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Abstract: Sleep monitoring is increasingly seen as a common and important issue. In this paper, a depth analysis 
technique was developed to monitor user’s sleep conditions without any physical contact. In this research, a 
cross-section method was proposed to detect user’s head and torso from the depth images. Then, the system 
can monitor user’s breathing rate, sleep position, and sleep cycle. In order to evaluate the measurement 
accuracy of this system, two experiments were conducted. In the first experiment, eight participants with 
various body shapes were asked to join the experiment. They were asked to change the sleep positions 
(supine and side-lying) every fifteen breathing cycles in two circumstances (sleep with and without a thin 
quilt) on the bed. The experimental results showed that the system is promising to detect the head and torso 
with various sleeping postures. In the second experiment, a realistic over-night sleep monitoring experiment 
was conducted. The experimental results demonstrated that this system is promising to monitor the sleep 
conditions in realistic sleep conditions. To conclude, this study is important for providing a non-contact 
technology to detect multiple sleep conditions and assist users in better understanding of their sleep quality. 

1 INTRODUCTION 

Sleep is essential for a person’s mental and physical 
health. Studies indicate that sleep plays a critical role 
in immune function (Born et al., 1997), metabolism 
and endocrine function (Spiegel et al., 1999), 
memory, learning (Maquet, 2001), and other vital 
functions. However, there are some sleep disorders, 
such as sleep apnea, insomnia, hypersomnia, 
circadian rhythm disorders, which might interfere 
with physical, mental and emotional functioning. 
For better understanding of sleep problems, many 
sleep centres and research groups are devoted to the 
sleep study. Polysomnography (PSG) is a multi-
parametric test used in the study of sleep and as a 
diagnostic tool in sleep medicine. It monitors body 
functions including brain activity (EEG), eye 
movement, muscle activity, heart rhythm, and 
breathing while sleeping (Douglas, et al., 1992).  In 
this study, we focus on the research issues in sleep 
cycle, sleep breathing, and sleep positions. For the 
measurement of sleep cycle, EEG monitoring is one 
of the most accurate methods to detect the period of 

non-rapid eye movement (NREM) and rapid eye 
movement (REM). However, it is not convenient to 
use. In recent years, motion sensor and pressure 
sensor array are widely used to monitor user’s sleep 
conditions and body movement while sleeping 
(Actiwatch, 1998; Fitbit, 2010; WakeMate, 2010), as 
well as estimate the sleep cycle and evaluate the 
sleep quality. For breath measurement while 
sleeping, sleep apnea is one of the most important 
sleep disorder characterized by abnormal pauses in 
breathing or instances of abnormally low breathing 
during sleep. For decades, the breath measurement 
methods would direct contact to the user while 
monitoring, and it might interfere with the user and 
reduce the sleep quality. Although some non-contact 
breath measurement methods were proposed in 
recent years, such as ultra-wideband (UWB) and 
structured light plethysmography (SLP), there still 
have some measurement limitations. For sleep 
position, in order to prevent sleep apnea, studies 
showed that side-lying position is the best sleep 
posture for individuals with sleep apnea (Cartwright 
et al., 1984; Szollosi et al., 2002; Loord et al., 2007; 

12 Yu M., Wu H., Liou J., Lee M. and Hung Y..
BREATH AND POSITION MONITORING DURING SLEEPING WITH A DEPTH CAMERA.
DOI: 10.5220/0003702000120022
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2012), pages 12-22
ISBN: 978-989-8425-88-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

Hoque et al., 2010). A study analysed six common 
sleep positions, and concluded that supine positions 
were more likely to lead to snoring and a bad night's 
sleep (Idzikowski et al., 2003). However, to date, 
there has been relatively little research conducted on 
the measurement of sleep positions. 

In this study, a sleep monitoring system using a 
depth camera was proposed to monitor users’ 
breathing rate, body movement, and sleep position in 
bed. Moreover, we evaluated the measurement 
accuracy of the system, including the accuracy of 
head and torso detection, breath measurement 
(compared to RIP), and sleep movement (compared 
to Actigraphy). Through the experimental results, 
we confirmed that the system could accurately 
monitor user’s sleep conditions. This paper is 
structured as follows: The first section deals with the 
introduction of present sleep studies. The second 
section of the article is a review of several breath 
measurement methods and activity monitoring while 
sleeping. The proposed system design is described in 
the third section.  The experimental results are 
demonstrated in section four followed by the 
discussion on some important findings. Finally, 
conclusions and suggestions are given for further 
research. 

