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Abstract: Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order
coding was proposed by Simon Thorpe et al. to explain the impressive performance of the human visual
system in recognizing objects. It is based on the hypothesis that the retina represents the visual stimulus by
the order in which its cells are activated. A classical rank order coder/decoder was then designed (Van Rullen
and Thorpe, 2001) involving three stages: (i) A model of the stimulus transform in the retina consisting in
a redundant filter bank analysis; (ii) A sorting stage of the filters according to their activation degree; (iii) A
straightforward decoding procedure that consists in a weighted sum of the most activated filters. Focusing
on this last stage, it appears that the decoding procedure employed yields reconstruction errors that limit the
model Rate/Quality performances when used as an image codec. Attempts made in the literature to overcome
this issue are time consuming and alter the coding procedure or are infeasible for standard size images and
lacking mathematical support. Here we solve this problem in an original fashion by using the frames theory,
where a frame of a vector space designates an extension for the notion of basis. Our contribution is threefold.
First we add an adequate scaling function to the filter bank under study that has both a mathematical and a
biological justification. Second, we prove that the analyzing filter bank considered is a frame, and then we
define the corresponding dual frame that is necessary for the exact image reconstruction. Finally, to deal with
the problem of memory overhead, we design an original recursive out-of-core blockwise algorithm for the
computation of this dual frame. Our work provides a mathematical formalism for the retinal model under
study and specifies a simple and exact reverse transform for it. Furthermore, the framework presented here
can be extended to several models of the visual cortical areas using redundant representations.

1 INTRODUCTION

Neurophysiologists made substantial progress in bet-
ter understanding the early processing of visual sti-
muli. Especially, several efforts proved the ability of
the retina to code and transmit a huge amount of data
under strong time and bandwidth constraints (Thorpe,
1990; Meister and Berry, 1999; Gollisch and Meis-
ter, 2008). The retina does this by means of a neu-
ral code consisting in a set of electrical impulses: the
spikes (Rieke et al., 1997). Based on these results, our
aim is to use the computational neuroscience models
that mimic the retina behavior to design novel lossy
coders for static images.

In the literature, numerous retina models are pro-
posed. Although there is no clear evidence on how
the spikes encode a given visual stimulus, we assume
in this paper that the relevant encoding feature is the
order in which the retina neurons emit their first spike.
This assumption was motivated by Thorpe et al. neu-

rophysiologic results on ultra-rapid stimulus catego-
rization (Thorpe, 1990; Thorpe et al., 1996). Authors
showed that still image classification can be achieved
by the visual cortex within very short latencies of
about 150 ms or even faster. As an explanation, it was
stated that:There is information in the order in which
the cells fire, and thus the temporal ordering can be
used as a code. This code termed as rank order coding
(ROC) was further studied in (Van Rullen and Thorpe,
2001; Thorpe, 2010) and yielded the conception of a
classical retina model (Van Rullen and Thorpe, 2001).

However, one major limit of the ROC coder de-
fined in (Van Rullen and Thorpe, 2001) prevents us
from its use for the design of image codecs. The
proposed decoding procedure is inaccurate. Indeed,
the bio-inspired retina model that generates the spikes
is based on a redundant filter bank image analysis,
where the considered filters are not strictly orthogo-
nal. Thus, the filter overlap yields reconstruction er-
rors that limit the Rate/Quality performance (Perrinet
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et al., 2004; Bhattacharya and Furber, 2010; Mas-
moudi et al., 2010). In this work we tackle expli-
citly this issue. Attempts made in the literature to
correct this overlap are time consuming and alter the
coding procedure (Perrinet et al., 2004; Bhattacharya
and Furber, 2010) or are infeasible for standard
size images and lacking mathematical support (Bhat-
tacharya and Furber, 2007; Bhattacharya and Furber,
2010). In this paper, we give an original solution rely-
ing on the so-called frames theory (Duffin and Schaef-
fer, 1952; Kovacevic and Chebira, 2008). The mathe-
matical concept of frames extends the notion of basis
to sets of filters which are linearly dependent. Their
use for redundant signal analysis and reconstruction
has already been experienced with success (Burt and
Adelson, 1983; Rakshit and Anderson, 1995; Do and
Vetterli, 2003). Our method requires the computa-
tion of a reverse operator once for all and keeps the
bio-inspired coding scheme unchanged. We more-
over verify that the reconstructed image that we get
is equal to the original stimulus.

