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Abstract: Fuzzy regression techniques can be used to fit fuzzy data into a regression model. Diamond treated the case 
of a simple model introducing a metrics into the space of triangular fuzzy numbers. In previous works we 
provided some theoretical results about the estimates of a multiple regression model with a non-fuzzy 
intercept; in this paper we show how the sum of squares of the dependent variable can be decomposed in 
exactly the same way as the classical OLS estimation procedure only when the intercept is fuzzy 
asymmetric. Such a decomposition allows us to introduce a stepwise procedure which simplifies, in terms of 
computational, the identification of the most significant independent variables in the model. 

1 INTRODUCTION 

Modalities of quantitative variables are commonly 
given as exact single values, although sometimes 
they cannot be precise. The imprecision of 
measuring instruments and the continuous nature of 
some observations, for example, prevent researcher 
from obtaining the corresponding true values. 

On the other hand qualitative variables are 
commonly expressed using common linguistic 
terms, which also represent verbal labels of sets with 
uncertain borders. 

The appropriate way to manage such an 
uncertainty of observations is provided by using 
fuzzy numbers. 

In 1988 P. M. Diamond introduced a metric onto 
the space of triangular fuzzy numbers and derived 
the expression of the estimated coefficients in a 
simple fuzzy regression of an uncertain dependent 
variable on a single uncertain independent variable. 

Starting from a multivariate generalization of this 
regression, we provided in previous works some 
results on the decomposition of the deviance of the 
dependent variable according to Diamond’s metric. 

 
 
 
 

2 THE FUZZY LEAST SQUARE 
REGRESSION 

A triangular fuzzy number TRL )x,x,x(X~ =  for the 
variable X is characterized by a function 

[ ]0,1X:μX~ → , like the one represented in Fig. 1, 
that expresses the membership degree of any 
possible value of X to X~ . 

The accumulation value x is considered the core 
of the fuzzy number, while xxR −=ξ  and Lxx −=ξ  
are considered the left spread and the right spread 
respectively. 

 
Figure 1: Representation of a triangular fuzzy number. 

Note that x belongs to X~  with the highest degree 
(equal to 1), while the other values included between 
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the left extreme Lx  and the right extreme Rx  

belong to X~  with a gradually lower degree. 
The set of triangular fuzzy numbers is closed 

under addition: given two triangular fuzzy numbers 
TRL )x,x,x(X~ =  and TRL )y,y(y,Y~ = , their sum Z~  

is still a triangular fuzzy number 

TRRLL )yx,yx,yx(Y~X~Z~ +++=+= . Moreover 
the opposite of a triangular fuzzy number 

TRL )x,x,x(X~ =  is TLR )x,x,x(X~ −−−=− . 
It follows that, given n fuzzy numbers 

TRiLiii )x,x,x(X~ = , i =1, 2, .., n, their average is 
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Diamond (1988) introduced a metrics onto the 
space of triangular fuzzy numbers; according to this 
metrics, the squared distance between X~  and Y~  is 

( ) == 2
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2

RR
2
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2 )yx()yx()yx( −+−+− . 

The same Author treated the fuzzy regression 
model of a dependent variable Y~  on a single 
independent variable X~ , which can be written as  
Y~ = a + b X~ ,     a, b ∈ IR ,  
when the intercept a is non-fuzzy, as well as 
Y~  = A~ +b X~   a, b ∈ IR ,   
when the intercept TRL )a,a(a,A~ =  is fuzzy, where 
it is γ−= aa L , γ−= aa R  and γ , γ  > 0. 

The expression of the corresponding parameters 
is derived from minimizing the sum ∑ 2*

ii )Y~,Y~(d  of 
the squared distances between theoretical and 
empirical values in n observed units of the fuzzy 
dependent variable Y~  with respect to a and b. 

Such a sum takes different forms according to 
the signs of the coefficient b, as the product of a 
fuzzy number TRL )x,x,x(X~ =  and a real number k 
depends on whether the latter is positive or negative.  
by subtracting the right spread from the core. 

Diamond demonstrated that the optimization 
problem has a unique solution under certain 
conditions. 

