How Many Realities Fit Into a Program? Notes on the
Meaning of Meaning for Programs

Daniel Speicher, Jan Nonnen and Holger Miigge

University of Bonn, Computer Science Ill, Bonn, Germany

Abstract. Programs are written in programming languages with a certain well
defined semantics that describes how an interpreter or a machine will operate
based on the program. Higher level programming languages and especially object-
oriented programming languages encourage programmers to write programs that
contain knowledge and have meaning in an additional sense. This meaning of
program elements, their identifier and the terms from which identifiers are built
is the topic of this paper. Programs gather knowledge of different realities. There
is at least an application domain and a technical domain. If we want to make the
knowledge within a program more explicit and accessible, we need to differenti-
ate, which program element refers to which domain.

1 Introduction

The first object-oriented programming language “Simula” presented its self-conception
of its mode of denotation, i.e. how it relates to what it represents, in its name: Programs
simulate reality. Objects as defined by the language, behave in a certain sense like real
things, but they are no real things. If we consider programs simulations, programs are
closed worlds simulating something that could be in a real world, but without any con-
nection between these two worlds.

A simulation represents the world that it simulates. So the meaning of the program
is this represented world. And the knowledge about this simulated world within this
program is not hard to find: It is just the whole program. In the following we present
some thoughts commenting on the question what it means for a program to mean some-
thing. We hope to contribute thereby to a deeper understanding, how knowledge can be
found within programs. Our comments consider the question in three major steps:

— What is meant by the program? Is meaning in general best understood, if we con-
sider it as representing some reality?

— How does the program mean something? Is the mode of denotation always straight
representation as it is the case for simulations?

— How can the meaning of parts of the program be identified? What are current ap-
proaches to identify knowledge in programs?

1.1 Whatis Meant by the Program?

Approximation: Concepts are Meant. Ratiu and Deissenbdck report in “How Pro-
grams Represent Reality (and how they don’t)” [9] about a successful approach to iden-
tify semantic defects in programs. Ideally a concept has a unique name which is used as

Speicher D., Nonnen J. and Mugge H..

How Many Realities Fit Into a Program? - Notes on the Meaning of Meaning for Programs.

DOI: 10.5220/0003700000920099

In Proceedings of the 2nd International Workshop on Software Knowledge (SKY-2011), pages 92-99
ISBN: 978-989-8425-82-9

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

93

identifier for the program element that represents the quneeay. the concept of aac-
count(that the reader has in mind as soon as its name is mentionedisieepresented
by a classAccount . A defect in the sense of the paper is a violation of one of the
one-to-one relationships between program elements (pnogpacd), the lexical ele-
ments in their identifier (lexical space) and the corresfrandoncepts (concept space).
Program elements represent concepts and that is their ngedrtie title of the paper
implicitly identifies the concept space with reality. As gmesentation of the concept
space the authors used the WordNet ontology [3] and mappeidme of it onto the
program code via graph matching, improved in [10].

Things are Meant! Is it really concepts that are meant by the program? We coitsul
philosophical subsection of linguistics that discussesrteaning of meaning: Semi-
otics. Anything that may have a meaning is calledign in semiotics and relates to
three spaces (called levels) [7, p.24]:

“In considering signs, their relationship to the cognitiverld and to the world
of things, it is important to distinguish clearly betweenreth different level of
observation: (a) thénguistic level of signs (words, sentences); (b) #as-

temologicallevel of cognitive correlates (concepts, propositions,)génd (c)
theontologicallevel of things, truth values, and facts.”

Obviously the linguistic level can be seen as our lexicakepand the epistemo-
logical level as our concept space. As the program spaceatdreridentified with the
ontological layer we need to add a separate space: Reaktyvil\prefer reality as the
target space of meaning but not strictly exclude the corgjegate. Soon we will see that
the distinction between concept space and reality is ealbpeirnportant, if the program
interacts with reality.