The present work brings three main contributions:
(i) We add to the original retinal filter bank an ade-
quate scaling function, and (ii) we provide an original
mathematical demonstration that the filter bank thus
defined is a frame. Then we propose an algorithm for
errorless reconstruction through the construction of a
so-called “dual frame”; (iii) We solve the technical
issue of memory overhead that prevented the use of
frames for high dimension spaces, with a novel out-
of-core algorithm that computes the dual frame.

This paper is organized as follows: In Section 2,
we present the bio-inspired retina model under study.
Then in Section 3 we introduce a matrix-based for-
malism for the retinal transform and use it to define
an exact decoding scheme through the construction of
a dual frame. Finally in Section 4 and Section 5, we
summarize and discuss the results and show the gain
that we obtain in terms of Rate/Quality tradeoff.

2 THE RANK ORDER CODER

This Section summarizes the three stages of the ROC
coder/decoder defined in (Van Rullen and Thorpe,
2001). First we present in Section 2.1 the image trans-
form as performed by a bio-inspired retina model.
Then we give the specification of the subsequent neu-
rons rank ordering in section 2.2. Finally we describe
the decoding procedure and show its inaccuracy in
Section 2.3.

2.1 The Image Transform in the
Bio-inspired Retina Model

Neurophysiologic experiments have shown that, as
for classical image coders, the retina encodes the
stimulus representation in a transform domain. The
retinal stimulus transform is performed in the cells of
the outer layers. Quantitative studies such as (Field,
1994; Rodieck, 1965) have proven that the outer cells
processing can be approximated by a linear filter-
ing. In particular, neurophysiologic experiments con-
ducted in (Field, 1994) yielded the largely adopted
DoG filter which is a weighted difference of spatial
Gaussians that is defined as follows:

DoG(x,y) = wcGσc(x,y)−wsGσs(x,y), (1)

wherewc andws are the respective positive weights
of the center and surround components of the recep-
tive fields, σc andσs are the standard deviations of
the Gaussian kernelsGσc andGσs, such thatσc < σs.
The DoG cells can be arranged in a dyadic gridΓ of
K layers to sweep all the stimulus spectrum as shown
in Figure 1(b) (Van Rullen and Thorpe, 2001; Per-
rinet et al., 2004; Masmoudi et al., 2010). As in
the retina topology, the cells density and scale are in-
versely proportional. This keeps the model strongly
inspired from the mammalians retina, though the au-
thors in (Van Rullen and Thorpe, 2001) do not claim
biological plausibility. Each layer 06 k < K in the
grid Γ, is tiled with filtering cells, denoted byDoGk,
having a scalek and generating a transform subband
Bk such that:

DoGk(x,y) = wcGσc
k
(x,y)−wsGσs

k
(x,y), (2)

whereσc
k+1 =

1
2σc

k andσs
k+1 =

1
2σs

k. EachDoGk fil-
ter has a size of(2Mk+1)2, with Mk = 3σs

k. Authors
in (Van Rullen and Thorpe, 2001) chose the biologi-
cally plausible parameters established in (Field, 1994)
wc = ws = 1, σc

k =
1
3σs

k ∀k, andσc
K−1 = 0.5 pixel.

In order to measure the degree of activationcki j of
a given retina cell, such that(k, i, j) ∈ Γ, we compute
the convolution of the original imagef by theDoGk
filter. Yet each layerk in the dyadic gridΓ is under-
sampled with a pace of 2K−k−1 pixels with an orig-
inal offset of⌊2K−k−2⌋ pixels, where⌊.⌋ is the floor
operator. Having this, we define the functionuk, such
that thecki j coefficients are computed at the locations
(

uk(i),uk( j)
)

as follows:

uk(i) = ⌊2K−k−2⌋+2K−k−1i,∀k∈ J0,K−1K. (3)

uk can be seen as an undersampling function. We
notice thatuK−1(i) = i, and that the other functions
(uk)k∈J0,K−2K are undersampled versions ofuK−1. We

BIOSIGNALS 2012 - International Conference on Bio-inspired Systems and Signal Processing

154



also defineNk =
⌊

N−⌊N−2K−k−2⌋

2K−k−1

⌋

, such thatN2
k is the

number of cells inBk, thekth layer ofΓ. We also no-
tice here thatNK−1 =N. Having these definitions,cki j
is then computed as follows:

cki j =
x=uk(i)+Mk,y=uk( j)+Mk

∑
x=uk(i)−Mk,y=uk( j)−Mk

DoGk(uk(i)− x,uk( j)− y) f (x,y). (4)

(a) (b)

(c)

Figure 1: 1(a):cameraman. The imagef size is 257x257
pixels. 1(b): Example of a dyadic grid of DoG’s used for
the image analysis (from (Van Rullen and Thorpe, 2001)).
1(c): The transform resultc with the different generated
subbandsBk (here shown in a logarithmic scale).

