
How Many Realities Fit Into a Program? Notes on the
Meaning of Meaning for Programs

Daniel Speicher, Jan Nonnen and Holger Mügge

University of Bonn, Computer Science III, Bonn, Germany

Abstract. Programs are written in programming languages with a certain well
defined semantics that describes how an interpreter or a machine will operate
based on the program. Higher level programming languages and especially object-
oriented programming languages encourage programmers to write programs that
contain knowledge and have meaning in an additional sense. This meaning of
program elements, their identifier and the terms from which identifiers are built
is the topic of this paper. Programs gather knowledge of different realities. There
is at least an application domain and a technical domain. If we want to make the
knowledge within a program more explicit and accessible, we need to differenti-
ate, which program element refers to which domain.

1 Introduction

The first object-oriented programming language “Simula” presented its self-conception
of its mode of denotation, i.e. how it relates to what it represents, in its name: Programs
simulate reality. Objects as defined by the language, behave in a certain sense like real
things, but they are no real things. If we consider programs simulations, programs are
closed worlds simulating something that could be in a real world, but without any con-
nection between these two worlds.

A simulation represents the world that it simulates. So the meaning of the program
is this represented world. And the knowledge about this simulated world within this
program is not hard to find: It is just the whole program. In the following we present
some thoughts commenting on the question what it means for a program to mean some-
thing. We hope to contribute thereby to a deeper understanding, how knowledge can be
found within programs. Our comments consider the question in three major steps:

– What is meant by the program? Is meaning in general best understood, if we con-
sider it as representing some reality?

– How does the program mean something? Is the mode of denotation always straight
representation as it is the case for simulations?

– How can the meaning of parts of the program be identified? What are current ap-
proaches to identify knowledge in programs?

1.1 What is Meant by the Program?

Approximation: Concepts are Meant. Ratiu and Deissenböck report in “How Pro-
grams Represent Reality (and how they don’t)” [9] about a successful approach to iden-
tify semantic defects in programs. Ideally a concept has a unique name which is used as

Speicher D., Nonnen J. and Mügge H..
How Many Realities Fit Into a Program? - Notes on the Meaning of Meaning for Programs.
DOI: 10.5220/0003700000920099
In Proceedings of the 2nd International Workshop on Software Knowledge (SKY-2011), pages 92-99
ISBN: 978-989-8425-82-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



identifier for the program element that represents the concept, e.g. the concept of anac-
count(that the reader has in mind as soon as its name is mentioned here) is represented
by a classAccount . A defect in the sense of the paper is a violation of one of the
one-to-one relationships between program elements (program space1), the lexical ele-
ments in their identifier (lexical space) and the corresponding concepts (concept space).
Program elements represent concepts and that is their meaning. The title of the paper
implicitly identifies the concept space with reality. As a representation of the concept
space the authors used the WordNet ontology [3] and mapped portions of it onto the
program code via graph matching, improved in [10].

Things are Meant! Is it really concepts that are meant by the program? We consult the
philosophical subsection of linguistics that discusses the meaning of meaning: Semi-
otics. Anything that may have a meaning is called asign in semiotics and relates to
three spaces (called levels) [7, p.24]:

“In considering signs, their relationship to the cognitiveworld and to the world
of things, it is important to distinguish clearly between three different level of
observation: (a) thelinguistic level of signs (words, sentences); (b) theepis-
temologicallevel of cognitive correlates (concepts, propositions, etc.); and (c)
theontological level of things, truth values, and facts.”

Obviously the linguistic level can be seen as our lexical space and the epistemo-
logical level as our concept space. As the program space can not be identified with the
ontological layer we need to add a separate space: Reality. We will prefer reality as the
target space of meaning but not strictly exclude the conceptspace. Soon we will see that
the distinction between concept space and reality is especially important, if the program
interacts with reality.