In previous works we provided some theoretical 
results about the estimates of the regression 
coefficients and about the decomposition of the sum 
of squares of the dependent variable (Campobasso, 
Fanizzi and Tarantini, 2009) in a multiple regression 
model. In particular we treated the case of a non-
fuzzy intercept, as well as the case of a fuzzy 
intercept, which seems more appropriate  

(Campobasso and Fanizzi, 2011) for some reasons 
which will be clearer later. 

3 A MULTIVARIATE 
GENERALIZATION OF THE 
REGRESSION MODEL  

3.1 A Generalization of the Model 
Including a Non-fuzzy Intercept 

Let’s assume to observe a fuzzy dependent variable 

TRiLiii )y,y,(yY~ =  and two fuzzy independent 

variables, TRiLiii )x,x,x(X~ =  and TRiLiii )z,z,(zZ~ = , 
on a set of n units. The linear regression model is 
given by  

iY~ *= a +b iX~ +c iZ~ ,      i=1,2, ...,n; a,b,c ∈ IR. 
The corresponding parameters are determined by 

minimizing the sum of Diamond’s distances 
between theoretical and empirical values of the 
dependent variable 

∑ ++ 2
iii )Z~cX~ba,Y~d(  (1)

respect to a, b and c. As we stated above, such a 
sum assumes different expressions according to the 
signs of the regression coefficients b and c. This 
generates the following four cases 

Case 1: b>0, c>0 
=∑ ++ 2

iii )Z~cX~ba,Y~d(  
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Case 2: b<0, c>0 
=∑ ++ 2

iii )Z~cX~ba,Y~d(  
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Case 3: b>0, c<0 
=∑ ++ 2

iii )Z~cX~ba,Y~d(  
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Case 4: b<0, c<0 
=∑ ++ 2

iii )Z~cX~ba,Y~d(  
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Let’s consider, as an example, case 3 and let’s 
express it in matricial terms. The expression to be 
minimized is given by 

2 2 2( ) L L R RG y X y X y Xβ β β β= − + − + − =  

(2)( ) '( ) ( ) '( )
( ) '( )

L L L L

R R R R

y X y X y X y X
y X y X

β β β β
β β

= − − + − − +
+ − −

 

where  
y = [yi], is the n-dimensional vector of cores of the 
dependent variable; 
yL

 = [ Liy ] and yR = [ Riy ] are the n-dimensional 
vectors of lower extremes and upper extremes of the 
dependent variable respectively; 
X is the n×3 matrix of cores of the independent 
variables, formed by vectors 1, x = [ xi ], z = [ zi ]; 
XL is the n×3 matrix of lower bounds of the 
independent variables, formed by vectors 1, xL

 = 
[ Lix ], zR

  = [ Riz ]; 
XR is the n×3 matrix of upper bounds of the 
independent variables (analogous to XL), formed by 
vectors 1, xR, zL; 
β is the vector (a, b, c) '. 

The estimates of the regression coefficients are 
derived from minimizing G(β) with respect to β  i.e. 
from seeking the solutions of the system 

0]'''[]'''[ =++−++ RRLLRRLL XyXyXyXXXXXX β  
and in particular we obtain 

]'''[]'''[ 1
RRLLRRLL yXyXyXXXXXXX ++++= −β . 

Similarly to OLS estimation procedure, the 
optimization problem admits a single and finite 
solution if ]'''[ RRLL XXXXXX ++  is invertible and the 
hessian matrix is definite positive. 

The found solution β*=(a*, b*, c* )', is admissible 
if the signs of the regression coefficients are 
coherent with basic assumptions (b >0, c <0). 

In the remaining three cases the expression (2) to 
be minimized is obtained after replacing zR by zL in 
XL

  and zL by zR in XR (case 1), xL by xR and zR by 
zL in XL and also xR by xL and zL by zR in XR (case 
2), xL

 by xR in XL
  and xR by xL in XR (case 4) 

respectively. 
The optimum solution corresponds to that 

(admissible) one which makes minimum (1) among 
all. 

The generalization of such a procedure to the 
case of several independent variables is immediate 
and that the number of solutions to analyse, in order 
to identify the optimum one, growths exponentially 
with the considered number of variables. For 
example, if the model includes k independent 
variables, 2k possible cases must be taken into 

account, which derive from combining the signs of 
the regression coefficients. 

