
OTTER PROJECT
Ontology Technology that Executes Real-time: Project Status

Thomas A. Tinsley
Tinsley Innovations, 7337 Otter Creek Drive, New Port Richey, Florida, U.S.A.

Keywords: OWL, Protégé, Service Component Architecture, Service Data Object, Data Access Service.

Abstract: Enterprise Architecture models are often overlooked or bypassed during information systems development.
This usually results in complicating application integration and data sharing which can increase cost and
cause problems. The OTTER project solves this problem by combining Enterprise Architecture principles,
ontology reasoning, and Service Component Architecture. Together, this makes the Enterprise Architecture
the foundation for component service development and execution.
Protégé is used to define the layers of the Enterprise Architecture. These layers are mapped to Service
Component Architecture standards to provide real-time execution of processes. Information access and
service component access are both provided by OTTER using OWL data expressions. This use of OWL
data expressions is an alternative to using XML web services for service access and SQL for relational
database access.

1 INTRODUCTION

The OTTER prototype integrates the proven
application of Enterprise Architecture (EA)
principles, OWL business definitions, and Service
Component Architecture (SCA) as shown in “Figure
1: Executable Enterprise Architecture.” This
integration turns the otherwise static models of EA
into executable patterns. This is done by bridging the
class expression language of OWL to the Service
Data Object standard of Service Component
Architecture (SCA).

Applying Enterprise Architecture as a foundation
for development and execution was not found in
other publications after months of research. The
Otter project was then initiated to prove the validity
of this approach.

Figure 1: Executable Enterprise Architecture.

The real value of OTTER is in the layered
extensibility of the executable EA patterns. Through
extensions, business principles can be captured and
very specific business applications can be defined.
The “include ontology” capability of OWL provides
the support for layering the architecture with each
layer defined as a separate OWL ontology.

OWL provides an outstanding language for
defining things and axioms that can be tested
through reasoning. This capability has been proven
by its application in multiple industries. This also
makes it an excellent choice for defining an
Enterprise Architecture.

Many major providers of infrastructure software
have adopted SCA as their component model. These
providers include IBM, Oracle, and SAP. They have
adopted this standard across all of their
infrastructure products.

The OTTER prototype creates a bridge between
OWL and SCA by mapping OWL class expressions
to the SCA standard of Service Data Objects (SDO).
By bridging at this technology level, business
service messages and component access to data is
accomplished using class expressions. This replaces
the need for XML to define Web Services and SQL
to access data repositories.

The executable capability of the EA pattern and
the patterns that extend it change these static models

521A. Tinsley T..
OTTER PROJECT - Ontology Technology that Executes Real-time: Project Status.
DOI: 10.5220/0003719305210527
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (SSEO-2011), pages 521-527
ISBN: 978-989-8425-80-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

to implemented services. These implementations can
be applied and reused by multiple applications.

Figure 2: Layered Ontologies.

The EA Pattern provides the classifications and
high-level property definitions for all of the
components within the business ontology. An
overview of how the models are layered is shown in
“Figure 2: Layered Ontologies.” The shaded patterns
only contain individuals. The double-lined octagons
indicate multiple ontologies while the single-lined
octagon indicates only a single ontology.

The principles and rules for operating specific
vertical lines of business would be defined by
extending the EA Pattern. Principle patterns such as
Accounting, Marketing, and Finance could be
leveraged by multiple vertical businesses. Multiple
vertical lines of business models can be combined
for automatic integration.

Access to the systems would be given based
upon the defined authentication and authorization
defined by the security pattern.

2 GOALS

The OTTER project has a primary goal of
transforming static EA models into executable
patterns in a secure environment. This primary goal
is accomplished by applying the following:
• Provide the Infrastructure for Real-time

Execution. Components defined in ontologies
that extend business ontologies should be

executable. For each business model, there
could be multiple execution model options.