2 RELATED WORKS 

In this section, we discuss relevant literatures of 
breath measurement and sleep cycle monitoring 
while sleeping. 

2.1 Breath Measurement  
while Sleeping 

Breathing is important while sleeping. There are 
many breathing-related sleep disorders, such as 
apnea and hyperventilation syndrome (HVS). 
Currently, many methods are proposed to monitor 
the breath conditions while sleeping. Most screening 
tools consist of an airflow measuring device, a blood 
oxygen monitoring device, and the respiratory 
inductance plethysmography (RIP). Thermistor (TH) 
measurements have been traditionally used to 
determine airflow during PSG studies. It is placed 
over the nose and mouth and infers airflow by 
sensing differences in the temperature of the warmer 
expired air and the cooler inhaled ambient air. 
However, low accuracy in detecting hypopneas is a 
major drawback (BaHamman, 2004). The pulse 
oximeter is a medical device that monitors the 
oxygen saturation of user’s blood, and changes in 

blood volume in the skin. Low oxygen levels in the 
blood often occur with sleep apnea and other 
respiratory problems (Douglas, et al., 1992). 
Respiratory Inductance Plethysmography (RIP) 
measures the body movement of chest wall or 
abdominal wall caused by breathing exercise (Whyte 
et al., 1991; Cantineau et al., 1992), and then the 
breathing conditions can be estimated accurately. 
However, most of the breath measurement methods 
are essential to directly contact to the user while 
measuring, and it might affect the user and decrease 
the sleep quality. 

In recent years, some non-contact breath 
measurement methods are developed.  A study used 
a CCD video camera to detect the optical flow of the 
user in bed (Nakajima et al., 2001). PneumaCare 
developed a non-invasive method called Structured 
Light Plethysmography (SLP), which utilizes the 
distortion with movement of a structured pattern of 
light to calculate a volume or change in volume of a 
textured surface. Another study conducted an 
experiment and the results showed that SLP was 
comparable in performance to spirometer (Wareham 
et al., 2009). Moreover, slit lights projection (Aoki 
et al., 2006) is another non-invasive method which 
measures the breathing conditions by projecting the 
near-infrared multiple slit-light patterns on the user 
and measuring the breathing status. 

In addition to computer vision-based methods, 
there is a non-contact method which uses ultra 
wideband (UWB) to measure the breathing status. A 
study proposed an application of UWB radar-based 
heart and breathing activities for intensive care units 
and conventional hospital beds (Staderini, 2002). 
Another study used UWB to measure baby’s 
breathing and heart rate especially in terms of 
opportune apnea detection and sudden infant death 
syndrome prevention (Ziganshin et al., 2010).  

2.2 Sleep Cycle 

For monitoring the sleep activity through movement, 
actigraphy has been used to study the sleep patterns 
for over 20 years. Actigraphy is a non-invasive 
method of monitoring human activity cycles (Sadeh, 
et al., 1994). It is useful for determining sleep 
patterns and circadian rhythms. The advantage of 
actigraphy over traditional PSG is that actigraphy 
can conveniently record the sleep activity (Ancoli-
Israel et al., 2003). In recent years, many 
commercial products were developed, such as Fitbit, 
WakeMate, and Actiwatch. In general, these 
products detect the information of time to fall asleep, 
time to wake up, and totally sleeping time. A study 
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evaluated the measurement results of actigraphy and 
compared to PSG, and the experimental results 
showed that sleep parameters from actigraphy 
corresponded reasonably well to PSG (Kushida et al., 
2001). In addition, there is a non-contact method 
which uses a microphone and an infrared sensor to 
monitor the sleep status. Moreover, some studies 
utilize motion sensors (accelerometer, piezoelectric 
sensor) inside the pillow (Harada et al., 2000) or bed 
(Malakuti et al., 2010; Hoque et al., 2010) to 
monitor the sleep movement and sleep positions.  