Given a classsalesContract |, “sales contract” has a meaning and “sales” and
“contract” may have a meaning as well. In addition the classlfiis a model of a
contract and most of its attributes and methods are modetedftate and behavior of
the real contract. Therefore we may as well consider classgbutes and methods as
signs. If we want to be brief in the following, we upeogram signgo refer to these
signs in the program space as well as to the signs in the lesfiege, i.e. to program
elements and terms.

Some Programs do not RepresentThere are signs (in the sense of linguistics) that
have meaning without representing something. Imaginengesn inattentive person
coming closer to a crowded street so that you fear for hetyseBdouting "hey!" to-
wards her has the clear meaning to get her attention and te healaware of the situa-
tion, but the word does not represent something. Likewiseesprograms just contain
a textual representation of yelling at the interpreter atual machine.

For object-oriented programs it is quite natural to constidem as representation of
something, as they consist of objects. But in general a pragrer might not have had
the intention taepresensomething with a program. The primary goal of a program is

119, 10] used the term "layer", but for this paper "space" iserinstructive.

94

to influencea machine to behave in a certain way. The text might be wriktigm the
guestion in mind “What do | need to write to make the machinth@oor that?” And the
answer can be meaningless but effective: Sending a noiticabt because the event
occurred, but because we expect a certain reaction - Pregranrewrite themselves
- Provoking buffer overflows - Letting Prolog predicated faiprovoke backtracking.
We suggest that one definition of “hacking” (in the pejorataense) could be, that
the program tries to instruct the compiler without creatideast partially consistent
meaning.

Instrumental Notion of Meaning. Is it possible to think about meaning without the
notion of representation? Keller elaborates in [7] besitiesepresentationahotion
(based on Aristotle and Frege) threstrumentalnotion (based on Plato and Wittgen-
stein) of meaning. From the instrumental perspective the gaestion is: What makes
a sign a good instrument for communication? Or, to transfprestion stated by Plato
(cf. [7, p.viii, p.47]) to our context: “When a programmeiitesthis program element or
term and hashat thing in mind, how is it possible that another programmempwads
it, knows that the first programmer has it in mind.” Elabargta remark by Wittgen-
stein Keller explains that theonsistent usef a sign allows for understanding: “[...]
the meaning of a word in a language, L, consists of the rulésaise in L{...] If you
know how a word is used — if you know the rule of its use in thelzage L — you know
everything there is to know.” (cf. [7, p.51], emphasis in dniginal.)

The “rules” Keller refers to are regularities to be procesbg the minds of the
human users of the language, not by machines. Such rulesdgrgm signs can only
have evolved for program signs that are used within a langkure of developers. We
suggest that e.g. the use of “open” and “close” is governadleg of this strength. If an
object provide®penandcloseoperations, we expect that it allows for a certain kind of
interaction which is only valid after thepenoperation and before ttdoseoperation is
executed. Developers understand the meaning of “open”@odé” without any notion
of representation. Notice as well that the notion of “certdind of interactions” is too
imprecise to be checked by a machine but good enough for hamrads. The rest of
the rule is a well-formedness condition that is perfectlgenstandable to machines.

Structural Knowledge. We can make part of the meaning (in the instrumental sense)
of program signs explicit by adding explicit definitions b&tcode structures in which
they can be used to our code. Knowledge about structuresesdyl very useful on its
own and there is a whole body of work about mining and reptasgthis knowledge.
Examples are architectural patterns, design patterns @gggnming idioms. Design
pattern use many terms in analogy to real things (e.gPtlogluct creatingFactory,
Visitors Observery, but the rules of the usage of these terms in programs haeeriee
so strict, that we can say, that their meaning now lies irr theage’ From a pragmatic
perspective we may — giving up philosophical precision —thgeencoded structural
regularities as a representation of the (instrumentalyingzof program signs and call
the space of these regularities #teuctural domain

2 Keller elaborates that the representational notion of nmgadoes not allow to explain the
evolution of meaning, while the instrumental notion does.

95

1.2 How does the Program Mean Something?

Objects in programs as well as things in reality have idgnstate and behavior. To
implement simulations one can follownatural modelingapproach: Represent the state
of the real thing by attributes of the object and behavior lthuds. In this case the
implementation can be an accurate model of the represesdéityr If the program does
interact with reality the natural modeling approach fait&l gorograms are for good
reasons systematically distorted representations.

