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Abstract: Both ’distance’ and ’similarity’ measures have been proposed for the comparison of sequences and for the
comparison of trees, based on scoring mappings, and the paper concerns the equivalence or otherwise of these.
These measures are usually parameterised by an atomic ’cost’ table, defining label-dependent values for swaps,
deletions and insertions. We look at the question of whether orderings induced by a ’distance’ measure, with
some cost-table, can be dualized by a ’similarity’ measure, with some other cost-table, and vice-versa. Three
kinds of orderings are considered: alignment-orderings, for fixed sourceSand targetT, neighbour-orderings,
where for a fixedS, varying candidate neighboursTi are ranked, and pair-orderings, where for varyingSi ,
and varyingTj , the pairings〈Si ,Tj〉 are ranked. We show that (1) alignment-orderings by distance can be
dualized by similarity, and vice-versa; (2) neigbour-ordering and pair-ordering by distance can be dualized by
similarity; (3) neighbour-ordering and pair-ordering by similarity can sometimesnot be dualized by distance.
A consequence of this is that there are categorisation and hierarchical clustering outcomes which can be
achieved via similarity but not via distance.

1 TREE DISTANCE AND
SIMILARITY

In many pattern-recognition scenarios the data either
takes the form of, or can be encoded as, sequences or
trees. Accordingly, there has been much work on the
definition, implementation and deployment of mea-
sures for the comparison of sequences and for the
comparison of trees.

These measures are sometimes described as ’dis-
tances’ and sometimes as ’similarities’. We are con-
cerned in what follows in first distinguishing between
these, and then with the question whether orderings
induced by a ’distance’ measure can be dualized by
a ’similarity’ measure, and vice-versa. To some ex-
tent this can be seen as applying the same kind of
analysis to sequence and tree comparison measures
as has been applied to set and vector comparison mea-
sures (Batagelj and Bren, 1995; Omhover et al., 2005;
Lesot and Rifqi, 2010).

From statements such as the following

To compare RNA structures, we need a score
system, or alternatively a distance, which
measures the similarity (or the difference) be-
tween the structures. These two versions of
the problem score and distance are equivalent.

(Herrbach et al., 2006)

which are not uncommon in the literature (Alves
et al., 2002; Kondrak, 2003; Bose and van der Aalst,
2009), it would be easy to gain the impression that
similarity and distance (on sequences and trees) are
straightforwardly interchangeable notions. In sec-
tion 1.1 several distinct kinds of equivalence are de-
fined. Sections 2, 3.1 and 3.2 then show that while
some kinds of equivalence hold, others do not.

To begin we need to clarify what we will mean
by ’distance’ and ’similarity’ on sequences and trees.
Because sequences can be encoded as vertical trees it
suffices to give definitions for trees. Tai first proposed
a tree-distance measure (Tai, 1979). WhereS andT
are ordered, labelled trees, aTai mappingα : S 7→ T is
a partial, 1-to-1function from the nodes ofS into the
nodes ofT, which respectsleft-to-right orderandan-
cestry1. For the purpose of assigning a score to such
a mapping it is convenient to identify three sets:

M the(i, j) ∈ α: the ’matches’ and ’swaps’
D the i ∈ Ss.t.∀ j ∈ T,(i, j) 6∈ α: the ’deletions’
I the j ∈ T s.t.∀i ∈ S,(i, j) 6∈ α: the ’insertions’

ThusM just is the mapping, as a set of node pairs, and

1So if (i, j) and (i′, j ′) are in the mapping then (T1)
le f t(i, i′) iff le f t( j , j ′) and (T2)anc(i, i′) iff anc( j , j ′).
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D andI just the remaining nodes ofS andT which
are not ’touched’ by the mapping. Let(.)γ give the
label of a node and letC∆ be a ’cost’ table, indexed
by {λ}∪Σ, whereΣ is the alphabet of labels, which
assigns ’costs’ toM , D andI according to2:

for (i, j) ∈ M cost isC∆(iγ, jγ)
for i ∈ D cost isC∆(iγ,λ)
for j ∈ I cost isC∆(λ, jγ)

Whereα : S 7→ T is any mapping fromS to T, define
∆(α : S 7→ T) by

Definition 1. (’Distance’ Scoring of an Alignment).

∆(α : S 7→ T) =

∑
(i, j)∈M

C∆(iγ, jγ)+ ∑
i∈D

C∆(iγ,λ)+ ∑
j∈I

C∆(λ, jγ)

From this costing of alignments, a ’distance’ score on
tree pairs is defined by minimization:

Definition 2. (’Distance’ Scoring of a Tree Pair). The
Tree- or Tai-distance∆(S,T) between two treesSand
T is theminimumvalue of∆(α : S 7→ T) over possible
Tai-mappings fromS to T, relative to a chosen cost
tableC∆.

There is an illustration of the definitions in Figure 1
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With C∆(x,λ) =

C∆(λ,x) = 1,
C∆(x,x) = 0, C∆(x,y) = 1
for x 6= y, the alignment
has score∆(α) = 3 and
this is minimal for the
given C∆

Figure 1: An illustration of tree distance.

∆(S,T) can be computed by the algorithm of (Zhang
and Shasha, 1989). Sequences can be encoded as ver-
tical trees, and on this domain of trees the tree dis-
tance coincides with a well known comparison mea-
sure on sequences, the (alphabet-weighted) string edit
distance (Wagner and Fischer, 1974; Gusfield, 1997).

