
Information Extraction from Web Services: A
Comparison of Tokenisation Algorithms

Alejandro Metke-Jimenez, Kerry Raymond and Ian MacColl

Faculty of Science and Technology, Queensland University of Technology, Brisbane, Australia

Abstract. Most web service discovery systems use keyword-based search al-
gorithms and, although partially successful, sometimes fail to satisfy some users
information needs. This has given rise to several semantics-based approaches that
look to go beyond simple attribute matching and try to capture the semantics of
services. However, the results reported in the literature vary and in many cases
are worse than the results obtained by keyword-based systems. We believe the ac-
curacy of the mechanisms used to extract tokens from the non-natural language
sections of WSDL files directly affects the performance of these techniques, be-
cause some of them can be more sensitive to noise. In this paper three existing
tokenization algorithms are evaluated and a new algorithm that outperforms all
the algorithms found in the literature is introduced.

1 Introduction

Web services have become the de facto technology to enable distributed computing in
modern platforms. Services directories, such as Programmable Web, list thousands of
services that can be used to build complex software applications. Also, most modern
backend software applications expose their functionality as web services in order to
facilitate B2B interactions as well as integration with other software products deployed
internally. Some applications, such as mashups, are built entirely by combining existing
services.

With the ever increasing number of web services available both in the public In-
ternet as well as in the private Intranets, web service discovery has become an im-
portant problem for software developers wanting to use services to build applications.
The UDDI standard was initially proposed to address this problem by providing a cen-
tralized repository of service descriptions. However, some authors consider that the
standard is too complex for end users who just want to publish their services [1] and
also, several problems with the centralized architecture have been identified. Perhaps
the most relevant of these is the fact that registration in a centralized repository is not
mandatory and therefore all unregistered services will not be discoverable by potential
clients [2]. These shortcomings of the UDDI standard have given rise to proposals of
decentralized mechanisms that crawl the web in search of WSDL files and use only the
information found in them.

In [2] the authors propose an extensive classification of different types of web ser-
vice discovery approaches. We are interested in the approaches found in thesyntactic

Metke-Jimenez A., Raymond K. and MacColl I..
Information Extraction from Web Services - A Comparison of Tokenisation Algorithms.
DOI: 10.5220/0003698000120023
In Proceedings of the 2nd International Workshop on Software Knowledge (SKY-2011), pages 12-23
ISBN: 978-989-8425-82-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



matching andsemantic matching categories, since these techniques are decentralized
and have proven to be effective in other search domains. Within these categories the
approaches can be differentiated by the degree of user involvement required. Although
several standards have been proposed to add semantic annotations to web services [3],
all of these methods require both choosing an ontology and adding semantic annotations
to the services. On the other hand, approaches based on information retrieval methods
use the information already available in the service description files. We believe these
latter approaches are likely to be more successful because currently there is little incen-
tive for developers to manually annotate web services.

Several researchers have implemented service discovery tools that rely solely on
the information contained in the web service description files. It is difficult to measure
the relative performance of these implementations againsteach other, and the results
found in the literature vary. In [3] the authors compared several approaches to web
service discovery, including information retrieval basedmethods and semantics based
methods, and found that the semantic based approach using Latent Semantic Analysis
outperformed the information retrieval approach. However, in [1] the authors showed
that when comparing the results of a system based on Latent Semantic Analysis with
the results of a system based on the Vector Space Model, recall improved but precision
fell.

In our own experiments we implemented a web service search engine based on the
Vector Space Model [4] and a semantics based engine using Explicit Semantic Analysis.
In the classic Vector Space Model approach, text documents (in this case, WSDL files)
are represented as vectors in a term space. If a term occurs ina document then its
value in that dimension of the vector is non-zero. The value is typically derived from
the frequency of the term in the document and the commonness of the term in the
whole document collection. One of the most common weightingformulas used is Term
Frequency Inverse Document Frequency, although several variations of this formula
exist. In our implementation a variation of TFIDF that uses sublinear scaling was used.
The relevant documents for a query are calculated by representing the query as a vector
in the same term space and then calculating the similarity between the query vectors and
the vector representations of the documents in the collection. In this implementation
cosine similarity, which compares the angle between the vectors, was used.