• Use Industry Standards for Information
Technology and Ontology. The industry
standard of Service Component Architecture
will be used to define components and the
standard for Service Data Objects will be used
to define information access.

• Security should be provided for Online
Access, Process Access, and Information
Access. Security is a primary concern and has
been included at the earliest stage of the project.

3 DELIVERABLES

The OTTER project has six primary delivery
objectives:
 A core Enterprise Architecture (EA) pattern.
 Examples verifying the use of the EA pattern.
 Protégé plugins for viewing from the EA

perspective and initiating an HTTP server.
 Prototype executable components using OWL

Protégé, Service Data Objects, and Service
Component Architecture.

 Security for browser access, process, and
information.

3.1 A Core Enterprise Architecture
(EA) Pattern

The EA Pattern currently used in the prototype has
the high-level class structure defined in Protégé as
shown in “Figure 3: Enterprise Architecture
Pattern.”

Figure 3: Enterprise Architecture Pattern.

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

522

The Enterprise Model is divided into three major
categories. The first one, Business Model, contains
the information about the business capabilities,
functions, metrics, and organization. The second
category, Business Processing, describes the
processes used by the business, the data used by the
processes, the flow of information, and the
composite processes that may or may not be
automated. The third category, Capability
Enhancement, includes the strategies, initiatives, and
projects to enhance the capabilities of the
organization.

3.2 Example Verifying the Use of the
EA Pattern

As a test to validate the EA Pattern, the published
form of the Association of Retail Technology
Standards (ARTS) model was used as the base
model to create multiple OWL files.
 This model includes the high-level processes of

Store, Distribution, and Home. Within these
processes are ten sub-processes and forty-two
information flows.

 The data model includes nineteen subject areas
and the subject areas include forty-seven sub-
subject areas.

 Additionally, twenty composite components
were defined that referenced the processes,
flows, and data.

3.3 Protégé Plugins

There are four plugins implemented for EA viewing.
They are included in Protégé under the tab “EA
Pattern”.

3.3.1 Data Domain

All data properties associated with the selected class
are shown in this plugin. This includes the data and
object properties of super classes. There are tabs for
keys, data properties, and range object properties as
shown below in the examples in “Figure 4: Data
Domain Keys Tab.”, “Figure 5: Data Domain Data
Tab.”, and “Figure 6: Data Domain Range Tab.”

Figure 4: Data Domain Keys Tab.

Figure 5: Data Domain Data Tab.

Figure 6: Data Domain Range Tab.

3.3.2 Process Domain

This view shows the processes using two tabs. One
shows the sources of information for a process as
shown in “Figure 7: Process Domain Sources Tab.”
and the other tab shows the consumers of
information from the process shown in “Figure 8:
Process Domain Consumers Tab.”

Figure 7: Process Domain Sources Tab.

Figure 8: Process Domain Consumers Tab.

OTTER PROJECT - Ontology Technology that Executes Real-time: Project Status

523

3.3.3 Process Flow

This view only has one tab that shows the sources
and consumers of an information flow. This is
demonstrated in “Figure 9: Process Flow.”

Figure 9: Process Flow.

3.3.4 EA Server

This view includes a log of alerts for the HTTP
server shown in the example in “Figure 10: Server
View.”

Figure 10: Server View.

3.3.5 Prototype Implementation

The Prototype uses OWL Protégé, Service Data
Objects, and Service Component Architecture. It
demonstrates the functional integration of OWL
with the standards of Service Data Objects and
Service Component Architecture.

Service Data Objects
Service Data Objects (SDO) is a specification for an
application interface for accessing data to be used by
programmers. The specification was included as part
of the Service Component Architecture
specification. These specifications were developed
in coordination with experts from BEA Systems,
IBM Corporation, Rogue Wave Software, SAP AG,
and Xcalia.

The SDO specification was created to describe
complex business data structures. The intent is to
describe the data in a format that is not dependent
upon how the data is stored. Whether the
information is stored in a relational database, an

XML document, or other types of structures should
not make any difference to the programmer.