However, none of related research in our survey 
has a complete study to provide a non-contact and 
multi-functioning sleep monitoring technique to 
monitor the sleep conditions. In this study, we 
developed a non-contact sleep monitoring system 
which can monitor user’s sleep position, breathing 
condition, and body movement in the same time. 

3 SYSTEM DESIGN 

In this study, a cross-section object detection method 
is proposed to detect user’s head and torso using a 
depth camera. The sleep position, body movement, 
and breathing condition are monitored once the head 
and torso is detected.  The procedure of this method 
is as follows: First, the view transformation is 
estimated. Then, a median filter is adopted to reduce 
the image noise after view transformation. Next, a 
cross-section method is used to detect user’s head 
and torso so that the sleep position and body 
movement can be measured. Besides, a breath 
 

  
Figure 1: System Framework. 

measurement method is proposed to detect the 
breathing conditions through the movement of the 
torso. The system framework of this system is 
shown in Figure 1. 

3.1 System Environment 

In this system, a depth camera (Microsoft, 2011) is 
used to capture the sequence of depth images of the 
user on the bed. The depth camera consists of an 
infrared laser projector combined with a CMOS 
sensor, which captures color images and a depth 
images under ambient light condition. In addition, 
the depth image can also be captured under the no-
light condition. For the reason of easy setup and 
preventing the interference with the sight view of the 
user while sleeping, in this study, the depth camera 
is placed on the wall behind the head instead of 
suspending from the ceiling. Besides, in order to 
ensure that the user’s head and torso can be captured, 
and for the issues of breath measurement distance 
(the shorter the better), the limitation of sensing 
distance (larger than 0.8m), the depth camera is 
placed in the distance of 125 cm (49.2 inches) from 
the bed. The diagram for the system is shown in 
Figure 2. The region between gray dotted lines 
indicates the sight view of the depth camera, and the 
region between yellow lines indicates the sight view 
of the user.  

 
Figure 2: System Diagram. 

3.2 Depth Image Processing 

Although the skeleton of the user body can be 
extracted easily through Microsoft Kinect SDK, the 
skeleton of body while lying on the bed cannot be 
extracted easily. It is because that the background is 
too close to the user, and the body might be covered 
by a quilt. In this study, a cross-section method is 
proposed to detect user’s head and torso with a depth 
camera. We process the depth image signals at the 
resolution of 320 pixels in width and 240 pixels in 
height, and the frame rate is 30 frames per second.  
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View Transformation 
In order to determine the cross-sections of the depth 
image, we would like to transform the camera view 
from the side view to the top view. To do that, we 
need to calculate bed’s normal vector first. In order 
to rotate the camera view to the top of the bed, three  
points and one rotate center point need to be 
specified manually. After taking three 3D-points on 
the bed and using cross product, the system could 
get the normal vector of the bed. Then, these 2D-
points could project to 3D-points in the real world. 
Then, we proceed to calculate rotation matrix for the 
bed’s normal vector. Once we have the rotation 
matrix, we can project all 2D points back to 3D 
point-cloud. Again, we project it back to 2D depth 
image. However, it will lose some information after 
rotating the camera view, so a median filter is used 
to fill empty holes. Figure 4b shows the original 
depth image, and Figure 4c shows the depth image 
after view transformation.  

Cross-Section Method 
We generate several binary images by setting 
different thresholds starts from the shallowest point 
of the depth image to the depth of the bed. We 
generate cross-sections every 2 cm (0.787 inches) 
from top to bottom. Generally, the distance between 
the highest point of the human body and the bed is 
around 18~28 cm, therefore, there would be 9~13 
transverse sections of the person from top to bottom. 
Figure 3 shows ten cross-sections (red line) from the 
highest point of the red point to the bed.  

 
Figure 3: Cross-sections of the lying user from top to 
bottom. Red point indicates the highest point of the user. 