Explicit Semantic Analysis is a method introduced in [5–7] in which text in nat-
ural language form is represented in a concept space derivedfrom articles found in
Wikipedia. In this method each article in Wikipedia is treated as a concept in a general-
purpose ontology and the text in the articles is used to determine the degree of related-
ness between the concept and a text snippet. An inverted index is used to build a vector
for each individual term. The inverted index keeps track of the articles in Wikipedia that
contain each term and their weight (which is typically calculated using some variant of
TFIDF). The resulting vector for the text snippet is the centroid vector of the vectors
derived for each term. The similarity between two text snippets can then be calculated
based on these ”concept vectors” by using standard vector-based similarity similarity
metrics such as cosine similarity. The method is said to be explicit because the concepts
are explicitly defined in Wikipedia in the form of articles.

Compared to the Vector Space Model, Explicit semantic analysis produces vectors

13



in a concept space rather than vectors in a term space. Also, depending on the docu-
ment set, the vectors in ESA tend to be shorter (the length of avector is the number of
articles in Wikipedia) but less sparse than the term vectorsused in VSM. ESA is con-
sidered a semantics-based method because the documents arerepresented in a concept
space rather than just a term space.

We evaluated the performance of both engines using the same dataset kindly pro-
vided to us by the authors in [3]. Our initial results showed that the ESA implementa-
tion performed worse than the VSM approach1. Upon further investigation we found
that one of the contributing factors for the poor results of the ESA implementation was
the noise introduced by the incorrect tokenisation of some of the terms extracted from
the non-natural language sections of the WSDL files.

Other researchers have identified the need to find better waysof dealing with the
complexities of extracting usable information from the non-natural language text found
in WSDL files [8]. However, to the best of our knowledge, thereis no detailed infor-
mation published regarding the accuracy of the tokenisation algorithms found in the
literature. Therefore, we created a data set designed specifically to test the accuracy of
different algorithms when tokenizing strings typically found in WSDL files. This paper
addresses the research question of which tokenisation algorithm produces best results
when dealing with non-natural language strings found in WSDL files.

The rest of this paper is structured as follows. Section 2 provides a review of related
work. Section 3 talks about the impact of introducing noise in the tokenisation process.
Section 4 describes the data set that is used to evaluate the tokenisation algorithms.
Section 5 shows the evaluation results for three tokenisation algorithms. Section 6 in-
troduces a new algorithm and Section 7 shows its evaluation results. Section 8 discusses
future work. Finally, Section 9 summarises the paper’s research contributions.

2 Background

Few of the WSDL tokenisation algorithms in the literature are explained in detail. One
of the few exceptions can be found in [9]. The authors use a tokenisation algorithm
that is similar to the Maximum Matching algorithms used in Chinese segmentation.
The algorithm starts with the first character and tries to findthe longest matching word
in the dictionary that is completely contained in the string. If no word is found then
the algorithm assumes that the single character is a token and moves on to the next
character. If a word is found then the algorithm marks that substring as a token and
moves on to the next character until there are no more characters in the string.

For example, assuming that we wanted to tokenise the string “downloadMP3Music”,
and that the words “download”, “MP3”, and “music” are in the dictionary, the algorithm
would start looking for the longest word starting with a “d”.It would first find the word
“down” but then it would also find the longer word “download”.Since no words longer
than “download” are found in the dictionary, that substringis marked as a token and the
algorithm starts over from the letter “M”.