We have formulated the definition3 in terms of
costs applied to mappings which respect tree-ordering
properties. In contrast to this declarative perspective,
there is procedural definition via the notion of anedit-
script of atomic operations transformingS to T in a
succession of stages. For both sequences and trees
the mapping-based and script-based notions coincide

2Note in this general setting even a pairing of two nodes
with identical labels can in principal make a non-zero cost
contribution.

3The literature contains quite a number of inequivalent
notins, all referred to as ’tree distance’; in this article Defi-
nition 2 will be understood to define the term.

(Wagner and Fischer, 1974; Tai, 1979; Kuboyama,
2007) and so we omit further details of the definition
via edit-scripts.

While the correctness of the Tai ’distance’ al-
gorithm (Zhang and Shasha, 1989) – ie. that it
truly finds theminimal value of∆(α : S 7→ T) given
cost-tableC∆– does not require the cost-tableC∆

to satisfy any particular properties, some settings of
C∆ clearly make little sense. The combination of
deletion/insertion cost-entries which arenegative–
C∆(x,λ)< 0,C∆(λ,y)< 0 – with swap/match cost en-
tries which arenot negativegives the counter-intuitive
effect that a supertree ofS is ’closer’ – in the sense of
having a lower∆ score – toS thanS itself4. This is a
rationale for the following non-negativity assumption

∀x,y∈ Σ(C∆(x,y)≥ 0,C∆(x,λ)≥ 0,C∆(λ,y)≥ 0)
(1)

which is a pretty universal assumption, and from
which it follows that∆(S,T) ≥ 0, giving a minimum
consistency with the every day notion of ’distance’. In
what follows we will confine attention to ’distance’∆
based on a tableC∆ which satisfies at least (1).

When the cost-tableC∆(x,y) is constrained more
strictly than this to satisfy all the conditions of a
distance-metric, then it is well known that∆(S,T)
will also be a distance-metric. Whether such further
restriction is desirable is moot: in so-called stochas-
tic variants (Ristad and Yianilos, 1998; Bernard et al.,
2008; Emms, 2010), in which the entries inC∆ are
interpreted as negated logs of probabilities, these ad-
ditional distance-metric assumptions are not fulfilled.
In this article we shall only assume the cost-tableC∆

satisfies the non-negativity requiremnt of (1).
Turning now to ’similarity’, rather than approach

the problem of comparison byminimizingaccumu-
lated costs assigned to an alignment, a widely fol-
lowed alternative, especially for sequence compari-
son, has been tomaximizea score assigned to an
alignment, with swaps/matches rewarded, and dele-
tions/insertions punished.

Let CΘ be a ’similarity’ table, again indexed by
{λ}∪Σ, whereΣ is the alphabet of labels, and where
α : S 7→ T is any mapping fromS to T, and then let
Θ(α : S 7→ T) be defined by

Definition 3. (’Similarity’ Scoring of an Alignment).

Θ(α : S 7→ T) =

∑
(i, j)∈M

CΘ(iγ, jγ) − ∑
i∈D

CΘ(iγ,λ) −∑
j∈I

CΘ(λ, jγ)

From this costing of alignments, a ’similarity’ score
on tree pairs is defined by maximisation:

4Or a subtree.

ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods

16



Definition 4. (’Similarity’ Scoring of a Tree Pair).
The Tree- or Tai-similarityΘ(S,T) between two trees
SandT is themaximumvalue ofΘ(α : S 7→ T) over
possible Tai-mappings fromS to T, relative to a cho-
sen cost tableCΘ

Applied to the same example as shown in Fig-
ure 1, withCΘ(x,λ) = CΘ(λ,x) = 0, CΘ(x,x) = 2,
C∆(x,y) = 0 for x 6= y, the shown alignment has score
Θ(α) = 9, which is maximal for the givenCΘ.

Θ(S,T) can be computed via a simple modifica-
tion of the algorithm of (Zhang and Shasha, 1989).
Again on the domain of vertical trees this coincides
with a well known approach to sequence comparison,
the (alphabet-weighted) string similarity (Smith and
Waterman, 1981; Gusfield, 1997).

As with ∆, while the correctness of the algorithm
for Θ is not dependent on any assumptions about
the cost-tableCΘ, some settings ofCΘ make little
sense. Given the formulation in (3), whichsubtracts
the contribution from deletions and insertions, a set-
ting where deletion/insertion cost entries are negative
– CΘ(x,λ) < 0, CΘ(λ,x) < 0 – gives the counter-
intuitive effect that a supertree ofS would be more
’similar’ – in the sense of higherΘ score – toS than
S itself. This gives a rationale for the nearly univer-
sal assumption of non-negative deletion/insertions en-
tries inCΘ:

∀x,y∈ Σ(CΘ(x,λ)≥ 0,CΘ(λ,y)≥ 0) (2)

In what follows we will confine attention always
to ’similarity’ Θ based on a tableCΘ satisfying (2)5.
For theCΘ-entries which are not deletions or inser-
tions, it is quite common in biological sequence com-
parison to have both positive and negative entries. In
contrast to the notion of a distance-metric, the notion
of a set of axioms for a similarityΘ is less well es-
tablished. (Chen et al., 2009) have recently made a
proposal concerning this (see section 5).

To reiterate, for the purposes of this discussion a
tree ’distance’ measure will imply a cost-tableC∆, sat-
isfying (1), used in accordance to definitions 1 and 2
to score alignments and tree pairs. A tree ’similarity’
measure measure will imply a cost-tableCΘ, satisfy-
ing (2), used in accordance to definitions 3 and 4 to
score alignments and tree pairs. This is sufficient to
distinguish the ’distance’ approach from the ’similar-
ity’ approach in an intuitive way without commiting
to any further axioms.