Non-identical Individuals and Specifications. In a perfect model there would be ex-
actly one object for one thing. Yet, already a standard dies&ile from the package
java.io expresses that it is not identical with the thing it représeihis possible to
interact with aFile object even when the methedists() returnsfalse or after
callingdelete() . Whiledelete() represents a meaningful operation on the real
thing, exists() is only meaningful on the object. A simulation would not ne¢ed
care for the lifespan of a real file and the existence of a filddceasily be represented
by the existence of an object.

For many programs individual things are not important, kets f individuals
with common properties. We can call the object that spectiesh a set following
[4, p.81] aspecification Such an object has attributes that correspond to statd of al
things in the set, but adds methods that provide informathmyut the set. For example
a configuration for the rocket family Ariane could be reprded by anAriane ob-
ject that one could ask for the number of individuals and atoatew Ariane(5,
“ECA”").numberRocketsBuilt() would yield 33.

Peter Coad: Archetypes.Peter Coad'’s Archetypes introduced in [1] are mainly a pre-
cise distinction of entities with respect to their mode ofiokation. Objects of a class
of the archetype «party», «place» or «thing», represemgiesparty/person, a single
location or a single thing. Objects of a class with the arghetdescription» represent
more than one thing, i.e. it is a specification in the senseusintroduced. Objects of
an «moment-interval» class represent an event or procastattes place at a certain
point in time or extends over a certain time. Objects of aesalass finally collect any
information about a «party», «place», «thing» or «desionipt, which are only relevant
in the context of one or more «moment-interval»’s. Thesgrtigons are very relevant
for the process of modeling, but these archetypes can onlynderstood, by taking
reality into account - a dimension that is not accessiblagéocompiler.

Mirror, Window, Itself. There are two basic modes an object can interact with the
thing it represents. They result in two different modes aiatation. First, the object
may interact via a boundary with the real thing. This allows temaining objects to
call methods on the object as if they were operations on tidhing, i.e. the objectis a
windowto the real thing. Second, other objects indirectly intewdth the real thing and
represent the changes in the object, i.e. the objeatisrar of the real thing. Programs
that contain mirrors of windows typically contain as welj@dis that do not represent
any real thing. Such an object can be jitself.

96

In a simulation the ability of a rocket to be launched can Ipeegented by a method
Rocket.launch() . In a prograncontrolling a real rocket the same signature can
be used, if we consider the object to be a window to the thimffotiunately there
can be many obstacles during a rocket launch - even in the cocation between
the program and the real rocket so that Spolsky’s law [11]iapp“All non-trivial
abstractions, to some degree, are leaky.” The abstragtseptation of the launching
process by théaunch() method is in many cases a good model but as obstacles
may occur, the system needs to handle them. Therefore itsrekese to reduce the
illusion of a direct access to the real thing, e.g. by chaggive names of class and
method toRocketProxy.initiateLaunch() or by declaring exceptions. Then
the class name expresses that the object is not the rockititg a proxy for it. The
method name makes clear that the method invocation doexecute the launch, but
only initiates it, which might fail. The goal of a reconsttian of the model would be to
find out that “rocket” is a thing that can “launch”. In additithe reference to thieroxy
design pattern should be detected, as well as if "initiads'dn (instrumental) meaning.

In case the clasRocket is a mirror of a rocket, it probably has no
methodlaunch() . This method will be in another object that uses an objectasfx
Rocket to store for example the start time of the rocket by invoking a
methodRocket.setLaunchinitiated(Time) . The distortions in mirror ob-
jects are larger, but the same amount of knowledge shoul@fresented. Behavior
of the real thing is often represented as state. Sometintes/tm that belongs to the
real things is not present in the mirror object but in the otgeollaborating with it.