Head and Torso Detection 
By using connect-component analysis, the 
components from each cross-section can be 
extracted. The concept of this method is to find out 

spheres in each cross-section. Once there is a circle 
growing larger from top section to bottom section, 
we assume that it might be a sphere there. So far, 
this algorithm might find other spheres. To decide 
the highest sphere, we collect each circle’s 
contribution from each section. More circles at the 
same location means higher probability to have 
sphere there. If sphere candidates have n different 
locations, the probability that might be a sphere at 
location l is: ܲ(݈) = ∑ #	௢௙	௖௜௥௖௟௘௦	௔௧	௟ೞ೐೎೟೔೚೙ೞ∑ ∑ #	௢௙	௖௜௥௖௟௘௦	௔௧	௜ೞ೐೎೟೔೚೙ೞ೙೔సబ                 (1) 

In addition to detecting head from single depth 
image, we need to leverage the advantage of video 
sequence. Hence, we push every head location found 
by each frame into a queue. Then, we use the same 
idea to re-locate the highest probability head-like 
sphere. This will avoid some occasional misleading 
failed detection.  

 
Figure 4: Depth image Processing Procedure of our system. 
(a) Captured color image. (b) Captured depth image. (c) 
View transformed image. (d) Filtered image. (e) Cross-
section image. (f) Final result of head/torso detection. 

Once the head is detected, the next step is to 
detect the torso’s ROI (region-of-interest). We adopt 
almost the same way as detecting the head, but this 
time we track cuboids rather than spheres. However, 
there is a problem that the pillow might be 
recognized as a torso. Therefore, we reject cuboids if 
there is a head on it. Figure 4  shows  the  processing  
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procedure of head and torso detection in this system. 

Head and Torso Detection Algorithm 
Inputs: 
C := Set of circles from each sections 
Cu := Set of cuboid from each sections 
Th := threshold distance to determine two different cluster 
 
Outputs: 
Head and torso positions 
 
Steps: 
1.Classify_components(C,Th) 
{ 
//Classify C into clusters according to distance Th. 
1.1 clusters_num = SeqPartition(C,Th) 
 
1.2 voting[cluster_num] //# of member in each 

component 
1.3 leader[cluster_num]  //the biggest sphere size in 

individual cluster 
1.4 if( clusters_num > 0) 

{ 
 1.4.1 Loop for each Ci element in C 
  1.4.1.1 num = cluster_number(i) 
  1.4.1.2 if(voting[num] == 0 OR leader[num]’s 

size < Ci’s size ) 
                   leader[num] = Ci 
              End if 
  1.4.1.3  voting[num] = voting[num] + 1 
  1.4.2 End loop 

1.5 } 
1.6 Sort voting and leader array 
1.7 Return array and # of cluster 

} 
 
2. Qhead := a queue that collects head’s position and 
location in the video sequence. 
 
Find_head(C) 
{ 

2.1 Th = head_boundary. 
2.2 Head = Classify_components(C,Th). 
2.3 Push Head into queue Qhead. 
2.4 Final_Head = Classify_components(Qhead,Th). 

} 

3. Qtorso := a queue that collects torso’s position and 
location in the video sequence. 
Find_torso(Cu,Head) 
{ 

3.1 Th = torso_bounday 
3.2 Remove cuboid from Cu if it intersects with Head.  
3.3 Torso = Classify_ components(Cu,Th). 
3.4 Push Torso into queue Qtorso 
3.5 Remove cuboid from Q if it intersects with Head. 
3.6 Final_torso = Classify_ components(Qtorso,Th). 

} 

4. Detect_body() 
{ 

4.1 Collect C and Cu from each sections 
4.2 if (Head = Find_head(C)) 

4.2.1 Torso = Find_torso(Cu) 
4.3 End if 

} 

Breath Measurement 
The breathing signal can be extracted from the torso 
ROI once we detect the head and torso. While the 
user is inhaling, his chest wall will expand, and the 
average depth value of the torso ROI will decrease; 
on the contrary, the average depth value of the torso 
ROI will increases while the user is exhaling. 
Therefore, the sequential of the average depth value 
of the torso ROI is considered as the breathing signal 
under the premise that the user is sleeping. For 
breath measurement, a turning point detection 
algorithm is proposed. At first, a mean filter is used 
for reducing the noises caused by the sensing 
deviation and body movements. Then, the turning 
points of the breathing signal are detected using the 
second derivative method. Finally, in order to 
eliminate redundant turning points, a dynamic 
threshold is applied to find the exact peak points and 
valley points.  Figure 5 shows a fragment of the 
breathing signal (blue line) and the measurement 
results (vertical gray line) during a realistic 
overnight sleep.  

 
Figure 5: Breath Measurement. The blue line indicates the 
raw breathing signals, and the gray lines indicate the 
turning points which we detected. 