1 The results are part of an ongoing project and are not shown here because they are out of the
scope of this paper.

14



The authors argue that relying on naming conventions such asCamel Case is prob-
lematic because many strings do not follow the convention correctly and because cer-
tain words, such as eBay, make it difficult to comply with the conventions. Also, some
strings found in WSDL files do not even follow a naming convention and are just a list
of lower case or upper case characters. The authors provide atable with a few examples
of the results obtained using the tokeniser but there is no information about the accuracy
of the algorithm when applied to a large set of strings. Also,there is no reference to the
dictionary that was used. This is important because the performance of this algorithm is
directly related to the dictionary being used. In the example mentioned in the previous
paragraph, if the term MP3 is not in the dictionary, the result of the tokenisation is going
to be incorrect (“download” “MP” “3” “Music”, assuming the abbreviation “MP” is in
the dictionary). We will refer to this technique asMMA.

In [3], even though the authors do not explain the algorithm used to tokenise WSDL
names explicitly, we were able to reverse engineer it based on their data sets. The to-
keniser does the following:

1. Dashes and underscores are removed from the string.
2. The characters in the string are iterated over from left toright. The first character is

flagged as the start of the current token.
3. When a dot or a space is found a new token is created using thecharacters from the

start-of-token flag to the previous character. The dot or space character is discarded.
4. When an upper case letter is found a new token is created using the characters from

the start-of-token flag to the previous character. The uppercase letter is flagged as
the start of the next token.

5. The process continues until there are no more characters in the string.

Using the same example we used to describe the previous tokenisation algorithm,
the result of applying this algorithm would produce the following tokens: “download”,
“M”, “P3”, “Music”. We will refer to this technique asSimple.

3 The Importance of Tokenisation

Tokenising strings in programming-language-type format is both challenging and im-
portant. Generating the incorrect tokens has a negative impact on the overall perfor-
mance of a search engine, but the impact is different depending on the approach being
used. For example, lets consider the string “BINNAME”. Thisstring was found in a
WSDL file that describes a fraud detection service. The correct way of tokenising it
is “BIN” and “NAME”. However, some algorithms incorrectly split this string into the
tokens “BINNA” and “ME”. The token “BINNA” can be associatedwith the area next
to the Lamington National Park in Australia. The term is uncommon and very discrim-
inative. If an approach based on the Vector Space Model is used, this error will likely
generate a false positive if someone is looking for a servicerelated to Binna Burra (an
online reservation system for the Binna Burra Lodge, perhaps). However, the error is
likely to go unnoticed when the system is evaluated against astandard test collection,
since the information needs included in these benchmarks tend to be generic and will
almost certainly not include anything related to Binna Burra.

15



In the Explicit Semantic Analysis approach, documents (in this case web services)
are represented in a concept space derived from Wikipedia articles. This is achieved
by using standard information retrieval techniques to calculate the degree of related-
ness between the document and every article in Wikipedia. Ifan incorrect token such
as “BINNA” is introduced, the service is likely to be mapped closely to the concepts
related to that token in Wikipedia (which are likely to be thearticles related to Binna
Burra). Depending on the technique being used to calculate the similarity between this
concept vector and other concept vectors, such as the ones that represent queries, the
negative impact on the overall results can be much more significant. For example, if only
the topk concepts in the vectors are used in the comparison, a term such as “BINNA”
can cause not only false positives but can also prevent the service from being ranked
high in the results for a relevant query, thus affecting precision. This happens because
the irrelevant concepts related to the term “BINNA” will displace the concepts related
to the service’s real purpose2.

4 Evaluation Data Set and Metrics

In order to evaluate the different tokenisation algorithms, a collection of strings was as-
sembled from a collection of 576 WSDL files3. The values of the name attribute of the
following tags in the WSDL namespace were used: service, port, binding, operation,
message, and port. The values of the name attribute of the tags in the type declarations
were also used. The tags used were: element, simpleType, complexType, and enumera-
tion.

This extraction process produced a collection of 31126 strings. These strings were
then manually tokenised. When more than one tokenisation alternative was found for
a string, the one deemed most common was used. For example, the string “wikiweb-
service.GetRecentChanges” was tokenised as “wiki”, “web”, “service”, “get”, “recent”,
“changes”. Although another valid tokenisation could havebeen “wiki”, “webservice”,
“get”, “recent”, because sometimes web services is writtenas a single word4, we con-
sidered the first possibility as being the most common.