In order to read and write different data formats,
the programmer uses a Data Access Service (DAS)
component that supports the specific format being
processed. For example, the programmer would use
a relational database DAS to access data in a
relational database. To access an XML file, the
programmer would use an XML DAS. In OTTER, a
DAS is used to access the individuals in the business
ontologies.

Standards for Programmatic Data Graph
Manipulation

In the SDO specification, the API for Java is shown
in “Figure 11: Service Data Object Structure.”

Figure 11: Service Data Object Structure.

This diagram from the specification shows how a
Data Object is defined by properties and types. It
also shows how a Data Object can be a container for
multiple Data Objects.

By definition, an SDO is a data graph. Since all
structures in OWL are data graphs, the use of SDO
to view and change the content of an OWL ontology
can be accomplished in a direct manner.

SCO Serialization
The metadata and content of an SDO is serialized in
OTTER by using the JSON (Javascript Object
Notation) standard. This provides the serialization
needed to make HTTP service requests and to return
an SDO to a browser.

Ontology Data Access Object
The prototype includes an OWL Data Access
Service (DAS) with the following capabilities:
 Get_DataGraph: Creates an SDO data graph

from a class expression and populates it with the

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

524

selected individuals.
 Create_DataGraph: Creates an SDO data

graph from a class expression without any
individuals.

 Load_JSON: Populate the individuals in a
selected data graph from the JSON content.

 Get_JSON: Returns a JSON string of the data
within a specified data graph.

These capabilities are accomplished by using
Protégé APIs to describe the metadata for each data
object. This is accomplished using an OWL class
expression and following a stepwise process.
1. For each class in the expression, identify both

the data properties and the object properties for
that class. These properties must also be
included in the expression.

2. The root classes of the data graph are identified
using the reasoner.

This process produces a metadata tree structure
of the data graph. Using this metadata, the
individuals from the ontologies or from a JSON
string can be loaded into the data graph.

The programmer can then access the structure
using the property names as prescribed by the SDO
standard.

Example of SDO from a Class Expression
In Protégé, a class expression is used to identify a
subset of individuals. In OTTER, the class
expression is used to identify all of the individuals
within the object properties in the class expression.
This results in a data graph of sets rather than a
single set.

In the EA Pattern, “Person” is a class that has a
data property of “hasUserID” and an object property
of “inOrganization”. The “Organization” class has
the data property of “hasOrgUnitID.” Using these
classes and properties, the following can be passed
to the OWL DAS as a query:

query=Person and (hasUserID some
string) and (inOrganization some
(OrgUnit and hasOrgUnitID some
string))

The process extracted the following properties
for the query:

Data Property List
 hasOrgUnitID
 hasUserID

Object Property List
 inOrganization

Using the individuals returned from the query
and the property lists, the OWL DAS yields the
following tree structure:

Datagraph content:
 Individual= "person1"
 property:inOrganization
 Individual= "Org1"
 property:hasOrgUnitID
 value="Organization1"
 Individual= "Org2"
 property:hasOrgUnitID
 value="Organization2"
 property:hasUserID
 value="admin"
 Individual= "person2"
 property:inOrganization
 Individual= "Org3"
 property:hasOrgUnitID
 value="Organization3"
 property:hasUserID
 value="anonymous"

As the results show, “person1” is in two
organizations, “Organization1” and “Organization2”
and has a user ID of “admin”. The individual,
“person2”, is in one organization, “Organization3”.

Currently, the prototype will not add properties
when the “inverse” operation is used in the query.
The workaround is to always provide an inverse
property in the ontology and use it in the query. In
the example given, the individuals in the
“Organization” class have an object property of
“hasPeople” with an inverse of “inOrganization”.
The individuals of “person1” and “person2” do not
actually have the property of “inOrganization”
defined directly, but are rather determined by the
reasoner as inferred properties. Inferred properties
are handled in the same way by the OWL DAS as
direct properties.

