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Abstract:  We present an approach to solving the reinforcement learning problem in which agents are provided with 
internal drives against which they evaluate the value of the states according to a similarity function. We 
extend Q-learning by substituting internally driven values for ad hoc rewards. The resulting algorithm, 
Internally Driven Q-learning (IDQ-learning), is experimentally proved to convergence to optimality and to 
generalize well. These results are preliminary yet encouraging: IDQ-learning is more psychologically 
plausible than Q-learning, and it devolves control and thus autonomy to agents that are otherwise at the 
mercy of the environment (i.e., of the designer). 

1 INTRODUCTION 

Traditionally, the reinforcement learning problem is 
presented as follows: An agent exists in an 
environment described by some set of possible 
states, where it can perform a number of actions. 
Each time it performs an action in some state the 
agent receives a real-valued reward that indicates the 
immediate value of this state-action transition. This 
generates a sequence of states, actions and 
immediate rewards. The agent’s task is to learn a 
control policy, which maximizes the expected sum 
of rewards, typically with future rewards discounted 
exponentially by their delay (Sutton & Barto, 1998).  

It is therefore a working premise that the agent 
does not know anything about the environment or 
itself. Rewards are dictated by the environment not 
part of the environment and thus defined separated 
from outcomes. As a consequence only estate-action 
values are learned. In addition, learning is 
completely depended on the reward structure: If the 
reward changes, a new policy has to be relearned.  

Let’s emphasize this point: The only information 
available to the agent about a state is the amount of 
reward it predicts; it does not know why the new 
state is good or bad. Thus the agent is completely 
dependent on the environment to provide the correct 
reward values in order to guide its behaviour. The 
agent has no way of reasoning about the states in 

terms of its internal needs, because it has no internal 
needs other than reward maximization.  

In this paper, we propose to redefine the value of 
an outcome as a function of the agent's motivational 
state. Because different states can be of different 
importance to the agent it is the responsibility of the 
agent to encode its own state signal. This proposal 
contradicts reinforcement learning where the value 
of an outcome is provided explicitly and separately 
from the actual outcome in the form of a reward. 

Allegedly the most popular reinforcement 
learning algorithm is Q-learning, an off-policy 
algorithm where the optimal expected long-term 
return is locally and immediately available for each 
state-action pair. A one-step-ahead search computes 
the long-term optimal actions without having to 
know anything about possible successor states and 
their values. Under certain assumptions, Q-learning 
has been proved to converge with probability 1 to 
the optimal policy (Watkins & Dayan, 1992). In 
large state spaces, Q-learning has been successfully 
combined with function approximators.  

In the next section, a variation of Q-learning, the 
Internally Driven Q-learning algorithm (IDQ-
learning henceforth), based on the idea described 
above is presented. We show that IDQ-learning 
converges to the optimal policy and that it 
generalizes well in subsequent sections.   

491Alonso E., Mondragón E. and Kjäll-Ohlsson N..
INTERNALLY DRIVEN Q-LEARNING - Convergence and Generalization Results.
DOI: 10.5220/0003736404910494
In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (ICAART-2012), pages 491-494
ISBN: 978-989-8425-95-9
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

2 IDQ-LEARNING 

2.1 States 

A state is formally defined as a vector of elements 
where each element represents some modality along 
with a value. Significantly, elements can be shared 
across states. 

Si = s1,...,sn{ }
Mod.Si = 0,1,....,n{ }
VSi = 0,max− strength[ ] 

(1) 

2.2 Similarity Function  

In order to compare states with internal drives and 
among themselves a similarity function is 
introduced. This function should return a value 
between 0 and 1 when comparing two states, where 
0 is no similarity and 1 denotes equality. The 
Gaussian function is a good match for the purpose. 
Let the modality strength of state Si represent the 
mean μ of a normal distribution ND with standard 
deviation σ, and let VSj and VSi represent the value 
of state Sj and Si respectively. The probability of 
state Si occurring in ND is given by: 

P VSi( ) = 1
σ 2π

e
− VSi −μ( )2

2σ 2

 
(2) 

The same applies to P(VSj). This leads to the 
definition of the similarity function: 

sim Si ,Sj( ) =
P VSi( )
P VSj( ) I Si ,Sj( ) (3) 

where 

I Si,Sj( ) =
1 if Mod.Si = Mod.Sj

0 if Mod.Si ≠ Mod.Sj

⎧ 
⎨ 
⎩ (4) 

Thus the similarity function is bell-shaped, 
continuous, and insensitive to the sign of the 
difference between the values of two states.  