3.2 A Generalization of the Model 
Including a Fuzzy Intercept 

Now we analyze an extension of the model with a 
fuzzy intercept, which seems more appropriate than 
the non-fuzzy one as it expresses the average value 
of the dependent variable (which is also fuzzy) when 
the independent variables equal zero. 
For this purpose we start from the results obtained 
by Diamond in the case of the univariate regression 
model with a fuzzy intercept. 

3.2.1 The Univariate Model 

Let’s regress, for example, the dependent variable 

TRiLiii )y,y,(yY~ =  on a single independent variable 

TRiLiii )x,x,x(X~ =  in a set of n units. If we 
consider a symmetric fuzzy intercept 

TRL )a,a(a,A~ = , where γ−= aaL , γ+= aaR  and 

γ > 0 (if γ = 0,  A~  would be no more fuzzy), the 
model assumes the following expression:  

iY~ * = iX~bA~ +            i = 1, 2, ..., n; a, b ∈ IR    . 
The fuzzy regression parameters are determined 

by minimizing the sum of the squared Diamond’s 
distances between theoretical and empirical fuzzy 
values of the dependent variable 

∑ + 2
ii )Y~,X~bA~d(  

respect to a, b and γ. 
The function to minimize assumes different 

expressions according to the sign of the regression 
coefficients b. Supposing that b > 0, the estimates of 
a,b and γ are obtained as solutions a*, b* and γ* of 
the system of equations 
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Otherwise, supposing b<0, the estimates of a, b 
and γ are obtained as solutions a*, b* and γ* of the 
system of equations 
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As Diamond shows (1988), the solution to such a 
problem of minimization exists and is unique if the 
following conditions occur simultaneously: 
a) either b* < 0 or b* > 0; 

b) 0)yy(
n
1)yy()xx(

n
1)xx( LiRiLiRiLiRiLiRi ≥∑ ⎥⎦

⎤
⎢⎣
⎡ −−−⎥⎦

⎤
⎢⎣
⎡ −−− ; 

c) b* > b*. 

3.2.2 The Multivariate Model 

Now we generalize the regression model with a 
fuzzy intercept to the case of more than a single 
independent variable. 

Assuming to regress a dependent variable 

TRiLiii )y,y,(yY~ =  on two independent variables 

TRiLiii )x,x,x(X~ =  and TRiLiii )z,z,(zZ~ =  in a set 
of n units, the linear regression model including a 
fuzzy asymmetric intercept TRL )a,a(a,A~ = , where 

γ−= aa L , γ−= aa R  and γ , γ  > 0 (if γ  = γ  = 

0, A~  would be no more fuzzy), assumes the 
following expression: 

*
iY~  = A~ +b iX~ +c iZ~ ,      i = 1, 2, ..., n;  a, b, c ∈ IR  . 
Note that the asymmetric intercept is more 

appropriate the symmetric one, which evidently fits 
the data in a less efficient way. 

The corresponding estimates of the parameters 
are again determined by minimizing the sum of the 
squared Diamond’s distances between empirical 
and theoretical values of the dependent variable 

∑ ++ 2
iii )Z~cX~bA~,Y~d(  (3)

respect to a, b, c, γ  and γ . The function to 

minimize assumes different expressions according 
to the signs of the regression coefficients b and c. 

Case 1:  b>0, c>0 
=∑ ++ 2
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Case 2: b<0, c>0 
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Case 3: b>0, c<0 
=∑ ++ 2

iii )Z~cX~bA~,Y~d(  

])czbxay(

)czbxay()czbxay[(
2

LiRiRRi

2
RiLiLLi

2
iii

−−−+

+−−−+−−−= ∑  

Case 4: b<0, c<0 
=∑ ++ 2
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])czbxay(

)czbxay()czbxay[(
2

LiLiRRi

2
RiRiLLi

2
iii

−−−+

+−−−+−−−= ∑  

Let’s consider, as an example, case 3 and let’s 
express it in matricial terms. The expression to be 
minimized is given by 

2 2 2( ) L L R RG y X y X y Xβ β β β= − + − + − =

(4)( )'( ) ( )'( )
( )'( )

L L L L

R R R R

y X y X y X y X
y X y X

β β β β
β β

= − − + − − +
+ − −

 

where  
y = [yi], is the n-dimensional vector of cores of the 
dependent variable; 
yL