5While Definition 3 formulates Θ with dele-
tion/insertion contributions subtracted, as is often done
(Smith and Waterman, 1981; Stojmirovic and Yu, 2009),
an alternative formulation has these treated additively
(Gusfield, 1997). With the additive formulation, the
same consideration suggests making deletion/insertions
non-positive.

1.1 Order-equivalence Notions between
Tai Distance and Similarity

Given a ’distance’∆ scoring of alignments, it can be
set to work to induce orderings of at least three differ-
ent kinds entities

Alignment Ordering. Given fixed S, and fixedT,
rank the possiblealignmentsα : S 7→ T by ∆(α :
S 7→ T)

Neighbour Ordering. Given fixed S, and varying
candidate neighboursTi , rank theneighbours Ti
by ∆(S,Ti) – typically used in k-NN classification.

Pair Ordering. Given varyingSi , and varyingTj ,
rank thepairings 〈Si ,Tj〉 by ∆(Si ,Tj) – typically
used in hierarchical clustering.

Similarly a ’similarity’ Θ scoring of alignments in-
duces orderings of the above kinds of entities. Com-
paring these orderings motivates the following defini-
tion

Definition 5. (A-,N- and P-dual). When the align-
ment orderings induced by a choice ofC∆(used in ac-
cordance with (1)) and by a choiceCΘ (used in accor-
dance with (3)) are thereverseof each other, we will
say thatCΘ is aA-dual of C∆. Similarly we will say
we have anN-dual when neighbour ordering is re-
versed, and aP-dual where pair-ordering is reversed.

For example, the following are A-duals in this
sense (proven in section 2):

Example 1.

∆ with







C∆(x,λ) = 1
C∆(x,x) = 0
C∆(x,y) = 1

Θ with







CΘ(x,λ) = 0
CΘ(x,x) = 2
CΘ(x,y) = 1

Example 2.

∆ with







C∆(x,λ) = 0.5
C∆(x,x) = 0
C∆(x,y) = 0.5

Θ with







CΘ(x,λ) = 0
CΘ(x,x) = 1
CΘ(x,y) = 0.5

A natural question that presents itself then is
whether foreverychoice ofC∆, there is a choice ofCΘ

which is a A-dual, N-dual or P-dual, and vice-versa.
More precisely there are the following
Order-relating Conjectures.

A-duality
{

(i) ∀C∆∃CΘ(C∆ andCΘ are A-duals)
(ii) ∀CΘ∃C∆(C∆ andCΘ are A-duals)

N-duality
{

(i) ∀C∆∃CΘ(C∆ andCΘ are N-duals)
(ii) ∀CΘ∃C∆(C∆ andCΘ are N-duals)

P-duality
{

(i) ∀C∆∃CΘ( C∆ andCΘ are P-duals)
(ii) ∀CΘ∃C∆( C∆ andCΘ are P-duals)

Arguably these notions go to the heart of the
question whether there is really anything that can
be accomplished using an alignment ’distance’ score,
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which cannot by accomplised via an alignment ’sim-
ilarity’ score, and vice-versa. For example, if it
turns out that all these order conjectures hold, then
any alignment outcome, any categorisation outcome
via k-NN and any hierarchical clustering outcome,
achieved by a particular distance can be replicated by
a similarity, and vice-versa, making the choice merely
a matter of personal taste. On the other hand, if these
duality conjectures do not hold, then there is substan-
tive difference, with the outcomes achievable by dis-
tances and similarities being distinct.

For a number of similarity and distance measures
based on sets and vectors, notions analogous to N-
dual and P-dual have been considered (Batagelj and
Bren, 1995; Omhover et al., 2005; Lesot and Rifqi,
2010), motivated similarly by the question whether
anything which can be accomplished with one or
other such measure can be replicated by another such
measure. It is for example shown there that a particu-
lar Dice measure will rank retrieval results inevitably
the same as a particular Jaccard measure. In the case
of alignment-based measures on sequences and trees,
as far as we are aware, these notions seem not have
been systematically considered and the following sec-
tions endeavour to fill that gap.

2 ALIGNMENT-DUALITY

The following lemma will be useful for considering
the A-duality conjectures above:

Lemma 1. For any C∆, and some choiceδ such that
0 ≤ δ/2 ≤ min(C∆(·,λ),C∆(λ, ·)) let CΘ be defined
according to (i) below. For any CΘ, and choiceδ such
that0≤ δ≥max(CΘ(·, ·)) let C∆ be defined according
to (ii) below.

(i)







CΘ(x,λ) =C∆(x,λ)− δ/2
CΘ(λ,y) =C∆(λ,y)− δ/2
CΘ(x,y) = δ−C∆(x,y)

(ii)







C∆(x,λ) =CΘ(x,λ)+ δ/2
C∆(λ,y) =CΘ(λ,y)+ δ/2
C∆(x,y) = δ−CΘ(x,y)

then in either case, for anyα : S 7→ T

∆(α)+Θ(α) = δ/2× (∑
s∈S

(1)+ ∑
t∈T

(1)) (3)

Proof of Lemma 1. If defining CΘ from C∆by (i), by
the choice ofδ we have the non-negativity of CΘ(x,λ)
and CΘ(λ,y). If defining C∆ from CΘby (ii), by the
choice ofδ, we have the non-negativity of all entries
in C∆.