While the turning points of the breathing signals 
are detected, the information of the breathing 
conditions can be figured out easily. The breathing 
conditions include the breathing rate, breathing 
depth, breathing stability, inhalation time, exhalation 
time, inhalation/exhalation ratio, and sleep apnea 
symptoms.  
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Body Movement 
The body movement is defined as the sum of head 
movement and torso movement. The HRt indicates 
the average depth value of the head ROI in time t, 
and the TRt indicates the average depth value of the 
head ROI in time t. Then, the absolute difference 
value between two adjacent images frames could be 
calculated (Equation 2). Mt indicates the movement 
value of the user in time t. 

 M୲ = |HR௧ − HR௧ିଵ| + |TR௧ − TR௧ିଵ|		      (2) 

Sleep Position 
In this system, two main sleep positions (supine 
position and side-lying position) can be recognized. 
After the head and torso are detected, the highest 
point of head ROI and torso ROI can be found. Then, 
the ratio of the highest head point to torso point is 
calculated. Figure 6 shows the highest point of head 
ROI (blue dot) and torso ROI (red dot) in the side-
lying position and supine position. 

 
Figure 6: Sleep Positions. Red dot indicates the highest 
point of torso ROI, and blue dot indicates the highest point 
of head ROI. 

Next, the sleep position can be classified 
according to the ratio defined in equation 3. In order 
to find out the threshold to classify the sleep position, 
an experiment was conducted to record five 
participant’s (two females and three males) highest 
points of head ROI and torso ROI in two sleep 
positions (side-lying and supine) and two conditions 
(sleep with no quilt and sleep with a thin quilt) 
(Figure 7). The results revealed that the distance of 
the highest head point does not change significantly 
in different sleep positions and conditions. However, 
the distance of the highest torso point changed 
significantly in different sleep positions. The 
average ratio is -0.02633 in supine position, and it is 
0.0652 in side-lying position. Therefore, the 
detection threshold of sleep position is set to the 
median value: 0.01. While the ratio is larger than the 
threshold value, the sleep position is defined as the 
supine position. Otherwise the sleep position is 
defined as the side-lying position (equation 4). From 
Figure 7, we can observe that the standard deviation 
of the body distance is bigger in side-lying position 

than others. It is because the highest torso points are 
different for female and male. However, our method 
can also distinguish the sleep position accurately no 
matter no matter the gender. ܴܽ݋݅ݐ = 	ୈ೓೐ೌ೏ି஽೟೚ೝೞ೚ୈ೓೐ೌ೏                      (3) 

	 ݁ݎݑݐݏ݋ܲ = ൜		ܵ݅݀݁	݈݃݊݅ݕ				݂݅		݋݅ݐܴܽ > ݁ݏ݅ݓݎℎ݁ݐܱ																				݁݊݅݌ݑ0.01ܵ 				(4) 

 
Figure 7: The distance between the depth camera and the 
highest point of head ROI and torso ROI in two positions 
(supine and side-lying) and two conditions (sleep with no 
quilt and sleep with a thin quilt). 

3.3 Measurement Limitations 

There are some measurement limitations in this 
system. First, according to the law of rectilinear 
propagation of light, the depth value cannot be 
detected while the IR patterns are blocked by objects. 
From the experiment results, we found that the most 
common problem is that the hand would block some 
of the depth IR patterns while side-lying. It might 
affect the accuracy of torso detection. Second, the 
breathing amplitude of torso movement would be 
decreased with the increase of the thickness of quilt. 
According to our test, the average breathing 
amplitude of the torso movement with no quilt is 0.5 
cm and it is 0.35 cm while sleeping with a thin quilt. 
The thickness of the thin quilt in our test is 0.6 cm. 
However, while sleeping with a thick quilt, such as 
thick silk-padding quilts, the system might not 
accurately detect the torso movement caused by 
breathing exercise. 

4 EXPERIMENTS 

Two experiments were conducted to evaluate the 
measurement accuracy of head/torso detection, sleep 
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position, body movement, and breath measurement 
of this system. First experiment was mainly 
designed to evaluate the measurement reliability for 
different users. Second experiment was designed to 
evaluate the measurement accuracy in realistic 
overnight-sleep condition. 