This transform generates a vectorc of (4
3N2−1)

coefficientscki j for anN2-sized image (ifN is a power
of 2). This architecture is similar to a Laplacian pyra-
mid (Burt and Adelson, 1983). An example of such a
transform performed on thecameramantest image is
shown in Figure 1.

2.2 The Generation of the ROC

Thorpe et al (Thorpe, 1990; Thorpe et al., 1996) pro-
posed that the order in which spikes are emitted en-
codes the stimulus. This yielded the ROC which re-
lies on the following simplifying assumptions:

i) From stimulus onset, only the first spike emitted
is considered.

ii) The time to fire of each cell is proportional to its
degree of excitation.

iii) Only the order of firing of the neurons encodes the
stimulus.

The neurons responses(cki j )ki j∈Γ (cf. Equation (4))
are then sorted in the decreasing order of their ampli-
tude|cki j |.

The final output of this stage, the ROC, is the
sorted list ofNs couples(p,cp) such that|cp|> |cp+1|,
with p being the indexp(k, i, j) = k.N2

k + i.Nk+ j and
N2

k the number of cells in the subbandBk. Such a
code gives a biologically plausible interpretation to
the rapidity of the visual stimuli processing in the hu-
man visual system. Indeed, it seems that most of the
processing is based on feed-forward mechanism be-
fore any feedback occurs (Thorpe et al., 1996). The
generated series(p,cp)06p<Ns

is the only data trans-
mitted to the decoder. Note that in some implementa-
tions as (Van Rullen and Thorpe, 2001; Perrinet et al.,
2004), the exact values of the coefficientscp are omit-
ted and recovered through a look-up-table (but this is
out of the scope of this paper).

2.3 Decoding Procedure of the ROC

We consider the set of the firstNs generated spikes
forming the ROC of a given imagef . The estimation
f̃Ns of the original inputf is defined (Van Rullen and
Thorpe, 2001) by:

f̃Ns(x,y) =
Ns−1

∑
p(k,i, j)=0

cpDoGk(uk(i)− x,uk( j)− y).

(5)
Equation (5) gives a progressive reconstruction de-
pending onNs. Indeed, one can restrict the code to
the most valuable coefficientscp, i.e the most acti-
vated neurons of the retina. This feature makes the
coder be scalable (Masmoudi et al., 2010).

An example of such a reconstruction is given in
Figure 2, with all the retina cells taken into account.
Figure 2 also shows that the retina model decoding
procedure, though giving a good approximation of the
stimulus, is still inaccurate. In this example, recon-
struction quality is evaluated to 27 dB of PSNR.

3 INVERTING THE RETINA
MODEL

In this section, we define an original and exact image
reconstruction algorithm starting from the ROC. First,
we introduce in Section 3.1 a low-pass scaling func-
tion in the analyzing filter bank. This modification
will be shown to be necessary for the transform in-
vertibility. Then, in Section 3.2, we give a matrix-
based formalism for the transform and we use it to
prove that our filter bank is a frame in Section 3.3. Fi-
nally, in Section 3.4, we show the exact reconstruction
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(a) (b)

Figure 2: Result of the decoding procedure with the origi-
nal approach using the totality of the retina cells. 2(a): The
reconstructed imagẽfNs. The PSNR quality measure off̃Ns

yields 27 dB. 2(b): The error image shown in a logarith-
mic scale: high frequencies are the ones that are the most
affected by this approach.

results using the dual frame and introduce an out-of-
core algorithm to construct it.

3.1 Introduction of a Low-pass Scaling
Function

We introduce a low-pass scaling function in the filter
bank used for image analysis. This modification does
not alter the ROC coder architecture and has both a
mathematical and a biological justification.