Whether defining CΘ from C∆by (i), or C∆ from CΘby
(ii), it is straightforward to show

∆(α)+Θ(α) = δ/2× (2|M |+ |D|+ |I |)

But then (3) follows since

2|M |+ |D|+ |I |= ∑
s∈S

(1)+ ∑
t∈T

(1)

Theorem 2. A-duality (i) and (ii) hold

Proof of Theorem 2.A-duality (i): define CΘ accord-
ing to (i) in Lemma 1. Given the constant summation
property of (3), the ordering on alignments by∆ must
be the reverse of the ordering byΘ.

A-duality (ii): similarly defineC∆ according to (ii)
in Lemma 1

Example 1 Revisited.The CΘ of Example 1 can be
seen as derived from the C∆ with δ = 2. Table below
shows outcomes for other choices ofδ

C∆ CΘ(δ = 2) CΘ(δ = 1) CΘ(δ = 0)
(x,λ) 1 0 0.5 1
(x,x) 0 2 1 0
(x,y) 1 1 0 -1

As a corollary one can obtain the following con-
cerning how one similarity table can be ’shifted’ to an
equivalent one, and similarly for distance tables.

Corollary 3. (’Shifting’). for anyCΘ
1, an alignment

equivalentCΘ
2 can be derived by the conversion (a)

below, and for anyC∆
1, an alignment equivalentC∆

2
can be derived by the conversion (b)

(a)







CΘ
2(x,λ) =CΘ

1(x,λ)−κ/2
CΘ

2(λ,y) =CΘ
1(λ,y)−κ/2

CΘ
2(x,y) =CΘ

1(x,y)+κ

(b)







C∆
2(x,λ) =C∆

1(x,λ)+κ/2
C∆

2(λ,y) =C∆
1(λ,y)+κ/2

C∆
2(x,y) =C∆

1+κ

Proof of Corollorary 3. (a) is the composition of (ii),
for someδ1, with (i), for someδ2, givingκ = δ2− δ1.
(b) is the composition (i), for someδ1, with (ii), for
someδ2, givingκ = δ2− δ1

Example 1 Revisited Again. The three A-dualizing
similarities CΘ(δ = 2), CΘ(δ = 1) and CΘ(δ = 0) de-
rived from the unit-cost distance table using varying
δ in the (i) conversion of Lemma 1 can be seen as re-
lated to each other by the (a) ’shifting’ conversion of
Lemma 3, withκ =−1 each time.

The property of alignment dualizability between dis-
tance and similarity (and vice-versa) expressed above
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in Lemma 1 and Theorem 2 was essentially first
proven for the case of sequence comparison by (Smith
and Waterman, 1981). On the basis of this perhaps it
is tempting to consider the case closed and treat ’dis-
tance’ and ’similarity’ as interchangeable. However,
as noted in Section 1.1, there is more than one kind
of ordering that one might wish to be sure of repli-
cating in switching between distance and similarity,
with N-duality coming to the fore in the context of
k-NN classification, and P-duality coming to the fore
in the context of hierarchical clustering. Section 3.1
considers the N-duality (i) and P-duality (i) order con-
jectures, and Section 3.2 considers the N-duality (ii)
and P-duality (ii) conjectures.

3 NEIGHBOUR AND PAIR
ORDERING

3.1 Distance to Similarity

Having seen that A-duals can always be created in
both directions, attention shifts to N-duals and P-
duals.

The case of usingδ = 0 in the (i) conversion of
Lemma 1 fromC∆ to CΘ gives non-positive values
for all non-deletion, non-insertion entries inCΘ, and
is an especially trivial case of dualizing a distance set-
ting C∆, with the effect thatΘ(S,T) = −1×∆(S,T).
Because of this, this distance-to-similarity conversion
not only makes A-duals, but also N-duals and P-duals.

Theorem 4. N-duality (i) and P-duality(i) hold

Proof of Theorem 4. By choosingδ = 0 in the
(i) conversion of Lemma 1 from C∆ to CΘ, we
haveΘ(S,T) =−1×∆(S,T), and henceΘ(S1,T1)≤
Θ(S2,T2)⇔ ∆(S1,T1)≥ ∆(S2,T2)

This distance-to-similarity by negation is well
known. On the other hand, concerning similarity-to-
distance, in the (ii) conversion of Lemma 1 fromCΘ to
C∆, you can only chooseδ = 0 if all CΘ(x,y)≤ 0, and
clearly there are many natural settings ofCΘ where
that is not true.

3.2 Similarity to Distance

The remaining order-equivalence conjectures of sec-
tion 1.1 areN-duality(ii) andP-duality(ii), concern-
ing the similarity-to-distance direction. Of the re-
maining conjectures,P-duality(ii) is stronger thanN-
duality(ii). We can fairly easily showP-duality(ii)
does not hold

Theorem 5. P-duality (ii) does not hold, that is, there
are CΘ such that there is no C∆ such that CΘ and C∆

are P-duals.