4.1 Experiment I 

Experimental Design 
Eight participants volunteered to participate in this 
experiment (five males and three females). The 
average age is 33.8 years old (SD = 17.6), including 
two sixty-year old participants, five young 
participants (25~30 years old), and a ten-year old 
participant. The body mass index (BMI) of them is 
in the range between 18.6~29.75. In this experiment, 
participants were asked to lie down on the pillow, 
and a breathing sensor, RIP (Thought Technology 
Ltd., 2010), was used to record the breathing 
conditions as the ground truth. During the 
experimental procedure, they were asked to change 
the sleep position every fifteen breathing cycles. The 
procedure of this experiment is in the sequence of 
supine, lying on the right side, supine, lying on the 
left side, supine, and lying on the right side. Totally, 
the participant needed to change the sleep position 
five times.  Besides, the experimental procedure 
needed to be done twice, including a condition that 
the participants sleep with a thin quilt, and a 
condition that they sleep with no quilt. Before each 
task, participants were reminded not to breathe 
deliberately. 

Experimental Results 
The sleep measurement were divided into four 
different conditions in this experiment, including 
two sleep positions (side-lying and supine) and two 
circumstances (sleep with a thin quilt and sleep with 
no quilt). For each condition, the total numbers of 
correct head detection frames were calculated 
manually as well as the total numbers of correct 
torso detection frames. The average of accurate rate 
and standard deviation in each condition are listed 
below. The experimental results showed that while 
participants slept with no quilt, the measurement 
accuracy of head detection was 98% (SD = 0.036) 
while in the side-lying position, and it was 99.3% 
(SD = 0.018) in the supine position. Moreover, the 
measurement accuracy of torso detection was 91.5% 
(SD = 0.16) in the side-lying position, and it was 
99.3% (SD = 0.01) in the supine position. Besides, 
while participants slept with a thin quilt, the 
measurement accuracy of head detection is 96.7% 

(SD = 0.11) in the side-lying position, and it was 
99.5% (SD = 0.02) in the supine position. Moreover, 
the measurement accuracy of torso detection was 
94.5% (SD = 0.1) in the side-lying position, and it 
was 99.5% (SD = 0.008) in the supine position. 
Overall, the average accurate rate was 98.4% in head 
detection and 96.4% in torso detection. The 
experimental results of head and torso detection are 
shown in Figure 8.  

 
Figure 8: Measurement results of head and torso detection 
in experiment I. 

For breath measurement, the measurement 
accuracy is defined as the ratio of the totally 
breathing cycles we detected to the totally breathing 
cycles the RIP system detected. The measurement 
results of the RIP system was regarded as the ground 
truth of the breathing conditions. The experimental 
results show that while the user sleeps with no quilt, 
the measurement accuracy of breathing rate was 
81.9% (SD = 0.11) in the side-lying position, and it 
was 90.4% (SD = 0.07) in the supine position. 
Moreover, while the user sleeps with a thin quilt, the 
measurement accuracy of breathing rate was 84.1% 
(SD = 0.05) in the side-lying position, and it was 
88% (SD = 0.08) in the supine position. Overall, the  

 
Figure 9: Measurement results of breath measurement in 
experiment I.  
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average accurate rate of breath measurement was 
86.3%. The experimental results of the breath 
measurement are shown in Figure 9.  

For sleep position, the experimental results 
showed that in the circumstance of sleeping with a 
thin quilt, the detection accuracy was 100% (N=24) 
in the side-lying position, and it was 100% (N=24) 
in the supine position. Besides, while the user slept 
with no quilt, the detection accuracy was 95.8% 
(N=24) in the side-lying position, and it was 100% 
(N=24) in the supine position. 