Systems Automating the Real World.Isoda describes in [6] that for simulations mod-
els can be build by natural modeling. Unfortunately thigatty not true anymore for
systems thaautomatethe real world, e.g. that facilitate business processebel§oft-
ware would contain a natural model of the automated realdydnivould need to con-
tain itself. In addition the natural modeling approach vebldad to classes unrelated
to the business process under consideration, or classriatlated but unnecessary
for the implementation, or to methods in necessary classgsare confusing (cf. [6,
p.159]). Therefore already [4, p.31] recommended: “Fol-veald objects, create sys-
tem representations of those objects that respond to exathisr than initiate them.
They should be maintaining a representation of the objatiier than initiating activi-
ties.” In our terminology: These objects should be mirréirdevelopers want to make
this explicit, the can name a class instea€astomer for exampleCustomerData .
Note that “customer” refers to the application domain anat&d the technical domain
of the (virtual) machine.

Boundary, Control, Entity. The distinction of classes using the UML stereotypes
«boundary», «control», «entity» corresponds to diffeesrio the mode of denotation.
Entities are typically mirrors of real things. Boundariesedements of the user inter-
face are typically windows (in our sense) to virtual elersem the screen. User and
developers can easily ignore the virtuality of these eldmémediated immediacy”)
and typically do so. Still there is more about this objecntivdernal state. Classes of
these stereotypes and their names tend to refer to diffeeatities: Entities refer to

97

the application domain. Boundaries refer to the virtualitgaf user interfaces often
mimicking different real devices. Controls might repreggnocesses in the application
domain, but add further more technical processes.

1.3 How Can the Meaning of Parts of the Program be Identified?

Debugging Method Names.Hgst and @stvold presented in [5] an approach to mine
common properties of methods following certain naming sué® They used proper-
ties likereturns-void creates-own-type-objeaatches-exceptioihe naming schemes
had not been predefined, but they explored for which namihgrees strong statistical
evidence was found. This knowledge was precise and rel@atdagh to identify meth-
ods with inappropriate names. This work can be seen as anptedrow knowledge
about the structure of methods can be found in names.

Mining Identifier “Ontologies”. Falleri et al. suggested in [2] to create a WordNet
like structure from method names. The method names areirgjgliterms and tagged
with their part-of-speech. In a second step the terms atedby linguistic dominance.
Intuitively a worda dominates a word, if b rendersa more precisely. For example
“getNextWarning” is parsed into (“get”, “next”, “warning’Adding the part-of-speech
yields the term list ((“get”, Verb), (“next”, Adjective);warning”, Noun)). Finally dom-
inance sorting gives ((“get”, Verb), (“warning”, Noun),néxt”, Adjective)). If a term
list is a prefix of another term list, it is considered to be aeayalization of the later.
Longest common prefixes of these term lists are then regasledtities in their own
right. For example if we have "getPreviousWarning" as wegktWarning" is added and
considered a generalization of the two other methods.

Location of Origin for Terms in Names. To identify to which reality a term in a
name refers, it is useful to find out where in the program gioated. Considering the
identifier “WindowFactory” we will probably find both terms be originating from the
same domain. Either both were first used in GUI code or botleiest used as part
of the model of the application domain. In the identifier “EEagWindow”, the term
“factory” might stem from the domain model, while “windows an GUI term. The
“factory” would represent a real factory and the “window” wd be a virtual entity in
our program.

In [8] we reported about an extensive exploratory study dedined and evaluated
a heuristic to identifyntroduction locationsTo subsume both notions of meaning we
defined a class to be an introduction location for a tertm"if the meaning oft can
be understood by reading the code:itOur heuristic already had a precision@%.
Based on the theoretical reflections presented in this pajgeran make our definition
even more precise hopefully leading to further improvermefbur heuristic: Program
elements that are models represent. Such an program elsimaut be seen as the
introduction location for all terms in its name as long ag¢hie no better candidate,
i.e. with fewer terms in the name. For terms used in namesagram elements that
do not represent but do have meaning in the instrumentaésgatave to select the
location that illustrates the rules of its use best. In cas@added explicit definitions of

98

the structures in our code to our code base, these definglomsdd be regarded as the
introduction locations.