Given a classSalesContract , “sales contract” has a meaning and “sales” and
“contract” may have a meaning as well. In addition the class itself is a model of a
contract and most of its attributes and methods are models ofthe state and behavior of
the real contract. Therefore we may as well consider classes, attributes and methods as
signs. If we want to be brief in the following, we useprogram signsto refer to these
signs in the program space as well as to the signs in the lexical space, i.e. to program
elements and terms.

Some Programs do not Represent.There are signs (in the sense of linguistics) that
have meaning without representing something. Imagine seeing an inattentive person
coming closer to a crowded street so that you fear for her safety. Shouting "hey!" to-
wards her has the clear meaning to get her attention and to make her aware of the situa-
tion, but the word does not represent something. Likewise some programs just contain
a textual representation of yelling at the interpreter or virtual machine.

For object-oriented programs it is quite natural to consider them as representation of
something, as they consist of objects. But in general a programmer might not have had
the intention torepresentsomething with a program. The primary goal of a program is

1 [9, 10] used the term "layer", but for this paper "space" is more instructive.

93



to influencea machine to behave in a certain way. The text might be writtenwith the
question in mind “What do I need to write to make the machine dothis or that?” And the
answer can be meaningless but effective: Sending a notification not because the event
occurred, but because we expect a certain reaction - Programs that rewrite themselves
- Provoking buffer overflows - Letting Prolog predicates fail to provoke backtracking.
We suggest that one definition of “hacking” (in the pejorative sense) could be, that
the program tries to instruct the compiler without creatingat least partially consistent
meaning.

Instrumental Notion of Meaning. Is it possible to think about meaning without the
notion of representation? Keller elaborates in [7] besidesthe representationalnotion
(based on Aristotle and Frege) theinstrumentalnotion (based on Plato and Wittgen-
stein) of meaning. From the instrumental perspective the core question is: What makes
a sign a good instrument for communication? Or, to transfer aquestion stated by Plato
(cf. [7, p.viii, p.47]) to our context: “When a programmer writesthisprogram element or
term and hasthat thing in mind, how is it possible that another programmer, who reads
it, knows that the first programmer has it in mind.” Elaborating a remark by Wittgen-
stein Keller explains that theconsistent useof a sign allows for understanding: “[. . . ]
the meaning of a word in a language, L, consists of the rule of its use in L.[. . . ] If you
know how a word is used – if you know the rule of its use in the language L – you know
everything there is to know.” (cf. [7, p.51], emphasis in theoriginal.)

The “rules” Keller refers to are regularities to be processed by the minds of the
human users of the language, not by machines. Such rules for program signs can only
have evolved for program signs that are used within a larger culture of developers. We
suggest that e.g. the use of “open” and “close” is governed byrules of this strength. If an
object providesopenandcloseoperations, we expect that it allows for a certain kind of
interaction which is only valid after theopenoperation and before thecloseoperation is
executed. Developers understand the meaning of “open” and “close” without any notion
of representation. Notice as well that the notion of “certain kind of interactions” is too
imprecise to be checked by a machine but good enough for humanminds. The rest of
the rule is a well-formedness condition that is perfectly understandable to machines.

Structural Knowledge. We can make part of the meaning (in the instrumental sense)
of program signs explicit by adding explicit definitions of the code structures in which
they can be used to our code. Knowledge about structures is already very useful on its
own and there is a whole body of work about mining and representing this knowledge.
Examples are architectural patterns, design patterns and programming idioms. Design
pattern use many terms in analogy to real things (e.g. theProductcreatingFactory,
Visitors, Observers), but the rules of the usage of these terms in programs have become
so strict, that we can say, that their meaning now lies in their usage.2 From a pragmatic
perspective we may – giving up philosophical precision – usethe encoded structural
regularities as a representation of the (instrumental) meaning of program signs and call
the space of these regularities thestructural domain.

2 Keller elaborates that the representational notion of meaning does not allow to explain the
evolution of meaning, while the instrumental notion does.