4.2 Experiment I I: Realistic 
Overnight-Sleep Monitoring 

Experimental Design 
The experiment was conducted to ensure that the 
system could monitor the realistic overnight-sleep 
conditions accurately. A male participant (28 years-
old) volunteered to participate in this experiment. 
The same as the first experiment, the breathing 
sensor (RIP) was used to measure the breathing 
conditions as the ground truth. In addition, an 
actigraphy was used to measure the movement of the 
non-dominant hand while sleeping (Figure 10). 
There was only one limitation that the participant 
was asked to lie on the pillow. In this experiment, 
the participant was asked to participate in a ten-day 
overnight-sleep monitoring experiment. The 
experiment did not specify the time to go to the bed, 
the time to getting up, and the totally sleeping time. 
Besides, we required participants to sleep with a thin 
quilt for five days, and to sleep with no quilt for 
another five days. Participant’s breathing rate, body 
movement, and sleep position were monitored by 
our method and compared to the RIP and actigraphy. 
Figure 11 shows one of a realistic overnight-sleep 
monitoring results in day 3. Figure 11a shows the 
measurement results of breathing rate. Red curve 
indicates the measurement results of RIP system, 
and the blue curve indicates the measurement results 
of our system.  Lower part of Figure 11a shows the  

 
Figure 10: Experimental Diagram. The breathing sensor 
(RIP) and actigraphy are used to detect the breathing rate 
and body movement. 

sleep positions we detected (blue) and real condition 
(red). Figure 11b shows the movement level 
detected by an actigraphy, and Figure 11c shows the 
movement level detected by our system. In this day, 
the participant slept with a thin quilt from 1:30 AM 
to 4:53 AM.  

Experimental Results 

The same with experiment I, the sleep measurement 
were divided into four different conditions, 
including two sleep positions (side-lying and supine) 
and two sleep circumstances (sleep with a thin quilt 
and sleep with no quilt). Totally, the participant slept 
42 hours in ten nights.  

Following shows the experimental results. In the 
circumstance of sleeping with no quilt, the 
measurement accuracy of head detection was 89.4% 
(SD = 0.14) in the side-lying position and it was 
99.9% (SD = 0.0007) in the supine position. 
Moreover, the measurement accuracy of torso 
detection was 89.3% (SD = 0.014) in the side-lying 
position and it was 89.3% (SD = 0.0003) in the 
supine position. Besides, in the circumstance of 
sleeping with a thin quilt, the measurement accuracy 
of head detection was 99.9% (SD = 0.007) in the 
side-lying position and it was 98.8% (SD = 0.17) in 
the supine position. Moreover, the measurement 
accuracy of torso detection is 99.4% (SD = 0.0003) 
in the side-lying position and it is 99.9% (SD = 
0.003) in the supine position. The experimental 
results of head and torso detection are shown in 
Figure 12. Overall, the average accurate rate of head 
detection was 96.7% (SD = 0.073), and the average 
accurate rate of torso detection was 96.8% (SD = 
0.031).  

For body movement, the times of the movement 
events in our method and actigraphy were compared. 
According to the observation, we observed that big 
body movement can be measured both in our system 
and actigraphy, such as the event of turning over the 
body. Besides, micro-movement could be measured, 
(see Figure 11b and 11c). 

For breath measurement, the measurement 
accuracy of breathing rate was 89.7% (SD = 0.05) in 
the side-lying position and it was 92.8% (SD = 0.05) 
in the supine position in the circumstance of 
sleeping with no quilt Moreover, the measurement 
accuracy of breathing rate was 92.4% (SD = 0.07) in 
the side-lying position, and it was 92.7% (SD = 0.07) 
in the supine position. Overall, the average accurate 
rate of breath measurement was 92.03% (SD = 
0.044). The comparison of the breath measurement 
in these different conditions is shown in Figure 13. 

For sleep position, the experimental results 
showed that in the circumstance  of  sleeping  with  a 
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Figure 11: A Realistic Overnight-Sleep Monitoring. Red color indicates the ground truth measured by RIP and actigraphy, 
and the blue color indicates the results of our system. (a) The results of breathing rate and sleep positions. (b) The 
movement level detected by an actigraphy. (c) The movement level detected by our system. 

 
Figure 12: Measurement results of head and torso 
detection in experiment II. 

 
Figure 13: Measurement results of breath measurement in 
experiment II. 

thin quilt, the detection accuracy was 94.7% (N=19) 
in the side-lying position, and it was 100% (N=21) 
in the supine position. Besides, while the user slept 
with no quilt, the detection accuracy was 88.23% 
(N=17) in the side-lying position, and it was 100% 
(N=20) in the supine position. 

5 DISCUSSIONS 

The aim of this section is to summarize, analyse and 
discuss the results of experiments and give 
guidelines for the future developments. 