Three metrics were used to evaluate the tokenisation algorithms. The first one calcu-
lates the percentage of tokenisation results that are completely correct. For example, if
the correct tokenisation of the string “BINNAME” is “bin” and “name”, then the result
is considered correct only when the tokeniser produces these exact tokens. This metric
is referred to as % Perfect Tokenisations.

The second metric is precision. In this context precision isdefined as

precision =
ct

tp
, (1)

2 In this case the term “BINNA” is particularly problematic because it is very discriminative.
The impact will depend on the incorrect tokens being generated.

3 The original dataset included 785 WSDL files, but some of themwere duplicates and were
removed

4 Wikipedia includes “webservice” as an alternative way to spell “web service”.

16



wherect is the number of correct tokens produced by the tokeniser andtp is the total
number of tokens produced by the tokeniser.

The third metric is recall. In this context recall is defined as

recall =
ct

rt
, (2)

wherect is the number of correct tokens produced by the tokeniser andtp is the total
number of tokens in the ground truth (the total number of tokens that should have been
returned).

When tokenising long multi-word strings, the results of thethree metrics can be sig-
nificantly different. For example, suppose the correct tokenisation of the string “wiki-
webservice.GetRecentChanges” is “wiki”, “web”, “service”, “get”, “recent”, and
‘changes‘”. If an algorithm tokenises the string as “wiki”,“webservice”, “get”, “recent”,
and “changes”, the first metric just counts the result as being wrong. The second metric
counts four correct tokens (the tokens “wiki”, “get”, “recent”, and “changes”) and five
tokens produced by the tokeniser, resulting in a precision value of 80%. The third metric
counts the same four tokens as correct and six tokens in the ground truth, resulting in
a recall value of 66.66%. If this were the only string in the collection the percentage
of perfect tokenisations would be 0%, the average precisionwould be 66.66%, and the
average recall would be 80%.

5 Evaluation of Existing Tokenisation Techniques

Along with the two tokenisation techniques discussed in Section 2 a third technique
that uses the Camel Case naming convention to decide how to tokenise strings was
implemented. The technique does the following:

1. Dashes and underscores are removed from the string.
2. The characters in the string are iterated over from left toright. The first character is

flagged as the start of the current token.
3. The second character is analysed to determine if the current token is in lower case

(all characters are lower case), upper case (all charactersare upper case), or camel
case (the first character is upper case and the rest are lower case).

4. The token boundary is determined based on the type of word detected in the previ-
ous step. If the word is lower case or camel case then the word boundary is flagged
when an upper case character is found. The detected token does not include the
upper case character, which is flagged as the start of a new token.

5. If the word is upper case then the word boundary is flagged when a lower case
character is found. In this case the upper case character right before the lower case
character is not included in the token because it is assumed to be the first character
of the next token.

6. Numbers are considered to be part of the current token.
7. When a dot or a space are found a new token is created using the characters from the

start-of-token flag to the previous character. The dot or space character is discarded.
8. The process continues until there are no more characters in the string.

17



Using the same example once more, the result of applying thistechnique would
produce the following tokens: “download”, “MP3”, “Music”.We will refer to this tech-
nique asNaming Convention.

The three techniques, Simple [3], Maximum Matching [9], andNaming Convention,
were evaluated using the tokenisation data set. For the Maximum Matching technique,
four dictionaries were used. The dictionaries were derivedfrom WordNet, the entries in
the English language Wiktionary5, the titles of the English language Wikipedia, and the
entire corpus of the English language Wikipedia. Table 1 shows the number of words
in each of these dictionaries. The results of the evaluationare shown in Table 2.

Table 1. Sizes of the dictionaries.

Dictionary Number of Words
WordNet 87539

Wikipedia Titles 1039508
Wiktionary Titles 1805285
Wikipedia Corpus 5549346

Table 2. Results of the evaluation of three tokenisation algorithms.