 = [ Liy ] and yR = [ Riy ] are the n-dimensional 
vectors of lower extremes and upper extremes of the 
dependent variable respectively; 
X is the n×5 matrix of cores of the independent 
variables, formed by vectors 1, x = [ xi ], z = [ zi ] 
and two vectors 0; 
XL is the n×5 matrix of lower bounds of the 
independent variables, formed by vectors 1, xL

 = 
[ Lix ], zR

  = [ Riz ] and -1, 0; 
XR is the n×5 matrix of upper bounds of the 
independent variables (analogous to XL), formed by 
vectors 1, xR, zL and 0, 1; 
β is the vector (a, b, c, γ , γ ) '. 

The estimates of the regression coefficients are 
derived from minimizing G(β) with respect to β  i.e. 
from seeking the solutions of the system 

0]'''[]'''[ =++−++ RRLLRRLL XyXyXyXXXXXX β  
and in particular we obtain 

]'''[]'''[ 1
RRLLRRLL yXyXyXXXXXXX ++++= −β . 

Similarly to OLS estimation procedure, the 
optimization problem admits a single and finite 
solution if ]'''[ RRLL XXXXXX ++  is invertible and the 
hessian matrix is definite positive. 

The found solution β*=(a*, b*, c*, γ *, γ * )', is 
admissible if the signs of the regression coefficients 
are coherent with basic assumptions, that is b >0, c 
<0 and γ , γ  > 0. 

In the remaining three cases the expression (4) to 
be minimized is obtained after appropriately 

FCTA 2011 - International Conference on Fuzzy Computation Theory and Applications

420



 

replacing the vectors of the left and right extremes in 
the matrices  as described above, according to the 
case considered. The optimum solution corresponds 
to that (admissible) one which makes minimum (3) 
among all. 

When the intercept is symmetric, we estimate a 
parameter less than the previous model, because the 
spreads left and right coincide (Campobasso and 
Fanizzi, 2011). Note that the matrices X, XL and XR, 
relative to independent variables, and the vector of 
parameters β change their expression. In particular 
we have that 
X is the n×4 matrix of cores of the independent 
variables, formed by vectors 1, x = [ xi ], z = [ zi ] 
and 0; 
XL is the n×4 matrix of lower bounds of the 
independent variables, formed by vectors 1, xL

 = 
[ Lix ], zR

  = [ Riz ] and -1; 
XR is the n×4 matrix of upper bounds of the 
independent variables (analogous to XL), formed by 
vectors 1, xR, zL and 1; 
β is the vector (a, b, c, γ ) '. 

4 DECOMPOSITION OF THE 
TOTAL SUM OF SQUARES OF 
THE DEPENDENT VARIABLE  

In this section two important theoretical results will 
be demonstrated: the first one regards the inequality 
between theoretical and empirical averages of the 
fuzzy dependent variable (unlike in the classical 
OLS estimation procedure); the second one regards 
the decomposition of the total sum of squares of the 
dependent variable, which involves other two 
additive components besides the regression and the 
residual sum of squares. 

4.1 The Model Including a Non-fuzzy 
Intercept  

Let’s consider, only for example, the sum of 
Diamond’s distances between theoretical and 
empirical values of the dependent variable in the 
case 3: 

=∑ ++ 2
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Setting equal to 0 the derivate of 
∑ ++ 2

iii )Z~cX~ba,Y~d(  respect to a, b and c, we can  

obtain the following system of equations: 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=−−−+
∑ +−−−+−−−−

=−−−+
∑ +−−−+−−−−

=−−−+
+−−−+−−−∑−

0]z)czbxay(
z)czbxay(z)czbxay[(2

0]x)czbxay(
x)czbxay(x)czbxay[(2

0)]czbxay(
)czbxay()czbxay([2

LiLiRiRi

RiRiLiLiiiii

RiLiRiRi

LiRiLiLiiiii

LiRiRi

RiLiLiiii

 

Such a system can be written as 
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Recalling that the theoretical values of the fuzzy 
dependent variable are ii
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The first equation of the system (5) shows that 
the total sum of lower extremes, cores and upper 
extremes of the theoretical values of the dependent 
variable coincides with the same amount referred to 
the empirical values. This equation does not allow us 
to say that theoretical and empirical averages of the 
fuzzy dependent variable coincide. 