3.3.6 Security for Browser Access, Process,
and Information

Security functions to restrict access of individuals to
processes and information. This makes security
straight-forward, since OWL ontologies are
primarily about providing restrictions to defined
information.

In the prototype, the security information is in a
separate OWL ontology. It includes the business
model security information and may exist as
multiple included ontologies. These ontologies can
be secured separately to provide the privacy to
protect the security information.

In the prototype, the browser access is supported
by HTTP basic authentication to get the user id and
password. At the time of logon, the OWL DAS is
used to retrieve the individual in the ontology with
the user id and password provided. If they are found,

access is approved.
In the EA Pattern, security access is centered

upon the “Organization” class. The OntoGraf in

OTTER PROJECT - Ontology Technology that Executes Real-time: Project Status

525

”Figure 12: Security Classes.” shows the property
links.

Figure 12: Security Classes.

To provide security access for a process, a
“Person” can only access an “Assembled
Component” when it is used by a “Function”
provided by an “Organization” that has people that
includes this “Person”.

Information access is provided by defining
Access Control Lists (ACL). This is accomplished
by using the property “hasSecurityAccess” within
the “EnterpriseModel”. The “hasSecurityAccess”
property has four sub-properties: “canCreate”,
“canDelete”, “canRead”, and “canUpdate”. Each of
these sub-properties is defined as a list of ontologies.

When a query is made by the OWL DAS, only
the authorized read ontologies are included as the
ACL.

Following the standards for processing an SDO,
when a changed or new data graph is applied back to
the ontology, the “canCreate”, “canDelete”, and
“canUpdate” ontology lists will be used as the ACL.

3.3.7 Service Component Architecture

The Service Component Architecture specification
defines the APIs for accessing and constructing
service components. The SCA specification was
developed in coordination with experts from BEA
Systems, IONA Corporation, IBM Corporation, SAP
AG, Sun, and Tibco Software.

In SCA, components are defined in the
specification as shown “Figure 13: SCA
Component.” Each component has properties,
services, and references to other services.

Components can also be assembled from other
components. These components can communicate
within the same technical domain. This is shown in
the diagram from the specification in “Figure 14:
SCA Domains and Assembly.”

Figure 13: SCA Component.

Figure 14: SCA Domains and Assembly.

The OTTER implementation of SCA supports
the loading of java components and initializing their
service interfaces according to their ontology
definition. Initialization includes creating the data
graphs used for the request and response of each
service.

When a person logs on to OTTER, a session is
created that maintains the person’s authorized
service and ontology access.

An HTTP “get” to a service will respond with a
JSON containing the request metadata. This
information can be used to construct a request to the
service. The HTTP “post” is used to send the request
and receive the response.

The response to a “post” returns both the
metadata of the data graph response and the data
within the data graph.

3.4 Work Outstanding

The OTTER project is an active project with
continuing work as listed below:
 Patterns

 Include patterns to demonstrate principle

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

526

patterns.
 Convert some aspects of the SmartGrid

standards model to show the application
to the utilities industry.

 Prototype Enhancements
 Support all OWL data values in SDO.

(The current support includes string,
integer, and double.)

 Extend the SDO to write changes back to
the ontology.

 Add browser-based model visualizations
utilizing 2d and 3d graphics.

 Coordination
 Publish the prototype for review.
 Discussion with existing Enterprise

Architecture organizations to establish a
process for pattern certification.

4 CONCLUSIONS

Mapping OWL class expressions to SDO is possible.
The OTTER prototype implementation proves that
the concept is sound. The metadata for an SDO can
be defined from an OWL class expression.
Individuals can then be loaded into the SDO data
graph structure directly from the ontology for data
access or from JSON for service access.