Proof of Theorem 5. It is clearly possible for CΘ to
be such that there is no maximum value forΘ(S,T).
For example for table below:

CΘ

(a,a) 1
(a,λ) 1

its clear we haveΘ(a,a) = 1, Θ(aa,aa) = 2 and in
generalΘ(an,an) = n. Let CΘ be any table defin-
ing a similarity with no maximum. On the other
hand, for each C∆ there will be minimum value of
∆(S,T). Suppose some C∆ is a P-dual to CΘ. For
any n let [Θ]n (resp. [∆]n) be the set of pairs with
similarity (resp. distance) n. If C∆ is a P-dual to
CΘ, there is some bijection between the set of simi-
larity classes{[Θ]s} and the set of distances classes
of {[∆]d}. Some similarity class[Θ]s1 of Θ must cor-
respond to the minimum distance class[∆]d0. Let
[Θ]s2 be a higherΘ class than[Θ]s1. It must corre-
spond to some∆ class[∆]d1 distinct from[∆]d0, and
since [∆]d0 is the distance-minimum, this must be a
higher distance class. Then for(S0,T0) ∈ [∆]d0, and
(S1,T1) ∈ [∆]d1 you have∆(S0,T0) < ∆(S1,T1), but
alsoΘ(S0,T0) < Θ(S1,T1). So the supposed dual C∆

does not reverse the pair-ordering of CΘ.

Of the order-relating conjectures of section 1.1 the
only remaining one isN-duality(ii) – that is the ques-
tion whether every neighbour-ordering via someCΘ

can be replicated by a neighbour ordering via some
C∆. We can show that there are neighbour-orderings
by a Tai-similarity which cannot be dualized by any
Tai-distance whose deletion and insertion costs are
symmetric.

Theorem 6. There is CΘ such that there is no C∆ with
C∆(x,λ) =C∆(λ,x) such that CΘ and C∆ are N-duals

Proof of Theorem 6.Let S= aa, and the set of neigh-
bours be{a,aaa}.
Let CΘ(a,a) = x> 0, and CΘ(a,λ) =CΘ(λ,a) = y>
0.

For (aa,aaa), the alignments with 2,1, and 0 a-
matches haves scores,2x−y, x−3y and−5y, respec-
tively, so the alignments maximisingΘ are those with
two a-matches, andΘ(aa,aaa) = 2x− y.

For (aa,a), the alignments with 1 and 0 a-matches
have scores x− y and −3y, respectively, so the
alignments maximisingΘ have one a-match, and
Θ(aa,a) = x− y.

Consider what is required for theΘ-decreasing
neigbour ordering to be:[aaa, a],
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Θ(aa,aaa)> Θ(aa,a)
⇔ 2x− y> x− y
⇔ x> 0

So there is a Θ-decreasing neighbour-ordering
[aaa, a].

Let C∆(a,a) = x′, and C∆(a,λ) =C∆(λ,a) = y′. Note
this assumes symmetric insertion and deletion costs.

For (aa,aaa), the alignments with 2,1, and 0 a-
matches haves scores,2x′ + y′, x′ + 3y′ and 5y′, re-
spectively. We distinguish two cases (i)2y′ < x′ and
(ii) 2y′ ≥ x′.

For case (i), x′ = 2y′+ ε, for some no-zeroε > 0,
and the 2,1,and 0 a-matches scores become5y′+2ε,
5y′+ ε and5y′, respectively, so taking the minimum,
∆(aa,aaa) = 5y′.

For case (ii), y′ = x′/2+κ, for someκ≥ 0, and the
2,1,and 0 a-matches scores become2.5x′+κ, 2.5x′+
3κ and2.5x′+ 5κ, respectively, and 2-match case is
amongst the minimal cases, so∆(aaa,aa)= 2.5x′+κ.

For (aa,a), the alignments with 1 and 0 a-matches
haves scores, x′ + y′ and 3y′ respectively. We again
distinguish between cases (i)2y′ < x′ and (ii) 2y′ ≥ x′.

For case (i), the 1 and 0 a-matches scores become
3y′ + ε and 3y′ respectively, so taking the minimum,
∆(aa,a) = 3y′.

For case (ii), the 1 and 0 a-match scores become
1.5x′+κ and1.5x′+3κ respectively, and the 1-match
case is amongst the minimal cases, so∆(aa,a) =
1.5x′+κ.
Summarising the∆ possibilities

∆(aa,aaa) ∆(aa,a)
(i)2y′ < x′ 5y′ 3y′

(ii)2y′ ≥ x′ 2.5x′+κ 1.5x′+κ

So in neither case (i) nor case (ii) is it possible to
achieve a∆-ascending neighbour ordering[aaa,a],
which was theΘ-descending neighbour ordering
which was achieved with the assumed CΘ.

Remark. If we drop the requirement that the N-
dualizingC∆ haveC∆(x,λ) = C∆(λ,x), then the ar-
gument does not go through. TheΘ-descending
neighbour ordering[aaa,a] can be replicated by
a ∆-ascending neighbour ordering withC∆(a,λ) >
C∆(λ,a). For most applications of alignment-based
’distances’, such an asymmetric setting of deletion
and insertion costs would be considered unnatural.

4 EMPIRICAL INVESTIGATION

(Lesot and Rifqi, 2010) consider distance and sim-
ilarity measures often used in information retrieval.
These are defined over finite vectors, whose features
are either binary or real-valued. They basically con-
sider the neighbour orderings produced by different
measures. Besides demonstrating absolute equiva-
lence between some measures, between other mea-
sures they empirically determineequivalence degrees,
between 0 and 1, based on the Kendall-tau statistic
for comparing orderings (Kendall, 1945). While their
work concerned comparison measures on vectors, it
is a natural to consider an analogous empirical quan-
tified comparison of distance and similarity orderings
on trees and sequences. Some preliminary findings of
such a study are given below.

The (i) conversion of Lemma 1 converts distance
settings to A-dual similarity settings and one thing to
consider is the degree to which the derived similari-
ties are also N-duals of the distance. Table 1 gives
some distance and similarity settings: the first column
gives the unit-cost settings for∆ and the columns to
the right give different similarity settingsCΘ deriv-
able by the (i) conversion of Lemma 1 asδ is varied
through various values.