Indeed, the Fourier transform of a Gaussian is an-
other Gaussian, so thatF (DoGk) is a difference of
Gaussians. Therefore, withwc = ws = 1 (cf. Equa-
tion (2)), we have:

F (DoGk) = 2π(σc
k)

2G
(σc

k)
−1−2π(σs

k)
2G

(σs
k)

−1. (6)

We can easily verify that for the central Fourier coef-
ficient of eachDoGk filter we have:

F (DoGk)
(

u0(0),u0(0)
)

= 0, ∀k, (7)

and that for the other coefficients we have:

F (DoGk)(i, j) > 0, ∀(i, j) 6=
(

u0(0),u0(0)
)

. (8)

This assertion is also verified on Figure 3(b). In order
to cover up the centre of the spectrum, we propose to
replace theDoG0 filter, with no change in the nota-
tion, by a Gaussian low-pass scaling function consist-
ing in its central component, such that:

DoG0(x,y) = wcGσc
0
(x,y). (9)

Figures 3(a) and 3(b) show the spectrum partition-
ing with the differentDoGk filters (k> 1, in blue) and
the spectrum of the new scaling functionDoG0 (in
red dashed line) which covers low frequencies. With
no scaling function, all constant images would be
mapped into the null image 0 and this would make the
transform be non-invertible. Here we overcome this

(a) (b)

Figure 3: 3(a): Spectrum of the DoG filters. The abscissa
represents the frequencies.The ordinate axis represents the
differentDoGk filters gain in dB. 3(b): Half of the spectrum
in 3(a) with the abscissa having a logarithmic step. The
scaling functionDoG0 is plotted in red dashed line.

problem as the central Fourier coefficient ofDoG0
verifies:

F (DoG0)
(

u0(0),u0(0)
)

> 0. (10)

The scaling function introduction is further justi-
fied by the actual retina behavior. Indeed, the sur-
round componentGσs

k
in Equation (2) appears pro-

gressively across time driving the filter passband from
low frequencies to higher ones. So that, the Gaussian
scaling functionDoG0 represents the very early state
of the retina cells.

In order to define an inverse for the new transform,
we demonstrate in the following that the set of DoG
filters augmented with theDoG0 scaling function is
a “frame”. So that, we will define the adequate nota-
tions in Section 3.2 and give the proofs in Section 3.3.

3.2 Matrix Notations for ROC

Unlike the implementations in (Van Rullen and
Thorpe, 2001; Perrinet et al., 2004; Masmoudi et al.,
2010), we use a matrixΦ to compute the image
transform through the modelled retina. The lines
of Φ are the different analyzingDoGk filters. This
yields an “undersampled Toeplitz-bloc” sparse mat-
rix (see Figure 4(a)). Such an implementation allows
fast computation of the multi-scale retinal transform
through sparse matrix specific algorithms (Golub and
Van Loan, 1996). This will in addition help us cons-
truct the dual frame ofΦ. The DoG transform is out-
lined in the following equation:

c= Φ f . (11)

Interestingly, the straightforward synthesis as defined
in (5) amounts to the multiplication of the vector out-
put by Φ∗ the Hermitian transpose ofΦ (see Fig-
ure 4(b)). The reconstruction procedure is then out-
lined in the following equation:

f̃Ns = Φ∗ c. (12)

Though small, the synthesis yields an error that limits
the ability of the model to be used as a codec.
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(a) (b)

Figure 4: Template of the DoG analysis and synthesis matri-
ces (Φ andΦ∗). In this paper,Φ andΦ∗ are represented as
matrices where blue dots correspond to non-zero elements.
Note here thatΦ andΦ∗ are highly sparse matrices.

3.3 The DoG Transform is a Frame
Operator

Our aim is to prove that the bio-inspired retina image
transform presented amounts to a projection of the
input image f onto a frame of a vector space. The
frame is a generalization of the idea of a basis to sets
which may be linearly dependent (Duffin and Scha-
effer, 1952; Kovacevic and Chebira, 2008). These
frames allow a redundant signal representation which,
for instance, can be employed for coding with er-
ror resilience. By proving the frame nature of this
transform, we will be able to achieve an exact reverse
transform through the construction of a dual frame.

A set of vectors is a frame if it verifies the so-
called “frame condition” (Duffin and Schaeffer, 1952;
Kovacevic and Chebira, 2008) which states that∃ β>

α > 0 such that :

α‖ f‖2
6 ∑

ki j∈Γ

(

cki j
)2

6 β‖ f‖2
, ∀ f . (13)

Positioning with Respect to the State of the Art.
Pyramid architectures are very common in signal pro-
cessing and involve a wide range of filters (Van Rullen
and Thorpe, 2001; Do and Vetterli, 2003; Rakshit
and Anderson, 1995). Some works in the literature
made the connection between the pyramidal architec-
ture and frames. For example, in (Rakshit and An-
derson, 1995) the authors proved experimentally that
the classical Laplacian pyramid is a frame. How-
ever, in our case, we prove that the pyramid intro-
duced in (Van Rullen and Thorpe, 2001) -which is
not Laplacian- is a frame. We showed this mathemati-
cally through an original demonstration. Also, in (Do
and Vetterli, 2003) the authors proposed the design of
a set of orthogonal vectors inspired from the Lapla-
cian pyramid to conceive a new orthogonal and tight
(α = β cf. Eq. (13)) frame. The filter bank defined

from (Van Rullen and Thorpe, 2001) form a frame
that is neither orthogonal nor tight.