Using class expressions to define data graphs can
replace the use of XML for service definition and
SQL for data access. This has been demonstrated in
the prototype through the implementation of a Data
Access Service (DAS) for ontologies in Protégé.
DAS is used in SCA to create and access SDO data
graphs.

The next step of writing individuals and their
properties back into Protégé will provide the proof
that OWL and SDO are compatible.

The value of the EA Pattern as a base ontology
proved to be a requirement for implementing access
to the ontologies. The value of defining the
components of SCA using OWL provided a
simplified interface for services.

The prototype is intended for concept
demonstration only. If all aspects of the prototype
are successful, another project will be initiated to
provide an industrial strength implementation. This
implementation will require a real-time reasoner that
can evaluate each change made to the ontology for
accuracy. The reasoner will update only the existing
inferred properties that have changed.

With this mapping of OWL to SCA, the
Enterprise Architecture pattern can be the
foundation for service component development and

execution. This will result in reduced expenses, less
project time, and fewer errors. This could result in a
paradigm shift in the quality of information systems.

REFERENCES

Adams, Matthew et al., 2006. Service Data Objects for
Java Specification. http://www.osoa.org/display/Main/
Service+Data+Objects+Specifications, Version 2.1.0.

Allemang, Dean et al., 2005. FEA Reference Model (FEA
RMO) GSA OSERA Deliverable Version 1.0, Last
Update: January 2005.

ARTS Data Model. http://www.nrf-arts.org/content/data-
model, n.d., National Retail Federation.

Baclawski, Ken et al., 2010. Finding a Good Ontology:
The Open Ontology Repository Initiative, Semantic
Technology Conference, June 24, 2010.

Beisiegel, Michael et al., 2007. SCA Service Component
Architecture Assembly Model. http://www.osoa.org/
display/Main/Service+Component+Architecture+Spec
ifications, SCA Version 1.00.

Chandrasekaran, B. et al., Ontology of Tasks and
Methods. http://www.cis.ohio-state.edu/lair &
http://www.swi.psy.uva.nl/usr/richard/home.html.

Guizzardi, Giancarlo et al., 2006. Grounding Software
Domain Ontologies in the Unified Foundational
Ontology (UFO): The case of the ODE Software
Process Ontology. Federal University of Espirito
Santo (UFES), Vitoria, Brazil.

Kleb, Joachim et al., A Protégé 4 Backend for Native
OWL Persistence. Fraunhofer IITB & FZI Research
Center for Information Technologies at the University
of Karlsruhe.

Knublauch, Holger, 2010. Protégé OWL Programmers
Guide. http://protegewiki.stanford.edu/wiki/Protégé
OWL_API_Programmers_Guide, Last Update: June
30, 2010.

Knublauch, Holger et al., Weaving the Biomedical
Semantic Web with the Protégé OWL Plugin.
http://protege.stanford.edu.

Krotzsch,Markus et al., 2009. Semantic Web Modeling
Languages Lecture III: More OWL. ESSLLI 2009
Bordeaux.

MacGregor, William et al., 2006. Information Security:
An Ontology of Identity Credentials Part1:
Background and Formulation. NIST National Institute
of Standards and Technology, NIST Special
Publication 800-103 Draft, October 2006.

Mrohs, Bernd, J.Sc. (CS) et al., OWL-SF – A Distributed
Semantic Service Framework, Fraunhofer Institute for
Open Communication Systems.

Semy, Salim et al., 2004. Toward the Use of an Upper
Ontology for U.S. Government and U.S. Military
Domains: An Evaluation. MITRE TECHNICAL
REPORT, September 2004.

The Open Group, 2010. Technical Standard, Service-
Oriented Architecture Ontology. Published by The
Open Group, October 2010.

Tinsley, Thomas A.,2009. Enterprise Architects Masters
of the Unseen City, Tinsley Innovations.

OTTER PROJECT - Ontology Technology that Executes Real-time: Project Status

527