Table 1: Unit-cost distance setting and several A-dual simi-
larity settings.

dualCΘ for varyingδ
C∆ 2 1.5 1 0.5 0.2 0.1 0

(x,λ) 1 0 0.25 0.5 0.75 0.9 0.95 1
(x,x) 0 2 1.5 1 0.5 0.2 0.1 0
(x,y) 1 1 0.5 0 -0.5 -0.8 -0.9 -1

An experiment was done to quantify how close the
similarities defined by the varyingCΘtables come to
being N-duals for the distance. Using a set of 1334
trees6, repeatedly a treeSwas chosen, and neighbour
files N∆(S) andNΘ(S) were computed, withN∆(S)
the ordering of the remaining trees by ascending∆,
andNΘ(S) the ordering by descendingΘ. N∆(S) and
NΘ(S) were then compared by thekendall-taumea-
sureτ (see the Appendix for the definition). For each
δ the average of thisτ comparison between the dis-
tance and similarity neighbour files is shown in Fig-
ure 2.

The bottom-left corner, forδ = 0 is the special
case of Lemma 1 which amounts to the well-known
trivial distance-to-similarity conversion,Θ(S,T) =
−1×∆(S,T), noted in section 3.1. In this case the
distance and similarity neighbour files are identical.

6See the Appendix for further details of this data set.
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Figure 2: Average Kendall-tau comparison on neighbours
using distance and derived similarities. Distance setting
is first column of Table 1. Similarity settings are further
columns of Table 1 defined by varyingδ.

As the graph clearly shows, asδ increases, the neigh-
bour files exhibit progressively greater difference in
ordering, until atδ = 2 theτ score is 0.73, which cor-
responds to a tendency more towards order reversal
than to replication. This experiment shows that al-
though each of these similarity settings is an A-dual
of the simple distance setting, they are not at all equiv-
alent to each other as far as neighbour ordering is con-
cerned.

The (ii) conversion of Lemma 1 converts similar-
ity settings to A-dual distance settings. Table 2 gives
a similarity setting and then several distance settings
derivable by the (ii) conversion asδ is varied through
various values7

Table 2: A similarity setting and several A-dual distance
settings.

dualC∆ for varyingδ
CΘ 1 1.5 2 2.5 3 3.5 4

(x,λ) 0.5 1 1.25 1.5 1.75 2 2.25 2.5
(x,x) 1 0 0.5 1 1.5 2 2.5 3
(x,y) 0 1 1.5 2 2.5 3 3.5 4

Figure 3 plots the averageτ comparison between
the similarity and distance neighbour files, asδ is var-
ied to give different distances. Again this experiment
shows that although each of the distance settings is an
A-dual of the similarity setting, they are not equiva-
lent to each other as far as neighbour ordering is con-
cerned.

7The nodes in these experiments have multi-part labels.
Whilst the first experiment treated these simply as identi-
cal or not, for this second experiment, the base-line similar-
ity node label are compared viaCΘ(x,y) = 1− ham(x,y),
ham(x,y) is the standard hamming distance. The table thus
shows the extreme values ofCΘ(x,y) andC∆(x,y).
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Figure 3: Average Kendall-tau comparison on neighbours
using a similarity and derived distances. Similarity setting
is first column of Table 2. Distance settings are further
columns of Table 2 defined by varyingδ.

Theorem 5 concerned the non-replicability by dis-
tance of pair-orderings by similarity. To illustrate
this, consider a set of strings{a5,a4,a3,a2,a1}. A ta-
ble of pair-wise similarities of these was made with
CΘ(a,a) = 1,CΘ(a,λ) = 1, and used to generate a
single-link clustering, shown as the the uppermost
dendrogram in Figure 4.

i5 i4

i3

i2

i1

sim swap:1 del:1 single

i5 i4 i3 i2 i1

dist swap:0 del:1 single

i5

i4

i3

i2 i1

dist swap:1 del:1 single

Figure 4: Similarity and distance clusterings. The instance
labelsi5. . . i1 represesenta5 . . .a1.

No single-link clustering based on distance repli-
cates this similarity clustering. The middle den-
dogram in Figure 4 is the result withC∆(a,a) =
0,C∆(a,λ) = 1, with all five shown on the same level
because∆(am,am+1) = 1. The lowest dendogram in
Figure 4 shows a result withC∆(a,a) = 1,C∆(a,λ) =
1. The same structure was found holdingC∆(a,a) =
1, and allowing the deletion/insertion cost to vary be-
tween 0.5 and 5.5 (which are≥C∆(a,a)) and between
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0.4 and 0.1 (which are<C∆(a,a))

5 DISCUSSION AND
COMPARISONS

In view of the outcomes noted in sections 2, 3.1 and
3.2 concerning the various ordering conjectures we
can say that

• Any hierarchical clustering outcome achieved via
∆ can be replicated viaΘ, butnotvice-versa.

• Any categorisation outcome using nearest-
neighbours achieved via∆ can be replicated via
Θ, butnotvice-versa.

and in this sense ’similarity’ and ’distance’ compar-
ison measures on sequences and trees arenot inter-
changeable.

As far as we are aware this aspect of the choice
between a similarity-based versus a distance-based
comparison measure on sequences or trees has not
been noted before.