Upper Bounding. Let us prove the upper bounding
in Equation (13). We have:

∑
ki j∈Γ

(

cki j
)2

= ∑K−1
k=0 ‖Bk‖

2
, (14)

whereBk is the subband of scalek generated by the
image transform with:

Bk(i, j) =
x=uk(i)+Mk,y=uk( j)+Mk

∑
x=uk(i)−Mk,y=uk( j)−Mk

DoGk(uk(i)− x,uk( j)− y) f (x,y).

If we denote byUk the undersampling operator corre-
sponding to the functionuk (cf. Equation (3)), we can
write the following:

Bk =Uk(DoGk∗ f ). (15)

Then, we have the following obvious inequalities:

‖Bk‖= ‖Uk(DoGk∗ f )‖6 ‖Uk (|DoGk| ∗ | f |)‖

6 ‖|DoGk| ∗ | f |‖

6 ‖DoGk‖‖ f‖.

Then, we get back to (14) and infer the following
bounding:

∑
ki j∈Γ

(

cki j
)2

=
K−1

∑
k=0

‖Bk‖
2
6

(

K−1

∑
k=0

‖DoGk‖
2

)

‖ f‖2

= β‖ f‖2
. (16)

Lower Bounding. Now, let us demonstrate the
lower bounding in Equation (13). We start from the
fact that:

K−1

∑
k=0

‖Bk‖
2
> ‖BK−1‖

2+ ‖B0‖
2
, (17)

which amounts to write the following inequalities:

∑
ki j∈Γ

(

cki j
)2

=
K−1

∑
k=0

‖Bk‖
2

>‖DoGK−1∗ f‖2

+‖
(

DoG0∗ f
)(

u0(0),u0(0)
)

‖
2

=‖F (DoGK−1)F ( f )‖2

+‖
(

F (DoG0)F ( f )
)(

u0(0),u0(0)
)

‖
2

=
N−1

∑
i, j=0

(

F (DoGK−1)(i, j)F ( f )(i, j)
)2

+‖F (DoG0)
(

u0(0),u0(0)
)

F ( f )
(

u0(0),u0(0)
)

‖
2
,
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where F designates the discrete Fourier trans-
form. We know thatF (DoGK−1)(i, j) > 0, ∀(i, j) 6=
(

u0(0),u0(0)
)

and thatF (DoGK−1)
(

u0(0),u0(0)
)

=

0. We also haveF (DoG0)
(

u0(0),u0(0)
)

> 0 (cf.
Section 2.1). So, if we define a setSK−1 by SK−1 =

J0,N−1K2 \
(

u0(0),u0(0)
)

andα by:

α =min
{

F (DoG0)
2(u0(0),u0(0)

)

,

{

F (DoGK−1)
2(i, j), (i, j) ∈ SK−1

}

}

> 0,

then we get the following:

N−1

∑
i, j=0

(

F (DoGK−1)(i, j)F ( f )(i, j)
)2

+ ‖F (DoG0)
(

u0(0),u0(0)
)

F ( f )
(

u0(0),u0(0)
)

‖
2

=∑
i, j∈SK−1

(

F (DoGK−1)(i, j)F ( f )(i, j)
)2

+ ‖F (DoG0)
(

u0(0),u0(0)
)

F ( f )
(

u0(0),u0(0)
)

‖
2

> α ∑
i, j∈J0,N−1K2

(

F ( f )(i, j)
)2

=α‖ f‖2
,

and Finally,∑ki j∈Γ
(

cki j
)2

> α‖ f‖2. Thus, the set of
DoG filters satisfies the frame condition (13).

3.4 Synthesis using the Dual DoG
Frame

We introduce in this section a correction means for
the reconstruction error in the retina model presented
through the frame theory.