Let’s examine how the total sum of squares of  
dependent variable 

∑ −+−+−= ])yy()yy()yy[(SSTot 2
RRi

2
LLi

2
i  

can be decomposed according to Diamond’s metric. 
Adding and subtracting the corresponding 

theoretical value within each square and developing 
all the squares, the total deviance can be expressed 
as: 
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Adding and subtracting the theoretical average 
values of the lower extremes, of the cores and of the 
upper extremes of the dependent variable within 
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each square and developing all the squares, the 
previous expression becomes 
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Synthetically the expression of Tot SS can be 
written as: 
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As the sums of deviations of each component 
from its average equal zero, then it is 
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Moreover, as it is ii
*
i czbxay ++= , 

RiLi
*
Li czbxay ++=  and LiRi

*
Ri czbxay ++= , it is 

also 
0y)yy(2y)yy(2y)yy(2 *

Ri
*

RiRi
*
Li

*
LiLi

*
i

*
ii =∑ −+∑ −+∑ − − . 

By replacing expressions of the theoretical 
values in the latter equation, we obtain  
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According to the condition (5) the last expression 
can be reduced to 

.]y)yy(y)yy(y)yy[(2 RL
*
RiRi
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*
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Note that, if the residual  sum of squares equals 
zero, also η and 2* )Y,Y(d  equal zero, because  
theoretical and empirical average values of the 
dependent variable coincide for each observation. 
Therefore: 
- if the regression sum of squares equals zero, then 
the model has no forecasting capability, because the 
sum of the components of the i-th theoretical value 
equals the sum of the components of the empirical 
average value (i = 1 ,..., n). Actually it is for each i 

∑ ++=∑ ++ RiLii
*
Ri

*
Li

*
i yyyyyy  =>  

 =>  RL
*
Ri

*
Li

*
i ynynynnynyny ++=++    => 

=> RL
*
Ri

*
Li

*
i yyyyyy ++=++ ;      

- if the residual sum of squares equals zero, the 
relationship between the dependent variable and the 
independent ones is well represented by the  
estimated model. In this case, the total sum of 
squares is entirely explained by the regression sum 
of squares.  

4.2 The Model Including a Fuzzy 
Intercept 

Let’s consider, only for example, the sum of 
Diamond’s distances between theoretical and 
empirical values of the dependent variable in the 
case 3 for a model with fuzzy intercept: 

=∑ ++ 2
iii )Z~cX~bA~,Y~d(  

])czbxay(

)czbxay()czbxay[(
2

LiRiRRi

2
RiLiLLi

2
iii
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By minimizing such a quantity with respect to a, 
b, c, γ  and γ  (remember that γaaL −=  and 

γaa R += ) we can obtain the following system of 
equations 
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Such a system can be written as  
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Recalling that the theoretical values of the fuzzy 
dependent variable are ii

*
i czbxay ++= , 

RiLi
*
Li czbxay ++γ−=  and LiRi

*
Ri czbxay ++γ+=  

respectively, we obtain 
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(6)

The first equation shows that the total sum of 
cores and extremes of the theoretical values of the 
dependent variable coincides with the same amount 
referred to the empirical values. The combination of 
the first equation with the last two allows us to state 
that theoretical and empirical values of the average 
fuzzy dependent variable coincide, like it happens in 
the classic OLS estimation procedure. 

Let’s examine how the total sum of squares of  
dependent variable can be decomposed according to 
Diamond’s metric: 
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Adding and subtracting the corresponding 
theoretical value within each square and developing 

all the squares, the total deviance can be expressed 
as: 
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Adding and subtracting the theoretical average 
values of the lower extremes, of the cores and of the 
upper extremes of the dependent variable within 
each square and developing all the squares, the 
previous expression becomes 
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represents the residual sum of squares. Moreover, 
according to the conditions (6), it is   
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Therefore the expression of the total sum of 
squares of the dependent variable can be reduced to 

SSsReSSgReSSTot += . 
Ultimately the total sum of squares consists only 

of two addends, the regression sum of square and the 
residual one, like in the classic OLS estimation 
procedure, when the intercept has the same form of 
the dependent variable. 