Tokeniser Dictionary % Perfect Tokenisations% Precision% Recall
Simple NA 71.11% 81.59% 83.9%

Maximum Matching WordNet 52.53% 67.11% 72.34%
Maximum Matching Wiktionary 45.56% 61.62% 62.92%
Maximum Matching Wikipedia Titles 41.55% 56.72% 57.11%
Maximum MatchingWikipedia Corpus 24.53% 41.37% 39.73%
Naming Convention NA 88.15% 94.49% 93.49%

The results show that the performance of the Maximum Matching tokenisation al-
gorithm is heavily dependent on the dictionary being used. Also, using a dictionary
containing more words doesn’t necessarily increase the algorithm’s performance. In
fact, the worst performance was obtained when using the largest dictionary, in this case,
the one derived from the entire Wikipedia corpus. The performance degrades because
Wikipedia includes many non-words that are incorrectly identified by the algorithm as
the right tokens. For example, when given the string ”APRSoapIn” the MMA algo-
rithm using the WordNet-derived dictionary correctly tokenises it into ”apr”, ”soap”,
and ”in”. However, the same algorithm produces the incorrect tokens ”aprs”, ”oapi”,
and ”n” when using the Wikipedia-corpus-derived dictionary because the terms ”aprs”
and ”oapi” are contained somewhere in Wikipedia (APRS is theacronym for Auto-
matic Packet Reporting System and OAPI is the acronym for TheAfrican Intellectual
Property Organization).

The best performing algorithm is the one based on naming conventions. This tells
us that most non-natural language text within WSDL files is written following some
naming convention and done correctly. However, around 16% of the text in the WSDL

5 Technically the entries in Wiktionary are the titles of the wiki pages. The content in the body
of the wiki pages was not used.

18



files does not follow a naming convention or does so incorrectly.These results were used
as a motivation for the design of the WEASEL tokeniser.

6 The WEASEL Tokeniser

Finding the right tokenisation for a given string requires knowledge that can be obtained
from the string itself or from some external source. The dictionary used in the Maxi-
mum Matching algorithm is an example of external information that can be used in the
tokenisation process. The letter cases used in both the Simple and Naming Convention
algorithms is an example of information that can be found in the string itself.

The results in Section 5 show that the best performing algorithms were the ones that
used the letter case information to determine how to tokenise the strings. This suggests
that this information should not be ignored. It would also seem that using a general
purpose dictionary as a source of external information is not very useful in the quest for
achieving the perfect tokenisation, considering that regardless of the dictionary used,
the performance of the Maximum Matching algorithm was the worse. However, this
can be attributed to the fact that the algorithm only explores one word combination
possibility out of many. Also, a dictionary specifically tuned for a particular domain
might improve the algorithm’s performance.

Table 3 shows some examples of the strings that the Naming Convention tokeniser
had trouble tokenising correctly. The incorrectly tokenised strings can be classified into
the following categories:

1. Strings that contain numbers, where the tokens around thenumbers are split incor-
rectly.

2. Strings that do not use any naming convention.
3. Strings that use some naming convention but use it incorrectly.

Table 3. Examples where the Naming Convention tokeniser had troubletokenising correctly.

WSDL Name Tokens Expected Tokens
BINNAME binname bin, name

historicoptiondatawsdl historicoptiondatawsdl historic, option, data, wsdl
Census1850GetSurnamecensus1850, get, surnamecensus, 1850, get, surname

AxesgraphType axesgraph, type axes, graph, type

Strings in the first category are difficult to tokenise correctly without using exter-
nal information because the numbers are sometimes part of the tokens, in strings such
as “findMP3Service”, and sometimes are independent tokens,in strings such as “In-
terestRateSwaps10Month”. Strings in the second category are also difficult to tokenize
correctly because it is hard to differentiate between single-word strings written in lower
camel case and multi-word strings written all in the same letter case. Finally, the strings
in the third category are the most difficult to tokenise correctly because it is hard to iden-
tify the cases where a naming convention has been used incorrectly, especially when this
information is being used as the primary mechanism to identify word boundaries.