The straightforward analysis/synthesis procedure
can be outlined in the relation between the input i-
mage and the reconstruction estimate:

f̃Ns = Φ∗Φ f . (18)

As we already demonstrated that the DoG transform
is a frame,Φ∗Φ is said to be the frame operator.
To have an exact reconstruction off , one must con-
struct the dual DoG vectors. A preliminary step is
to compute(Φ∗Φ)−1, the inverse frame operator. We
then get a corrected reconstructionf ∗Ns

, defined by:
f ∗Ns

= (Φ∗Φ)−1 f̃Ns. If Ns is the total number of the
retina model cells, we have:

f ∗Ns
= (Φ∗Φ)−1 f̃Ns

= (Φ∗Φ)−1Φ∗ c

= (Φ∗Φ)−1Φ∗ Φ f

f ∗Ns
= f . (19)

As made clear through Equation (19), the dual vec-
tors are the lines of(Φ∗Φ)−1Φ∗. Besides,(Φ∗Φ) is
a square, definite positive invertible matrix (Kovace-
vic and Chebira, 2008). This is a crucial issue as it
ensures the exactness of the reverse frame operator.

We compute the reverse frame operator(Φ∗Φ)−1

and get the results shown in Figure 5. The reconstruc-
tion obtained by the means of the dual frame operator
is accurate and requires only a simple matrix multi-
plication. In this example, reconstruction quality is
evaluated to 295 dB of PSNR.

(a) (b)

Figure 5: Result of the decoding procedure with the dual
DoG frame using the totality of the retina cells. 5(a): The
reconstructed imagef ∗Ns

. The PSNR quality measure off ∗Ns
yields 295 dB. 5(b): The error image in logarithmic scale.
This shows that the reconstruction using the dual frame is
very precise.

Dual vectors resemble the DoG analyzing filters.
This is obvious as the straightforward image recon-
struction f̃Ns is already close tof , which means that
Φ∗Φ is close to identity. However, the dual filters
lose the symmetry property of the primal ones. An
example of dual vectors constructed as the rows of
(Φ∗Φ)−1Φ∗ is shown in Figure 3.4. Figure 3.4 shows
also that the exact reconstruction off is obtained by
a slight relaxation in the symmetry constraint of the
DoG filters.

3.4.1 The Recursive Out-of-core Blockwise
Inversion Algorithm

Though the mathematical fundamentals underlying
this work are simple, the implementation of such a
process is a hard problem. In spite of the sparsity
of Φ andΦ∗, the frame operatorΦ∗Φ is anN4-sized
dense matrix for anN2-sized imagef . For instance,
if N = 257,Φ∗Φ holds in 16 Gbytes, and 258 Gbytes
if N = 513. As noticed in (Do & Vetterli 2003):A
key observation is that one should use the dual frame
operator for the reconstruction. While this seems a
somewhat trivial observation, it has not been used in
practice, probably because the usual reconstruction,
while suboptimal, is very simple.Indeed due to its
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(a) (b)

(c) (d)

Figure 6: 6(a)- 6(c): Comparison between the DoG filters
(in blue line) and their duals (in red dashed line). 6(b)-
6(d): Same as previous with the highest value of each filter
normalized to 1. Though close in shape to the DoG filters,
the dual DoG filters are asymmetric.

technical difficulty, there is no solution in the litera-
ture that computes explicitly the dual of a frame in
a general case like ours. In our work, we tackled this
technical issue and resolved it with success by design-
ing an original “out-of-core” inversion algorithm.

The frame operatorΦ∗Φ is constructed bloc by
bloc, and each bloc is stored separately on disk. The
inversion is then performed using a recursive algo-
rithm that relies on the blockwise matrix inversion
formula that follows:
(

A B
C D

)−1

=

(

A−1+A−1BQ−1CA−1 −A−1BQ−1

−Q−1CA−1 Q−1

)

,

(20)

whereQ is the Schur complement of A, such that:

Q= D−CA−1B.

Thus, inverting a matrix amounts to the inversion of
two matrices,A andD (cf. Equation (20)), that are
4 times smaller. The inversion consists then in sub-
dividing the problem by a factor 4 at each recursion
level until we reach a single bloc problem. Thereby,
we invert the single bloc remaining matrix using a
classical Gauss-Jordan elimination procedure. Obvi-
ously, this algorithm requires out-of-core blockwise
matrix routines for multiplication, subtraction and ad-
dition, that we implemented in a “multi-threaded”
fashion to accelerate the computation.