5.1 Head/Torso Detection 

From the experimental results of head and torso 
detection, we observed some issues worthy of 
discussion. First, while the user slept with a thin 
quilt, the overall detection accuracy of torso was 
better than uncovered. One reason might be that the 
thin quilt could smooth the shape of the torso, and 
enhance the measurement accuracy. Second, we 
found that the gesture might affect the head 
detection. In this system, the head and torso could be 
detected accurately under the premise that the shape 
of the head or torso is not overlapped by hand or 
other objects. Figure 14a and 15b show two special 
sleep gestures that can be detected accurately. It is 
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because that the shape of the head is not overlapped. 
However, there are some conditions that the head or 
torso could not be detected well. According to the 
observation, we found that the head could not be 
detected well while the user is scratching (Figure 
14c and d). In this condition, the shape of the head 
might be changed and no longer a sphere contour. In 
this case, the system could not recognize it as a head. 
One possible solution method is to detect the hand 
position, and then we can estimate the head position 
while the head is overlapping by hand. 

 
Figure 14: Special Sleep Postures.   

In addition, there are some sleep conditions or 
sleep positions that we did not discuss. First, the 
algorithm of head and torso detection we proposed 
can be applied to detect multiple heads and torsos. 
Moreover, a shortest distance pairing procedure is 
used to pair the head and torso of specified sleeper. 
However, we still have the detection problem while 
the users are overlapping. Second, the head and 
torso can be detect in the prone position. Howerer, 
this system can not recogize whether the user is in 
the supine position or prone position now. Figure  15 
shows the detection result of the head and torso 
detection in the prone position and multiple users.  

 
Figure 15: Other Sleep Conditions. Left: multiple sleepers. 
Right: prone position. 

5.2 Breath Measurement 

From the experimental results of breath 
measurement, we observed some phenomenon 

which was similar to the conditions of head and 
torso detection. First, the measurement accuracy of 
breathing is higher while sleeping in the supine 
position than in the side-lying position. We observed 
that there are more noises in the side-lying position 
than in the supine position. Besides, according to our 
measurement results, the average amplitude of the 
breathing signals is 0.8 cm in the supine position. 
However, the average amplitude of the breathing 
signals is about 0.5 cm in the side-lying position. 
Overall, less signal noises and more breathing 
amplitude would increase the measurement accuracy 
while sleeping in the supine position. Second, the 
overall measurement accuracy of breathing while 
sleeping with a thin quilt was better than the 
accuracy while sleeping with no quilt. We speculate 
that it might because the reason that the thin quilt 
reduces the wrinkles of the torso surface. Third, the 
movement of the torso is seen as the breathing signal, 
but the system cannot identify whether the 
movement is caused by breathing exercise or other 
exercises. According to the observations of the 
measurement results in experiment I, we found that 
there were more detection errors while the user is 
moving or turning around in bed. In experiment I, 
the participants were asked to turn over the body 
frequently, and the participant was almost in static 
condition in experiment II. That’s the reason that the 
measurement accuracy of breathing is lower in 
experiment I than in experiment II. One possible 
solution method is to suspend the breathing 
measurement while the user is moving. 

6 CONCLUSIONS AND FUTURE 
WORK 

In this study, we proposed a depth image sequence 
analysis technique to monitor user’s sleep position, 
body movement, and breathing rate on the bed 
without any physical contact. A depth image-based 
processing method is proposed to monitor the 
sleeping conditions. The results of experimental I 
showed that the proposed method is promising to 
detect the head and torso with various sleeping 
postures and body shapes. The results of 
experimental II showed that the system can 
accurately monitor the sleeping conditions. 
Therefore, we confirm that the system could provide 
relevant sleep information and sleep report to the 
user. Furthermore, the sleep parameters which we 
detected can provide to the sleep centre to diagnose 
the sleep problems. This study is important for 
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providing a non-contact technology to measure the 
sleep conditions and assist users in better 
understanding of his sleep quality. 

In the future, we expect to detect more sleeping 
conditions and solve some measurement limitations, 
such as the problems of overlapping. Besides, we 
will develop a multimedia feedback sleep-assisted 
system which can detect the breathing status and 
provide appropriate sleeping guidance in real time to 
help users shorten the time to fall asleep. In addition, 
a web-based browser will be developed to provide 
the personalized sleeping information to the user. 
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