The first version of the WEASEL tokeniser (referred to asWEASEL v1 in the
tables) attempts to improve the performance of the Naming Convention algorithm by

19



dealing with the first problem. By using a dictionary the algorithm tries to identify if
a number found within a string belongs to the current token, the next token, or should
be treated as a separate token. It also uses the commonness ofthe words, which can be
easily calculated by counting word occurrences in a large general-purpose text (in this
case the whole English language Wikipedia corpus). The algorithm does the following:

1. The string is tokenised using the Naming Convention algorithm.
2. When a number is detected in any token the number is separated from the token. For

example, if the initial tokenisation of the string “InterestRateSwaps10Month” pro-
duces the tokens “Interest”, “Rate”, “Swaps10”, and “Month”, the token “Swaps10”
is split into “Swaps” and “10”.

3. The different combinations between the number and its surrounding tokens are
looked up in the dictionary. In the example, these combinations would be “Swaps10”
and “10Month”.

4. If none of the combinations are found in the dictionary then the number is treated
as a separate token. This is what happens in this example and the incorrect tokeni-
sation is now fixed.

5. If only one of the combinations is found in the dictionary then that combination is
considered the correct token.

6. If both combinations are found in the dictionary then the combination that is most
common is chosen as the correct token.

The second version of the WEASEL tokeniser (referred to asWEASEL v2 in the
tables) attempts to solve the second problem by using an algorithm similar to the Max-
imum Matching algorithm to tokenise strings that do not use any naming convention.
The algorithm is only used when a string is detected to be entirely upper case or entirely
lower case and does the following:

1. Starting from the first character, the algorithm looks forall the words in the dictio-
nary that start with that character and match the next characters in the string. For
example, for the string ”BINNAME”, the algorithm would find the words “b”, “bi”,
“bin”, and “binna” (assuming these words are in the dictionary).

2. A score is assigned to each word based on its length and commonness. The simple
formulaScore(t) = commonness(t) ∗ length(t)k is used, withk = 2. The ratio-
nale behind this formula is that it is more likely for a token to be the correct choice
if it is longer and more common. The constantk is used to increase the relevance of
the token’s length against its commonness. The value of the constant was derived
by experimenting with a subset of the ground truth that included only lower case
strings.

3. For each word the algorithm is run recursively starting from the next character in
the string, until no more characters are left. For example, for the token “b”, the
algorithm would run recursively using the rest of the string, in this case “inname”.
This produces a set with several possible tokenisations.

4. Each tokenisation possibility is given a score, which is simple the average of the
scores for each token. The one with the highest score is returned.

20



The difference with the Maximum Matching algorithm is that this algorithm assem-
bles several possible tokenisation alternatives, based onthe words found in the dictio-
nary, and also uses the commonness information to select thebest possibility. The main
drawback is its complexity, both in time and space. The algorithm is very inefficient,
but in practice it works well for short strings. A simple optimization for strings longer
than a certainK is to limit the recursive runs to the top two scoring words only. This
reduces the amount of computation and memory significantly.

Although this algorithm performs well for multi-word strings that use no naming
convention, it can introduce noise when used in a collectionthats include single-letter
words written in lower camel case, if the words are not part ofthe dictionary (words
might be abbreviated or might even be in another language). In this case the algorithm
will try to tokenize the words further and is likely to end up with several short words
that are unrelated to the service.

Table 4. Results of the WEASEL tokeniser evaluation.

Tokeniser Dictionary % Perfect Tokenisations% Precision% Recall
Naming Convention NA 88.15% 94.49% 93.49%

WEASEL v1 WordNet 94.17% 96.65% 96.71%
WEASEL v1 Wiktionary 94.31% 96.72% 96.75%
WEASEL v1 Wikipedia Titles 93.72% 96.55% 96.37%
WEASEL v1 Wikipedia Corpus 91.84% 95.89% 95.43%
WEASEL v2 WordNet 92.65% 95.23% 95.33%
WEASEL v2 Wiktionary 94.34% 96.8% 96.84%
WEASEL v2 Wikipedia Titles 93.93% 96.79% 96.61%
WEASEL v2 Wikipedia Corpus 92.02% 96.11% 95.66%

7 WEASEL Evaluation

Table 4 shows the results of evaluating the different versions of the WEASEL tokeniser
using the same four dictionaries that were used with the Maximum Matching algorithm.
The results of the Naming Convention algorithm, the best performing algorithm of the
ones evaluated before, are also included.