Advantages of our Approach. (Φ∗Φ) is a square,
definite positive, and invertible matrix (Kovacevic and
Chebira, 2008). Thus(Φ∗Φ)−1 exists and obviously
the exact reverse transform ofΦ too. Another advan-
tage of our method is that(Φ∗Φ) is well conditioned,
with a conditioning number estimated to around 16,
so that its inversion is stable. This is a crucial issue as
previous work aimed at conceiving the DoG reverse
transform tried to invert the original filter bank with
no scaling functionDoG0 (Bhattacharya and Furber,
2007; Bhattacharya and Furber, 2010). This is obvi-
ously mathematically incorrect as the filter bank thus
defined is not a frame and thus its pseudo inverse
(Φ∗Φ)−1Φ∗ does not exist. The solution proposed by
the authors of (Bhattacharya and Furber, 2007; Bhat-
tacharya and Furber, 2010) gives only a least squares
solution to an ill-conditioned problem. Our method
instead is stable. Besides through the out-of-core al-
gorithm that we designed we can invert(Φ∗Φ) even
for large images whereas authors in (Bhattacharya
and Furber, 2007; Bhattacharya and Furber, 2010) are
restricted to a maximum size of 32×32. Indeed, we
were able to reconstruct 257× 257 and 513× 513 i-
mages through our new approach.

The exactness of our decoding schema is con-
firmed when applied on several classical test images.
For examplecameramanreconstruction quality in-
creases from 27 dB with the classical decoder to 296
dB with ours (see Figure 7). The same test onLena
leads to an increase from 31 to 300 dB of PSNR (see
Figure 8). Numerically, the only limitation comes
from the machine precision which is finite. Given this
fact, and with a 64-bit machine precision, a value of
PSNR that is greater than 290 dB means that the re-
construction is numerically exact. We also confirm
these results by using quality metrics that are more
consistent than PSNR with the human eye perception.
Here we show the mean structural similarity measure
(SSIM) (Wang et al., 2004) (an index between 0 and
1) which also confirms the precision of our new de-
coder with an increase in quality from 0.9 to 1 when
all the retina cells have fired (Figures 7 and 8 cap-
tions).

Furthermore, correcting the reconstruction errors
using the adequate dual frame does not alter the cod-
ing procedure. Indeed, methods introduced in (Per-
rinet et al., 2004; Bhattacharya and Furber, 2010) are
based on the matching pursuit (MP) algorithm. MP
is time consuming and depends on the order in which
the “match and update” mechanism is performed. Our
method keeps the coding procedure straightforward,
multi-threadable and order-independent.

Besides, the results presented here are also bene-
ficial to the image coders that we previously designed
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f̃Ns f ∗Ns
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Figure 7: Reconstruction of the cameraman imagef us-
ing different percentages of significant coefficients. To get
this reconstruction coefficients are set to 0 if under a de-
scending threshold. The left column shows the progressive
f̃Ns synthesis. The right column showsf ∗Ns

. PSNR for the
left/right image is from top to bottom: (19.2 dB/19.5 dB),
(20.4 dB/20.8 dB), (24.08 dB/25 dB), (25.8 dB /27.5 dB),
and (27.9 dB/296 dB). The mean SSIM for the upper/lower
image is from top to bottom: (0.49 /0.57), (0.56 /0.61), (0.72
/0.76), (0.77 /0.81), and (0.91 /1).

and that are based on this same retina model (Mas-
moudi et al., 2010; Masmoudi et al., 2011).

f̃Ns f ∗Ns
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1%

5%

10%

100%

Figure 8: Reconstruction of the Lena imagef using differ-
ent percentages of significant coefficients. To get this re-
construction coefficients are set to 0 if under a descending
threshold. The left column shows the progressivef̃Ns syn-
thesis. The right column showsf ∗Ns

. PSNR for the left/right
image is from top to bottom: (20.06 dB/20.17 dB), (21.73
dB/21.83 dB), (25.93 dB/26.65 dB), (27.97 dB /28.84 dB),
and (31.23 dB/299.60 dB). The mean SSIM for the up-
per/lower image is from top to bottom: (0.38 /0.38), (0.46
/0.46), (0.69 /0.72), (0.77 /0.81), and (0.90 /1).
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4 RESULTS

We experiment our new decoder in the context of scal-
able image decoding. We reconstruct the test image
using an increasing numberNs of significant coeffi-
cients (cf. Equation (5)). We then compare the re-
sults when using the original DoG filters inΦ and
their dual DoG filters in(Φ∗Φ)−1Φ∗ for the decod-
ing procedure.

Figures 7 and 8 show two example results ob-
tained forcameramanandLena. In both figures the
left column shows the progressive straightforward re-
constructionf̃Ns and the right column shows the cor-
rected progressive reconstructionf ∗Ns

using the dual
frame.