Note that, when the intercept has not the same 
form of the dependent variable, theoretical and 
empirical average values of the latter do not coincide 
for each observation; rather the total sum of lower 
extremes, cores and upper extremes of the 
theoretical values coincides with the same amount 
referred to the empirical values: 
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In this case the total sum of squares of the 
dependent variable consists of two other components 
in addition to the regression sum of square and the 
residual one: the first is residual in nature and is 
characterized by an uncertain sign, the second is 
equal to n times the distance between theoretical and  
empirical average values of the dependent variable.  

5 A FUZZY MODEL FIT INDEX 

We have just demonstrated that the total sum of 
squares of the dependent variable consists only of 
two addends, the regression sum of square and the 
residual one, when the intercept is fuzzy 
asymmetric. This is because theoretical and 
empirical average values of the dependent variable 
coincide and, therefore, both the total sum of squares 
and the regression one can be expressed in terms of 
distance between empirical values and their 
averages. 
Under these circumstances, the greater the 
regression sum of squares the better the model fits 
the data. 

When there are more addends of the total sum of 
squares than those just mentioned, an increase in the 
regression sum of square does not necessarily imply 
a better fit to observed data: this is because the 
theoretical average value, from which the regression 
sum of squares is calculated, may be very different 
from the empirical one. On the contrary a decrease 
in the residual sum of squares necessarily implies a 
better fit to observed data. 

In order to assess the goodness of fit of the 
regression model, we propose the following index, 
for simplicity called Fuzzy Fit Index (FFI), which is 
common to all three models: 

∑
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ii
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1
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where T
*
R

*
L

** )y,y,y(Y =  and TRL )y,y,y(Y=  denote the 
fuzzy theoretical average and the fuzzy empirical 
average of the dependent variable respectively. 

The more this index is next to 1, the smaller the 
residual sum of squares is and the better the model 
fits the observed data. 

With specific reference to the model with a 
symmetric (both fuzzy and not) intercept, if the 

residual sum of squares decreases, also the distance 
between theoretical and empirical fuzzy averages of 
the dependent variable decreases, as well as the 
component η of the total sum of squares. It follows 
ultimately that the forecasting capability of the 
model increases. 

6 A STEPWISE FORWARD 
PROCEDURE TO SELECT 
INDEPENDENT VARIABLES 

The selection of the most significant independent 
variables presents greater difficulties from a 
computational point of view in the case of a fuzzy 
regression model than in the classic one. 

In classical regression analysis, if the number p 
of independent variables is limited, the optimal 
subset of them can be selected by examining in 
succession at most ∑

− )!kp(!k
!p  models, from the 

simple ones (k = 1) to the saturated one (k = p). 
The fuzzy approach makes the search for optimal 

combinations of explanatory variables  more 
complex from a computational point of view. 

The total number of the potential hyperplanes to 
be tested increases exponentially with the number p 
of the starting variables considered: in fact, for each 
subset of q≤p variables, 2q different hyperplanes 
result from all combinations of the signs assumed by 
the corresponding regression coefficients. 

In order to avoid complications related to the 
above checks, we introduce a stepwise procedure 
which enables us to find the optimal combination of 
the starting variables by including only one of them 
at a time. At each iteration the procedure selects the 
variable which helps to explain the total sum of 
squares of the dependent variable more than the 
other variables not yet included in the model and 
which is also less correlated with the ones already 

included. This allows us to estimate ∑ −
−

=

1p

0k

k2)kp(2  

model at most. 
More specifically, in the first step X~ (1) is 

included in the equation if it presents the highest 
correlation with the dependent variable Y~ ; in the 
q.th step X~ (q) is selected to enter the model if its 
explanatory contribution to the sum of squares of Y~   
is higher than the other variables not yet included 
and also than an arbitrary threshold value. Such a 
contribution can be measured as the increase in the 
FFI due to the introduction of X~ (q) into the equation, 
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equal to FFIy;1,2,...,q - FFIy;1,2,...,q-1 (where the two terms 
of the subtraction represent the proportion of the 
sum of squares of Y~ explained by the model 
including X~ (q) and not). The higher the threshold 
value, the easier the procedure inhibits the entry of 
new independent variables, because of the increases 
in the fraction of the total variability which should 
be explained. 