The results show that version two using the dictionary derived from Wiktionary
produced the best results. The numbers show a significant improvement over the per-
formance achieved by the Naming Convention algorithm. Version one using the same
dictionary comes in a close second. The performance of thesetwo algorithms is very
similar but version one performs slightly faster when dealing with long tokens that use
no naming convention. The results also show that the performance of these algorithms
is dependent on the external algorithm being used. The dictionary that produced the
best results was the one derived from Wiktionary and the one that produced the worst
results was the one derived from the whole WIkipedia corpus.These results are consis-
tent with the ones observed in the evaluation of the MMA algorithms where these two
dictionaries were also the best and worst respectively.

21



8 Future Work

Although the new tokenisation algorithm performs better than other algorithms avail-
able in the literature, there is still room for improvement.Another source of exter-
nal information that was not used and might be useful in certain scenarios is context.
Analysing tokens extracted from other sections of a WSDL filecan help find common
patterns that may be useful when dealing with a complex string. In fact, context is used
a lot by humans when manually tokenising difficult strings.

Although the levels of noise generated by the new algorithmsare much lower than
the existing algorithms, it is important to inspect the types of tokens being generated
incorrectly. Incorrect tokens such as “binna” are likely tohave a significant impact on
the performance of some semantics-based systems, but incorrect tokens such as “whois-
goingtobepresident” are not as problematic.

Finally, the new tokenisation algorithm will be used in the implementation of the
web service engine based on Explicit Semantic Analysis. WEASEL v2 using Wik-
tionary produced the best results and will therefore be usedinstead of the original MMA
implementation. We expect the performance to improve giventhe superior performance
of the new algorithm.

9 Conclusions

In this paper, the performance of tokenization techniques used to extract information
from programming-language-type text is identified as one ofthe key aspects that di-
rectly affects the performance of certain semantics-basedservice discovery approaches.
A data set containing a large set of strings extracted from WSDL files is used to eval-
uate three existing tokenization algorithms. Finally a newalgorithm that outperforms
existing algorithms is introduced.

Acknowledgements

This research is supported in part by the CRC Smart Services,established and sup-
ported under the Australian Government Cooperative Research Centres Programme,
and a Queensland University of Technology scholarship.

References

1. Wu, C., Chang, E.: Aligning with the web: an atom-based architecture for web services
discovery. Service Oriented Computing and Applications 1 (2007) 97–116 10.1007/s11761-
007-0008-x.

2. D’Mello, D., Ananthanarayana, V.: A review of dynamic webservice description and discov-
ery techniques. In: 2010 First International Conference onIntegrated Intelligent Computing,
IEEE (2010) 246–251

3. Bose, A.: Effective web service discovery using a combination of a semantic model and a data
mining technique. Master’s thesis, Queensland Universityof Technology (2008)

22



4. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communica-
tions of the ACM 18 (1975) 613–620

5. Gabrilovich, E.: Feature generation for textual information retrieval using world knowledge.
PhD thesis, Israel Institute of Technology (2006)

6. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based ex-
plicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artifi-
cial Intelligence. Volume 7., Morgan Kaufmann Publishers Inc. (2007) 1606–1611

7. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural language
processing. Journal of Artificial Intelligence Research 34(2009) 443–498

8. J.Hou, J.Zhang, R.Nayak, A.Bose: Semantics-based web service discovery using information
retrieval techniques. In: Pre-Proceedings of the Initiative for the Evaluation of XML Retrieval
2010, IR Publications (2010) 274 – 285

9. Wu, C., Chang, E., Aitken, A.: An empirical approach for semantic web services discovery.
In: Software Engineering, 2008. ASWEC 2008. 19th Australian Conference on, IEEE (2008)
412–421

23