There are a number of papers concerning con-
version from a similarity-based sequence compari-
son measure to a distance-based comparison mea-
sure, and particularly one satisfying distance-metric
axioms (Spiro and Macura, 2004; Stojmirovic and Yu,
2009). An aim of these papers is to find techniques for
accelerating so-called range similarity queries, which
are requests to find all neighbours within a similar-
ity thresholdN≤θ(S) = {T : Θ(S,T)≥ θ}. To discuss
these papers it will be as well to note the distance-
metric axioms

Definition 6. (Distance Metric). A binary relation∆
is a distance-metric if it satisfies
D1.∆(S,T) = ∆(T,S)
D2.∆(S,T)≥ 0
D3.∆(S,V)≤ ∆(S,T)+∆(T,V)
D4.∆(S,T) = 0 iff S= T

It is a pseudo-metricif D4. is dropped. It is a
quasi-metricif D1. is droppped

For a distance-metric on sequences there is a way
to use the triangle-inequality to accelerate solution of
a distancerange query,N≤δ(S) = {T : ∆(S,T) ≤ δ}.
SupposeS is a query, andT1 is a training-set point
known to be far fromS, and that another training-set
pointT2 is known to be close toT1. Intuitively Sis also
going to be far fromT2. More specifically, if∆ is a
distance-metric, an instance of the triangle-inequality
will be:

∆(S,T1)≤ ∆(T1,T2)+∆(T2,S) (4)

via which ∆(T2,S) is bounded below by∆(S,T1)−
∆(T1,T2). So if T1 has already been excluded from a
distance neigbhourhood,T2 can be also immediately
excluded if∆(S,T1)− ∆(T1,T2) exceeds the thresh-
old.

Most biological sequence comparison is done with
similarity not distance and the concern of (Spiro and
Macura, 2004) is to find a corresponding means of ac-
celerating similarity range queries. In terms of the no-
tations used here, they essentially propose the follow-
ing conversion from similarity to distance cost-table

∀x,y∈ Σ (C∆(x,y) =CΘ(x,x)+CΘ(y,y)−2CΘ(x,y))
∀x∈ Σ (C∆(x,λ) =CΘ(x,λ))
∀y∈ Σ (C∆(λ,x) =CΘ(λ,x))

and they prove that, under some conditions imposed
onCΘ, the corresponding∆ will satisfy all the condi-
tions of a distance-metric, in particular satisfying the
triangle-inequality. and that the relation betweenΘ
and∆ is then

∆(X,Y) = Θ(X,X)+Θ(Y,Y)−2Θ(X,Y) (5)

Substitution of (5) into the triangle-inequality and
some re-arrangement gives thatΘ(T2,S) is bounded
aboveby Θ(S,T1) +Θ(T2,T2)−Θ(T1,T2), giving a
means for rapid exclusion ofT2 from a similarity
neigbhourhood.

Beside the fact that equation (5) relatingΘ and∆
holds only under particular assumptions concerning
CΘ, more importantly the obtained relationship in (5)
is not sought in the context of deriving a P-dual or
N-dual distance∆ from a given similarityΘ, and in
fact (5) does not do this. Thus while Spiro et al do
provide a conversion from a similarity to a distance, it
addresses concerns somewhat orthogonal to those of
this paper.

(Stojmirovic and Yu, 2009) is a paper with similar
concerns to (Spiro and Macura, 2004). In terms of
the notations used here, they propose the following
conversion from similarity to distance cost-table:

∀x,y∈ Σ (C∆(x,y) =CΘ(x,x)−CΘ(x,y))
∀x∈ Σ (C∆(x,λ) =CΘ(x,x)+CΘ(x,λ))
∀y∈ Σ (C∆(λ,x) =CΘ(λ,x))

and prove, under some assumptions concerningCΘ,
that the then derived ’distance’ is aquasi-metricand
that the relationship between∆ andΘ is then:

∆(S,T) = Θ(S,S)−Θ(S,T) (6)

Though not a distance-metric – it isasymmetric
– it does satisfy the triangle-inequality∆(X,Z) ≤
∆(X,Y) + ∆(Y,Z), and substituting (6) into the
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triangle-inquality and re-arranging again gives an up-
per bound which might be used to accelerate a simi-
larity range query:Θ(S,T2) ≤ Θ(S,T1)+Θ(T2,T2)−
Θ(T2,T1).

Though again this similarity to distance conver-
sion is not sought in the context of finding P- or N-
duals, Stojmirov et al’s equation in (6)doesmake the
derived distance an N-dual of the similarity. This is
not, however, inconsistent with the example in sec-
tion 3.2 of a similarity with no N-dualizing distance.
Stojmirov et al’s conversion generatesasymmetricin-
sertion and deletion entries in the distance cost-table
C∆, whereas the proof in section 3.2 concerned the
impossibily of a N-dualizing distance withsymmetric
insertion and deletion entries.

Our findings on the various order-relating conjec-
tures concern notions with specific, though widely
used, definitions (Defs.1, 2, 3 and 4). There are other
closely related notions, and the corresponding ques-
tions concerning these have not been addressed. One
variant isstochastic: in a stochastic similarity, proba-
bilities are assigned to aspects of a mapping andmul-
tiplied. We conjecture that these will be A-, N- and
P-dualisable to distance. This is because, under a log-
arithmic mapping, it seems such stochastic variants
can be exactly simulated by a similarity as we have
defined it. In the resulting table, allCΘ(x,y) ≤ 0,
allowing the (ii) conversion of Lemma 1 to define a
C∆ choosingδ = 0. There are alsonormalisedvari-
ants, which we have not considered. Throwing the net
very much more widely, (Chen et al., 2009) study re-
lationships between distance and similarity measures,
in a very general setting, not restricted to measures
based on sequence or tree alignment. Parallel to the
well-known axioms of a distance-measure, they pro-
pose a set of similarity axioms, and they define con-
versions from similarity to distance and in the other
direction, showing that the derived score satisfies the
relevant axioms if the score that is input to the conver-
sion does. Their work, however, does not address the
question whether the conversions give N- or P-duals,
that is whether they preserve relevant orderings.