Once X~ (q) is selected, its originality is evaluated 
through the so called tolerance Tq=1-FFIq;1,2,...,q-1, 
where FFIq;1,2,...,q-1 represents the share of variability 
of X~ (q) explained by the q-1 independent variables 
already in the model. The tolerance ranges between 
0 and 1, depending on the degree of linear 
correlation of X~ (q) with the other variables; 
therefore, only if Tq exceeds a threshold between 0 
and 1, X~ (q) will become part of the model. A high 
value of the threshold allows to select very original 
variables, but it can also stop the process right from 
the initial steps; on the contrary, a low value allows 
most of the variables enter into the equation only if 
they explain a significant fraction of variability of 
Y~ . The described procedure stops when none of the 
variables not yet included in the equation may 
introduce a significant contribution to the model, or 
if none of the candidate variables to enter is 
significantly original.  

For an application of this procedure see 
Montrone, Campobasso, Perchinunno and Fanizzi, 
2011, which elaborates on data revealed by the EU-
SILC survey of 2006 regarding the perception of 
poverty by Italian families. For this purpose, by 
using the editor of Matlab, we generated a function 
which requires, as input parameters, the matrices of 
cores, left extremes and right extremes both of the 
dependent and of the independent fuzzy variables. 

A more accurate procedure provides the 
possibility of eliminating at each iteration variables 
already included in the model, whose explanatory 
contribution is subrogated by the combination of the 
independent variables introduced later. 

In particular, unlike the procedure just described, 
we can verify at each iteration that the explanatory 
contribution of the variable X~ (i) (i = 1, 2, ..q-1) is 
still significant, once the candidate variable X~ (q) is 
inserted. In the q.th step such a contribution can be 
measured by the reduction of FFI in the elimination 
of the variable X~ (i) from the model, equal to 
FFIy;1,2,...,q  - FFIy;1,2,...,q (-i) (where the two terms of the 
subtraction represent the proportion of the sum of 
squares of Y~ explained by the model including all 
the variable and without the variable X~ (i), 

respectively). So, the variable X~ (i) remains in the 
model if the percentage of the sum of squares 
explained by the model including all variables is 
higher than the model without the variable X~ (i) and 
also arbitrary threshold value. 

7 CONCLUSIONS 

In this work we first explicit the expressions of the 
estimated parameters of a multivariate fuzzy 
regression model with a fuzzy asymmetric intercept. 
Such an intercept is more appropriate than a non-
fuzzy on, as it is to be estimated by the average 
value of the dependent variable (which is also 
fuzzy) when the independent variables equal zero.  

Moreover we verify that the sum of squares of 
the dependent variable consists simply in the 
regression sum of squares and the residual one, like 
it happens in the classic OLS estimation procedure, 
only when the intercept is fuzzy asymmetric 
triangular. Conversely, when the intercept is 
symmetric (both fuzzy and not), the analysis of the 
forecasting capability of the model is more difficult. 
This happens because of the presence of two 
additional components of the sum of squares: the 
first one which is related to the difference between 
the theoretical and the empirical average values of 
the dependent variable, the second one which is 
residual in nature and is characterized by an 
uncertain sign. 

The selection of the most significant independent 
variables in a fuzzy regression model presents 
computational difficulties due to the large number of 
potential hyperplanes to be tested. We propose to 
overcome such difficulties through a stepwise 
procedure, based on a fuzzy version of the R2 index.  

In each step a single variable is included between 
the starting ones, according to two basic criteria: its 
explanatory contribution to the model and its 
originality with respect to the other variables already 
included in the model. 

A more accurate procedure provides the 
possibility of eliminating at each iteration variables 
already included in the model, whose explanatory 
contribution is subrogated by the combination of the 
independent variables introduced later. 

The forecasting capability of the proposed fuzzy 
regression model has been successfully verified in a 
recent application to data revealed by the EU-SILC 
survey of 2006, regarding the perception of poverty 
by Italian families. In that circumstance we have 
used the editor of Matlab and, in particular, we have 
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generated a function which requires, as input 
parameters, the matrices of cores, left extremes and 
right extremes both of the dependent and of the 
independent fuzzy variables. 

Some improvements to the model mainly 
concern the shape of the membership function 
different from the triangular one.  
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