2.3 Internal Drives 

For the purpose of deriving outcome values the 
internal drives (ID) of an agent are defined as a 
vector of states along with a category indicator for 
each element denoting whether the state is aversive 
or appetitive: 

IDi = s1,...,sn{ }
Mod.Si = 0,1,....,n{ }
VSi = 0,max− strength[ ]
CatSi = aversive,appetitive{ }
aversive = −1
appetitive =1

 
(5) 

The asymptotic value of an outcome is thus set in 
the following way: 

λ Si( ) = max ∀Sj ∈ ID : sim Si,Sj( )( ) × Cat.Sj
 (6) 

The value of an outcome is the maximum 
similarity when compared to all internal drives. This 
departure from traditional reinforcement learning is 
significant since: (a) in our proposal, states have 
intrinsic values defined as their similitude with 
internal drives –they are not given by the 
environment in an ad hoc manner; (b) rewards are 
not defined on state-action pairs –they define the 
states. As a consequence, the agents are in control, 
they are now cognitive agents.  

2.4 The IDQ-learning Algorithm 

The IDQ-learning learning is similar to the Q-
learning algorithm. Its pseudo code reads as follows: 
1. Initialize Q(s, a) according to λ(s) 
2. Repeat (for each episode) 
3. Initialize s 
4. Repeat (for each step of the episode) 
5. Choose a from s using a policy derived from Q  
6. Take action a, observe s’ 
7. Q(s,a)← Q(s,a) + α λ(s) + γ maxa' Q( ′ s , ′ a ) − Q(s,a)[ ] 
8. s ←s’ 
9. until s is terminal 

The three main novelties refer to steps 1, 6 and 7, 
specifically: the initial Q value is not arbitrary 
(typically 0, for lack of any information about the 
states); since r is now a defining characteristic of s’, 
namely λ(s), in step 6 there is no need to observe r; 
accordingly in step 7, λ(s) takes the place of r in Q-
learning. Because states have been defined as 
compounds of elements, step 7 above applies to the 
summation of the values of corresponding elements, 
forming what we call the state’s expectance memory 
(EM) –we haven’t made it explicit in the pseudo 
code to avoid over-indexing. 

This framework makes explicit the two main 
conditions for the transfer of information, 
contingency and contiguity: agents make predictions 
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on the value of states to come but, unlike in Q-
learning, such values as well as the values of 
immediate rewards are defined as their probability of 
occurrence (of the values themselves not of the 
states). Moreover, generalization follows directly: 
agents do not need to have experienced previously a 
state in order to value it. As long as it shares 
elements with an ID or with a previously 
experienced state, it inherits a value.  

3 EXPERIMENTS 

In the next sub-sections we show experimentally 
how IDQ-learning converges to an optimal policy 
and how it generalizes in a traditional Grid-world 
domain.  

The following parameters were set for the IDQ 
agent: σ = 0.2 (the sensitivity of the similarity 
function), α = 0.1 (learning rate of CS), ε = 0.8 
(choose the greedy response in 80% of the cases), 
and γ  = 0.9 (reward discounting).  

3.1 Convergence 

Convergence is measured by recording the average 
absolute fluctuation (AAF) for expectance memory 
per episode. This is done by accumulating the 
absolute differences diffabs between the values of the 
expectance memory and their values after an update 
has been carried out. Additionally the number of 
steps to reach the goal, episodelength, is recorded. The 
AAF is thus given by diffabs / episodelength.  For IDQ 
there can be several updates of the expectance 
memory. This is because of the consideration of 
states as compounds, where each element of the 
compound enters into separate associations from the 
others. It is therefore necessary to record the number 
of updates per episode step numerrorsepisodestep as 
well. The average absolute fluctuation per episode 
for IDQ is given by 
(diffabs/numerrorsepisodestep)/episodelength.  

The optimal policy is the shortest path from any 
spatial location to the goal. Table 1 shows a 
summary of results for convergence experiments, 
where MPC stands for Maximum Policy Cost for 
learning period and OFPE stands for Optimal Policy 
Found after n Epochs.  

Table 1: Convergence: MPC and OPFE per Grid type. 