94



1.2 How does the Program Mean Something?

Objects in programs as well as things in reality have identity, state and behavior. To
implement simulations one can follow anatural modelingapproach: Represent the state
of the real thing by attributes of the object and behavior by methods. In this case the
implementation can be an accurate model of the represented reality. If the program does
interact with reality the natural modeling approach fails and programs are for good
reasons systematically distorted representations.

Non-identical Individuals and Specifications. In a perfect model there would be ex-
actly one object for one thing. Yet, already a standard classlike File from the package
java.io expresses that it is not identical with the thing it represents. It is possible to
interact with aFile object even when the methodexists() returnsfalse or after
calling delete() . While delete() represents a meaningful operation on the real
thing, exists() is only meaningful on the object. A simulation would not needto
care for the lifespan of a real file and the existence of a file could easily be represented
by the existence of an object.

For many programs individual things are not important, but sets of individuals
with common properties. We can call the object that specifiessuch a set following
[4, p.81] aspecification. Such an object has attributes that correspond to state of all
things in the set, but adds methods that provide informationabout the set. For example
a configuration for the rocket family Ariane could be represented by anAriane ob-
ject that one could ask for the number of individuals and a call to new Ariane(5,
“ECA”).numberRocketsBuilt() would yield33.

Peter Coad: Archetypes.Peter Coad’s Archetypes introduced in [1] are mainly a pre-
cise distinction of entities with respect to their mode of denotation. Objects of a class
of the archetype «party», «place» or «thing», represent a single party/person, a single
location or a single thing. Objects of a class with the archetype «description» represent
more than one thing, i.e. it is a specification in the sense we just introduced. Objects of
an «moment-interval» class represent an event or process that takes place at a certain
point in time or extends over a certain time. Objects of a «role» class finally collect any
information about a «party», «place», «thing» or «description», which are only relevant
in the context of one or more «moment-interval»’s. These distinctions are very relevant
for the process of modeling, but these archetypes can only beunderstood, by taking
reality into account - a dimension that is not accessible to the compiler.

Mirror, Window, Itself. There are two basic modes an object can interact with the
thing it represents. They result in two different modes of denotation. First, the object
may interact via a boundary with the real thing. This allows the remaining objects to
call methods on the object as if they were operations on the real thing, i.e. the object is a
windowto the real thing. Second, other objects indirectly interact with the real thing and
represent the changes in the object, i.e. the object is amirror of the real thing. Programs
that contain mirrors of windows typically contain as well objects that do not represent
any real thing. Such an object can be justitself.

95



In a simulation the ability of a rocket to be launched can be represented by a method
Rocket.launch() . In a programcontrolling a real rocket the same signature can
be used, if we consider the object to be a window to the thing. Unfortunately there
can be many obstacles during a rocket launch - even in the communication between
the program and the real rocket so that Spolsky’s law [11] applies: “All non-trivial
abstractions, to some degree, are leaky.” The abstract representation of the launching
process by thelaunch() method is in many cases a good model but as obstacles
may occur, the system needs to handle them. Therefore it makes sense to reduce the
illusion of a direct access to the real thing, e.g. by changing the names of class and
method toRocketProxy.initiateLaunch() or by declaring exceptions. Then
the class name expresses that the object is not the rocket itself but a proxy for it. The
method name makes clear that the method invocation does not execute the launch, but
only initiates it, which might fail. The goal of a reconstruction of the model would be to
find out that “rocket” is a thing that can “launch”. In addition the reference to theProxy
design pattern should be detected, as well as if "initiate" has an (instrumental) meaning.

In case the classRocket is a mirror of a rocket, it probably has no
methodlaunch() . This method will be in another object that uses an object of class
Rocket to store for example the start time of the rocket by invoking a
methodRocket.setLaunchInitiated(Time) . The distortions in mirror ob-
jects are larger, but the same amount of knowledge should be represented. Behavior
of the real thing is often represented as state. Sometimes behavior that belongs to the
real things is not present in the mirror object but in the objects collaborating with it.

