, thus, in practice, taking less time than a 
single unconstrained docking run. 

4 CONCLUSIONS 

Pycoevol source code (version 1.0) will be made 
freely available for downloaded from 
http://code.google.com/p/pycoevol.  

Additional information on the third-party 
dependencies, as well as how to install and run the 
program can be check at the same location. The 
workflow is fully written in Python 2.7, platform 
independent, and is available under the general 
public license. User requests and contributions may 
be implemented and included in future versions of 
the software.  

Pycoevol is a fully integrated and automated 
system which enables efficient analysis of 
coevolution among proteins. In order to improve the 
workflow and its capabilities, we plan to include 
other coevolution indicators as well as 
normalizations. Alongside, the inclusion of new 
MSA programs and a refining tool is also planned. 
The integration with molecular viewers, such as 
RasMol (Bernstein, 2000) and UCSF-Chimera 
(Pettersen et al., 2004), which allows the automatic 
selection and display of the coevolving residues, will 
enable further analysis and usage possibilities.  

Finally, the natural extension of the Pycoevol 
workflow aims at include also protein docking and 
consequently, Pycoevol will be included and 
integrated in the Open Chemera Library (Krippahl, 
2011), an open source library, which includes among 
several features, BiGGER, the constrained docking 
algorithm. This system will become a useful tool to 
study protein coevolution and interaction, and will 
hopefully be the basis for several studies concerning 
protein interactions. 
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