Qualitatively speaking, the high frequencies
which were the most altered by the straightforward
synthesis are now well rendered. This is obvious
even for low rates and we can verify it in the cam-
era contours (Figure 7) or inLenahair details (Fig-
ure 8). This is an important issue as contours and
salient points are the most important features used for
categorization tasks. Bearing in mind that the retina
model under study was first designed for fast catego-
rization, our results become crucial.

Quantitatively speaking, the gain in PSNR is sig-
nificant for low rates (around 0.2 dB for both cases)
and very high when we consider the totality of the
retina cells in the reconstruction (over 260 dB for both
cases). Figure 9 compares the Rate/quality curves of
the two methods and shows the high improvement we
obtain. Here the rate is implicitly related to the num-
ber of neurons taken into account for the image recon-
struction. In all the curves shown the abscissa rep-
resents the percentage of the highest responses used
for the reconstruction and he ordinate represents the
reconstruction quality in terms of PSNR. This figure
shows that the PSNR gain grows exponentially with
the number of neurons taken into account for the re-
construction. This means that the dual frame correc-
tion, though already significant for low rates, becomes
extremely important for high rates.

5 DISCUSSION

We proposed in this work an original exact decoding
procedure for the classical rank order coder defined
in (Van Rullen and Thorpe, 2001). The authors has
then designed a bio-inspired retina model for the im-
age transform and reconstruction. Our contribution
encompasses a theoretical and a technical aspect.

Regarding the theoretical aspect, (i) we proved
that the bio-inspired transform used to model the

(a) (b)

(c) (d)

Figure 9: PSNR quality of the reconstruction using the DoG
filters (Van Rullen and Thorpe, 2001) (in blue solid line)
and the dual DoG filters (in red dashed line). Results for
cameramanare shown in the first line and results forLena
are shown in the second line. The abscissa represents the
percentage of the highest responses used for the reconstruc-
tion. The ordinate represents the reconstruction quality in
terms of PSNR. 9(a)- 9(c): Results shown for percentages
between 0% and 100%. 9(b)- 9(d): Results shown for per-
centages between 0% and 10%.

retina in (Van Rullen & Thorpe 2001) is non-
invertible as it is, and (ii) we gave an original mathe-
matical proof that this transform if augmented with an
adequate scaling function is a frame. We also showed
that the scaling function besides its mathematical jus-
tification has a biological one. We then defined the
corresponding dual frame that is necessary for the ex-
act image reconstruction.

Regarding the technical aspect, we overcame
the problem of memory overhead encountered while
computing this dual frame. Up to our knowledge,
no work in the literature concerned with high dimen-
sionality frame inversion tackled explicitly this prob-
lem (Rakshit and Anderson, 1995; Do and Vetterli,
2003). Indeed usual reconstruction algorithms avoid
such a calculation by using inaccurate, though very
simple, methods. Thus we designed an original recur-
sive out-of-core blockwise algorithm. Our algorithm
is general and could be used in a variety of applica-
tions requiring a high dimension matrix inversion.

Furthermore, the method presented in this pa-
per does not alter the coding procedure and keeps
it straightforward unlike the stimulus-dependent MP
methods in (Perrinet et al., 2004; Bhattacharya and
Furber, 2010). In fact, MP-like algorithms require the
computation of a specific reconstruction filter bank
for each specific image. On the contrary, in our case
the dual vectors used for the reconstruction (i) are
computed once for all and (ii) are the same for all im-
ages. This keeps the decoding procedure committed
to the rank order coding philosophy. Yet, the rank or-
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dering supposes that the retina cells are independent
and fire asynchronously.

One last major advantage is that our algorithm is
multi-threadable. Indeed, there is no possible data
hazard in the decoding procedure. Each value off ∗Ns

is
independent from the others and the concurrent read-
ing in Φ∗Φ does not alter the data.

Though it is to be noted that, in some implementa-
tions, the rank order decoder inaccuracy is enhanced
for a supplemental reason: the inexactness of the
look-up-table that might be used used to re-generate
the transform coefficientscp. In this work and for a
sake of clarity, we considered only the filters over-
lap as a source of error. Otherwise the reader could
not distinguish the part of error due to the filters over-
lap and the other part that is due to the look-up-table.
In our case, the decoder is supposed to be provided
with an optimal look-up table. Still the approach pre-
sented remains (i) relevant because the inaccuracy of
any look-up-table that might be used will affect both
the ”classical” reconstruction and the ”dual frame”,
(ii) novel through the introduction of the frames the-
ory and (iii) general and thus could be extended to
several models of cortical areas using redundant rep-
resentations.
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