Systems Automating the Real World.Isoda describes in [6] that for simulations mod-
els can be build by natural modeling. Unfortunately this already not true anymore for
systems thatautomatethe real world, e.g. that facilitate business processes. Ifthe soft-
ware would contain a natural model of the automated real world, it would need to con-
tain itself. In addition the natural modeling approach would lead to classes unrelated
to the business process under consideration, or class that are related but unnecessary
for the implementation, or to methods in necessary classes that are confusing (cf. [6,
p.159]). Therefore already [4, p.31] recommended: “For real-world objects, create sys-
tem representations of those objects that respond to eventsrather than initiate them.
They should be maintaining a representation of the object, rather than initiating activi-
ties.” In our terminology: These objects should be mirrors.If developers want to make
this explicit, the can name a class instead ofCustomer for exampleCustomerData .
Note that “customer” refers to the application domain and “data” the technical domain
of the (virtual) machine.

Boundary, Control, Entity. The distinction of classes using the UML stereotypes
«boundary», «control», «entity» corresponds to differences in the mode of denotation.
Entities are typically mirrors of real things. Boundaries as elements of the user inter-
face are typically windows (in our sense) to virtual elements on the screen. User and
developers can easily ignore the virtuality of these elements (“mediated immediacy”)
and typically do so. Still there is more about this object than internal state. Classes of
these stereotypes and their names tend to refer to differentrealities: Entities refer to

96



the application domain. Boundaries refer to the virtual reality of user interfaces often
mimicking different real devices. Controls might represent processes in the application
domain, but add further more technical processes.

1.3 How Can the Meaning of Parts of the Program be Identified?

Debugging Method Names.Høst and Østvold presented in [5] an approach to mine
common properties of methods following certain naming schemes. They used proper-
ties likereturns-void, creates-own-type-object, catches-exception. The naming schemes
had not been predefined, but they explored for which naming schemes strong statistical
evidence was found. This knowledge was precise and reliableenough to identify meth-
ods with inappropriate names. This work can be seen as an example how knowledge
about the structure of methods can be found in names.

Mining Identifier “Ontologies”. Falleri et al. suggested in [2] to create a WordNet
like structure from method names. The method names are splitinto terms and tagged
with their part-of-speech. In a second step the terms are sorted by linguistic dominance.
Intuitively a worda dominates a wordb, if b rendersa more precisely. For example
“getNextWarning” is parsed into (“get”, “next”, “warning”). Adding the part-of-speech
yields the term list ((“get”, Verb), (“next”, Adjective), (“warning”, Noun)). Finally dom-
inance sorting gives ((“get”, Verb), (“warning”, Noun), (“next”, Adjective)). If a term
list is a prefix of another term list, it is considered to be a generalization of the later.
Longest common prefixes of these term lists are then regardedas entities in their own
right. For example if we have "getPreviousWarning" as well,"getWarning" is added and
considered a generalization of the two other methods.

Location of Origin for Terms in Names. To identify to which reality a term in a
name refers, it is useful to find out where in the program it originated. Considering the
identifier “WindowFactory” we will probably find both terms to be originating from the
same domain. Either both were first used in GUI code or both were first used as part
of the model of the application domain. In the identifier “FactoryWindow”, the term
“factory” might stem from the domain model, while “window” is an GUI term. The
“factory” would represent a real factory and the “window” would be a virtual entity in
our program.

In [8] we reported about an extensive exploratory study thatdefined and evaluated
a heuristic to identifyintroduction locations. To subsume both notions of meaning we
defined a classc to be an introduction location for a termt, "if the meaning oft can
be understood by reading the code inc." Our heuristic already had a precision of75%.
Based on the theoretical reflections presented in this paper, we can make our definition
even more precise hopefully leading to further improvements of our heuristic: Program
elements that are models represent. Such an program elementshould be seen as the
introduction location for all terms in its name as long as there is no better candidate,
i.e. with fewer terms in the name. For terms used in names of program elements that
do not represent but do have meaning in the instrumental sense we have to select the
location that illustrates the rules of its use best. In case we added explicit definitions of

97



the structures in our code to our code base, these definitionsshould be regarded as the
introduction locations.

