
 
TBM070713-Accelero,  TBM070706-IOTA3, 
TBM080658-MRI (EEG-fMRI), PhD Grants; IBBT 
Belgian Federal Science Policy Office:  IUAP P6/04 
(DYSCO, `Dynamical systems, control and 
optimization', 2007-2011); ESA AO-PGPF-
01,  PRODEX (CardioControl) C4000103224; 
EU:  RECAP 209G within INTERREG IVB NWE 
programme, EU HIP Trial FP7-HEALTH/ 2007-
2013 (n° 260777) (Neuromath (COST-BM0601): 
BIR&D Smart Care. Li thank the China Scholarship 
Council. 
 
REFERENCES 
Berry M, Browne M, Langville A, Pauca V, and 
Plemmons R, 2007. Algorithms and applications for 
approximate non-negative matrix factorization. 
Comput Stat Data Anal,52:155-173. 
Brown T, Kincaid B, Ugurbil K, 1982. NMR chemical 
shift imaging in three dimensions. PNAS, 79(11): 
3523-3526. 
Cichocki A, Zdunek R, Amari S, 2007. Hierarchical ALS 
algorithms for nonnegative matrix and 3D tensor 
factorization. Lect Notes Comput Sci, 4666:169-176. 
Cichocki A, Phan AH, 2009. Fast local algorithms for 
large scale Nonegative Matrix and Tensor 
Factorizations. IEICE Trans Fund Electron Comm 
Comput Sci, 3:708-721. 
Croitor Sava AR, Sima DM, Martinez-Bisbal MC, Celda 
B, Van Huffel S, 2010. Non-negative Blind Source 
Separation Techniques for Tumor Tissue Typing 
Using HR-MAS signals. In Proceedings of the 32nd 
Annual International Conference of the IEEE EMBS, 
Buenos Aires, Argentina. 
Gillis N, 2011. Nonnegative matrix factorization 
complexity, algorithms and applications. PhD Thesis, 
Louvan-La-Neuve, Belgium. 
Gonzalez EF, Zhang Y, 2005. Accelerating the Lee-Seung 
algorithm for non-negative matrix factorization. Tech 
Report, Rice University. 
Grippo L, Sciandrone M, 2000. On the convergence of the 
block nonlinear Gauss-Seidel method under convex 
constraints. Oper Res Letter, 26:127-136. 
Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, 
Murphy JR, Opstad KS, Doyle VL, McLean MA, Bell 
BA, Griffiths JR, 2003. Metabolic profiles of human 
brain tumours using quantitative in vivo 1H magnetic 
resonance spectroscopy. Magn Res Med,49:223-232. 
Jolliffe IT. Principal Component Analysis. Second edition, 
New York: Springer-Verlag 2002. 487 p. 
Kim D, Sra S., Dhillon IS, 2007. Fast Newton-type 
Methods for the Least Squares Nonnegative Batrix 
Approximation Problem. In Proceedings of the 2007 
SIAM International Conference on Data Mining 
(ICDM), Pisa, Italy. 
Ladroue C, Howe FA, Griffiths JR, Tate AR, 2003. 
Independent component analysis for automated 
decomposition of in vivo magnetic resonance spectra. 
Magn Reson Med, 50:697-703. 
Lee DD, Seung HS, 1999. Learning the parts of objects by 
non-negative matrix factorization. Nature, 401:788-
791. 
Lee DD, Seung HS, 2001. Algorithms for Non-negative 
Matrix Factorization, Advances in Neural Information  
Processing Systems, 13:556-562. 
Lin CJ, 2007. Projected Gradient Methods for 
Nonnegative Matix Factorization, Neural Comput, 
19:2756-2779. 
Poullet JB, Sima DM, Simonetti AW, De Neuter B, 
Vanhamme L, Lemmerling P, Van Huffel S, 2006. An 
automated quantitation of short echo time MRS 
spectra in an open source software environment: 
AQSES. NMR Biomed, 20: 493-504. 
Stoyanova R, Brown TR, 2001. NMR spectral quantitation 
by principal component analysis. NMR Biomed, 
14:260-264. 
Su Y, Thakur SB., Karimi S, Du S, Sajda P, Huang W, 
Parra LC, 2008. Spectrum separation resolves partial-
volume effect of MRSI as demonstrated on brain 
tumor scans. NMR Biomed
, 21:1030-1042. 
Szabo de Edelenyi F, Simonetti AW, Postma G, Huo R, 
Buydens LMC, 2005. Application of independent 
component analysis to 1H MR spectroscopic imaging 
exams of brain tumours. Anal. Chim. Acta, 544:36-46. 
SIMULATION STUDY OF TISSUE TYPE DIFFERENTIATION USING NON-NEGATIVE MATRIX
FACTORIZATION
217