1.4 Conclusions, Research Objectives, Approaches

We discussed theepresentationabnd theinstrumentalnotion of "meaning" for pro-
gram signs. Typical programs contain program signs reptigeportions of at least
oneapplication domairand somédechnical domainsOther program signs allow for
understanding by following regularities in their use. As & these regularities are
structural, we can define them as elements ofstinectural domainand consider the
signs as representing them. This leads us to the researebtiobp to identify these
regularities and to identify which program signs represie@same domain.

The question whether domains are systems of concepts inanafdhings in reality
is not purely philosophical. Some program elements bjatesenta real thing can as
well indirectlyinteractwith this thing - a semiotic relation that is specific for combgr
programs. An object interacting with a real thing that itnesents is typically either
like a window toor amirror of it. As windows and mirrors do not perfectly represent
the thing, it is a research objective to reconstruct bettedets from them. Another
objective is to automatically identify objects that do ngpiresent individual things but
sets of similar individuals.

Once we correctly identified the meaning of program signsesgnting the same
domain, the question of thmeaning of the wholarises. We expect the composition to
have meaning in the instrumental sense. As such it is ratidependent from external
realities, and may dynamically evolve over time. The sameuis for program signs
representing structures. This leads to the research quebiow such amvolution of
meaningcan be identified.

As a basis for further research, we suggest to conduct tigproode based case
studies Can an expert developer identify the represented domairadlfprogram signs
in sample objects? Can she identify the modes of denotationlfjects and correct
the imperfections? As result we will get annotated code dabat can be used as
benchmark for algorithms and as prototypes of supplemkntalledge representation.

We demonstrated that certain objects have to be for goodmeamperfect mod-
els. Therefore we suggest tevisit the modeling literaturérom the last century with
respect to their recommendations, how to translate realibycode. Where modeling
defects are created systematically, we expect that someingeean be restored based
on manually defined or even mined rules.

The algorithms mentioned in the previous section are priogisandidates for an-
swering the research questions stated: Terms that arairted (in the sense of [8])
in the same package probably refer to the same reality. Gamgitary [2] identifies
regularly reoccurring combinations of terms that we careexfo have structural mean-
ing. Pattern mining like the approach in [5] on the level ofthoels even identify some
of the structural regularities. In case we have an ontolagg aecond representation
of the represented reality the approach presented in [In&§]be used to identify the
program signs that refer to this reality and to find modeliefedts. Applying these
technologies on software repositories gives a first appréathe identification of the
evolution of meaning.

99

References

1.

2.

10.

11.

P. Coad, E. Lefebvre, and J. D. Luca. Java modeling in eoitbr UML: enterprise compo-

nents and process. Java Series. Prentice Hall PTR, 1999.

J. R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Eenand M. Dao. Automatic

Extraction of a WordNet-Like Identifer Network from Softvea In ICPC, pages 4-13, 2010.

. C. Fellbaum. WordNet: an eletronic lexical databse. Qéagk MIT Press, 1999.
. S. Gossain. Object modeling and design strategies: tigpgehniques. Advances in object

technology. Cambridge University Press, 1998.

. E. W. Hgst and B.M. @stvold. Debugging Method Names. In BE&C2009.
. S. Isoda. Object-oriented real-world modeling revisitdournal of Systems and Software,

59(2):153-162, 2001.

. R. Keller. A theory of linguistic signs. Oxford UnivergiPress, 1998.
. J. Nonnen, D. Speicher, and P. Imhoff. Locating the mepofrterms in source code, re-

search on "term introduction”. In WCRE, 2011.

. D. Ratiu and F. Deissenbdck. How programs representydalnd how they don’t). In

WCRE, pages 83-92, 2006.

D. Ratiu and F. Deissenbdck. From reality to programs(aatquite) back again. In ICPC,
pages 91-102, 2007.

J. Spolsky. The law of leaky abstractions, 2002. [Onlaneessed 01-August-2011], http://
www.joelonsoftware.com/articles/LeakyAbstractiotisih