Concerning directions for further work, the em-
pirical investigation in section 4 was quite prelimi-
nary. For the Kendall-tau comparison of distance and
similarity neighbourhoods, we looked at just one par-
ticular baseline distance and one particular baseline
similarity, and compared only to A-duals as given by
Lemma 1, so clearly there are other possibilities one
could consider here. One is Spiro and Macura’s re-
lation in (5). The Appendix notes some further A-
dualizing conversions, from distannce to similarity
and from similarity to distance, which might be con-
sidered. It is also the case that we applied the Kendall-

tau comparison tofull rankings, and it would be of in-
terest to look also attop-k ranking, as has been done
for vector- and set-based measures (Lesot and Rifqi,
2010).

ACKNOWLEDGEMENTS

This research is supported by the Science Foundation
Ireland (Grant 07/CE/I1142) as part of the Centre for
Next Generation Localisation (www.cngl.ie) at Trin-
ity College Dublin.

REFERENCES
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APPENDIX

Proof of Alignment Sum Property from Lemma 1.
In the proof of Lemma 1 it was claimed withC∆ and
CΘ related according to the (i) or (ii) conversions that
for any alignmentα, ∆(α)+Θ(α) = δ/2× (2|M |+
|D|+ |I |). This is proven as follows.
If definingCΘ fromC∆by (i), for Θ(α) we have:

∑
(i, j)∈M

[δ−C∆(i, j)]− ∑
i∈D

[C∆(i,λ)−δ/2]

−∑
j∈I

[C∆(λ, j)−δ/2)

= δ(|M |+
|D|

2
+

|I |

2
)

− ∑
(i, j)∈M

[C∆(i, j)]− ∑
i∈D

[C∆(i,λ)]− ∑
j∈I

[C∆(λ, j)]

=
δ
2
(2|M |+ |D|+ |I |)−∆(α)

If definingC∆ fromCΘby (ii), for ∆(α) we have
∑

(i, j)∈M

[δ−CΘ(i, j)]+ ∑
i∈D

[CΘ(i,λ)+δ/2]

+∑
j∈I

[C∆(λ, j)+δ/2)

= δ(|M |+
|D|

2
+

|I |

2
)

− ∑
(i, j)∈M

[CΘ(i, j)]+ ∑
i∈D

[CΘ(i,λ)]+ ∑
j∈I

[C∆(λ, j)]

=
δ
2
(2|M |+ |D|+ |I |)−Θ(α)

Hence in either case the claim holds.

Definition of Kendall-Tau (with Ties). Let N1 and
N2 be two assignments of ranks to the same set of

objects,U (with the possibility of ties). WhereP is
the set of all two-element sets of distinct objects from
U , define a penalty functionp on any{Ti,Tj} ∈ P ,
such that (i)p({Ti ,Tj}) = 1 if the order inN1 is the
reverse of the order inN2, (ii) p({Ti,Tj}) = 0.5 if
there is a tie inN1 but not in N2 or vice-versa and
(iii) p({Ti,Tj}) = 0 otherwise. The Kendall-Tau dis-
tance (with ties) betweenN1 and N2, τ(N1,N2), is
∑{Ti ,Tj }∈P [p({Ti,Tj})]×

2
m×(m−1)

Details of the Data Set for Kendall-Tau Experi-
ments.Section 4 reports experiments quantifying the
difference between neighbour files computed by dis-
tance and similarity, when the two are related by the
conversion in Lemma 1. The experiments used a set
of 1334 trees, taking each tree in turn and ranking all
the remaining trees. The trees represent syntax struc-
tures and originate in a data-set which was used in a
shared-task on identifying inter-node semantic depen-
dencies (Haji et al., 2009). See (Emms and Franco-
Penya, 2011) for download information concerning
this data.
Further A-dualizing Conversions. Concerning A-
duals, there are besides the conversions given in
Lemma 1, others which also generate A-duals.

Lemma 7. For any C∆, for any k, let CΘ be defined
according to (iii) below.

(iii)











CΘ(x,λ) = kC∆(x,λ)
CΘ(λ,y) = kC∆(λ,y)
CΘ(x,y) = (1−k)(C∆(x,λ)+C∆(λ,y))−C∆(x,y)

Then for anyα : S 7→ T
∆(α)+Θ(α) = (1−k)× (∑

s∈S

(C∆(s,λ))+∑
t∈T

(C∆(λ, t)))

Lemma 8. For any CΘ, for any k, let C∆ be defined
according to (iv) below.

(iv)











C∆(x,λ) =CΘ(x,λ)+kCΘ(x,x)
C∆(λ,y) =CΘ(λ,y)+kCΘ(y,y)

C∆(x,y) = k(CΘ(x,x)+CΘ(y,y))−CΘ(x,y)

Then for anyα : S 7→ T,
∆(α)+Θ(α) = k× (∑

s∈S

(CΘ(s,s))+∑
t∈T

(CΘ(t, t)))

The proofs of these follow a similar pattern to that of
Lemma 1 and are omitted. In a similar fashion both
these conversions will give A-duals.
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