1.4 Conclusions, Research Objectives, Approaches

We discussed therepresentationaland theinstrumentalnotion of "meaning" for pro-
gram signs. Typical programs contain program signs representing portions of at least
oneapplication domainand sometechnical domains. Other program signs allow for
understanding by following regularities in their use. As far as these regularities are
structural, we can define them as elements of thestructural domainand consider the
signs as representing them. This leads us to the research objectives to identify these
regularities and to identify which program signs representthe same domain.

The question whether domains are systems of concepts in mindor of things in reality
is not purely philosophical. Some program elements thatrepresenta real thing can as
well indirectly interactwith this thing - a semiotic relation that is specific for computer
programs. An object interacting with a real thing that it represents is typically either
like a window toor amirror of it. As windows and mirrors do not perfectly represent
the thing, it is a research objective to reconstruct better models from them. Another
objective is to automatically identify objects that do not represent individual things but
sets of similar individuals.

Once we correctly identified the meaning of program signs representing the same
domain, the question of themeaning of the wholearises. We expect the composition to
have meaning in the instrumental sense. As such it is rather independent from external
realities, and may dynamically evolve over time. The same istrue for program signs
representing structures. This leads to the research question, how such anevolution of
meaningcan be identified.

As a basis for further research, we suggest to conduct thorough code based case
studies: Can an expert developer identify the represented domains for all program signs
in sample objects? Can she identify the modes of denotation for objects and correct
the imperfections? As result we will get annotated code bases, that can be used as
benchmark for algorithms and as prototypes of supplementalknowledge representation.

We demonstrated that certain objects have to be for good reasons imperfect mod-
els. Therefore we suggest torevisit the modeling literaturefrom the last century with
respect to their recommendations, how to translate realityinto code. Where modeling
defects are created systematically, we expect that some meaning can be restored based
on manually defined or even mined rules.

The algorithms mentioned in the previous section are promising candidates for an-
swering the research questions stated: Terms that are introduced (in the sense of [8])
in the same package probably refer to the same reality. Complementary [2] identifies
regularly reoccurring combinations of terms that we can expect to have structural mean-
ing. Pattern mining like the approach in [5] on the level of methods even identify some
of the structural regularities. In case we have an ontology as a second representation
of the represented reality the approach presented in [9, 10]may be used to identify the
program signs that refer to this reality and to find modeling defects. Applying these
technologies on software repositories gives a first approach to the identification of the
evolution of meaning.

98



References

1. P. Coad, E. Lefebvre, and J. D. Luca. Java modeling in colorwith UML: enterprise compo-
nents and process. Java Series. Prentice Hall PTR, 1999.

2. J. R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao. Automatic
Extraction of a WordNet-Like Identifer Network from Software. In ICPC, pages 4–13, 2010.

3. C. Fellbaum. WordNet: an eletronic lexical databse. Cambridge MIT Press, 1999.
4. S. Gossain. Object modeling and design strategies: tips and techniques. Advances in object

technology. Cambridge University Press, 1998.
5. E. W. Høst and B.M. Østvold. Debugging Method Names. In ECOOP, 2009.
6. S. Isoda. Object-oriented real-world modeling revisited. Journal of Systems and Software,

59(2):153–162, 2001.
7. R. Keller. A theory of linguistic signs. Oxford University Press, 1998.
8. J. Nonnen, D. Speicher, and P. Imhoff. Locating the meaning of terms in source code, re-

search on ”term introduction”. In WCRE, 2011.
9. D. Ratiu and F. Deissenböck. How programs represent reality (and how they don’t). In

WCRE, pages 83–92, 2006.
10. D. Ratiu and F. Deissenböck. From reality to programs and(not quite) back again. In ICPC,

pages 91–102, 2007.
11. J. Spolsky. The law of leaky abstractions, 2002. [Online; accessed 01-August-2011], http://

www.joelonsoftware.com/articles/LeakyAbstractions.html.

99