Grid MPC OPFE 
3×3 13 15 
5×5 71 13 

10×10 626 843 

As expected, the algorithm converges to the 
optimal results. 

3.2 Generalization 

Generalization in the Grid-world means how the 
consideration of states as compounds can help the 
transfer of learning between similar situations. When 
an element X at two different locations signals the 
same outcome, there is said to be a sharing of 
associations between the two locations. In Figure 1 
element X enters into an association with the 
outcome state G. This association is strengthened at 
two locations. Additionally, both elements A and B 
enter into an association with G separately. In this 
situation it is said that element X is generalized from 
location (2,3) to location (3,2) and vice versa. There 
is thus a sharing of element X between the states at 
location (2,3) and at location (3,2). An algorithm 
which manages to gain a savings effect from this 
type of sharing is said to be able to generalize. This 
generalization and sharing effect should be 
manifested in faster convergence to the optimal 
policy if the algorithm is successful in using the 
redundant association to its benefit.  

 
Figure 1: Generalization in the Grid world by means of 
sharing of elements across states. 

Generalization experiments were designed in two 
phases (see Figure 2). In Phase 1 the agent is trained 
with an initial Grid-world layout, and in Phase 2 this 
initial Grid-world layout is changed. The G in the 
lower right corner of each Grid-world layout 
represents the goal state and is the same for all 
layouts, for all experiments and phases. Phase 1 has 
the same elements as Phase 2 for all locations, 
unless otherwise stated. All experiments aim to test 
whether Phase 2 will converge faster to the optimal 
policy through generalization with Phase 1. Two 
groups are employed for each experiment. In Group 
1 there is supposed to be generalization from Phase 
1 to Phase 2 due to an environment change, which 
leaves an aspect of the environment layout intact, 
but changes another. Group 2, on the other hand, 
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changes the environment, but leaves no aspect of 
Phase 1 similar in Phase 2. If convergence is faster 
in Phase 2 of Group 1 than in Phase 2 of Group 2, it 
can be seen as an indicator of generalization. 

 

 
Figure 2: Generalization experiment in the 10×10 Grid-
world, Group 1 top, Group 2 bottom. 

To test generalization means to test whether IDQ 
finds the optimal policy faster in Phase 2 of Group 1 
than in Group 2 (by the test statistic OPR). The 
independent variable is the difference in  

Table 2 shows a sample mean OPR of 496.375 
for Group 1 and 1059.75 for Group 2. The respective 
variances for Group 1 and Group 2 are 15107.69643, 
134965.0714. It is assumed that the data is normally 
distributed for all eight samples in both groups. In 
order to check whether the heterogeneity of variance 
is significant at the .05 level, an F Max test is 
performed. In Table 2 the f value is reported to be 
0.009841503. The degrees of freedom for the 
numerator is (n1 – 1) = 7, and (n2 – 1) = 7 for the 
denominator. According to the f distribution this 
gives a critical value of 3.79 at the .05 level of 
significance, which the f value does not exceed, so 
the heterogeneity of variance is not significant. A 
one-tailed t-test is therefore performed (it is 
expected that the difference between Group 2 and 
Group 1 is positive). Table 2 presents a t-value of 
4.397315147. At (n1 + n2 – 2) = 14 degrees of 
freedom, this gives a critical value of 1.761 at the 
.05 level of significance. The t-value well exceeds 
the critical value at the .05 level, and also at the .01 
level (critical value: 2.624), as well as at the .001 
level (critical value: 3.787). It is therefore concluded 
that IDQ generalizes. 

Table 2: IDQ in a 10×10 Grid-world (s. stands for sample 
and sq. for squares). 

 
Sample 

 
OPR 
Group 1 
Phase2 

 

 
OPR 
Group 2 
Phase 2 

 
1 
2 
3 
4 
5 
6 
7 
8 

 

 
455 
772 
564 
389 
470 
428 
475 
418 

 

 
1379 
1787 

768 
715 

1066 
736 
993 

1034 
 

 
x  
S 

S2 
MAX 
MIN 

sum of s. sq. 
 sq. of sum of s. 

n 
F Max test 

 
t 
 

 
496.375 

122.91336 
15107.693 

772 
389 

2 076 859 
15 768 841 

8 
0.009841503 

 
4.397315147 

 

 
1059.75 

367.3759266 
134 965.0714 

1787 
715 

9 929 316 
71 876 484 

8 
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