I nfor mation Extraction from Web Services: A
Comparison of Tokenisation Algorithms

Alejandro Metke-Jimenez, Kerry Raymond and lan MacColl

Faculty of Science and Technology, Queensland University of Technology, Brisbane, Australia

Abstract. Most web service discovery systems use keyword-based search al-
gorithms and, although partially successful, sometimes fail to satisfy some users
information needs. This has given rise to several semantics-based approaches that
look to go beyond simple attribute matching and try to capture the semantics of
services. However, the results reported in the literature vary and in many cases
are worse than the results obtained by keyword-based systems. We believe the ac-
curacy of the mechanisms used to extract tokens from the non-natural language
sections of WSDL files directly affects the performance of these techniques, be-
cause some of them can be more sensitive to noise. In this paper three existing
tokenization algorithms are evaluated and a new algorithm that outperforms all
the algorithms found in the literature is introduced.

1 Introduction

Web services have become the de facto technology to enable distributed computing in
modern platforms. Services directories, such as Programmable Web, list thousands of
services that can be used to build complex software applications. Also, most modern
backend software applications expose their functionality as web services in order to
facilitate B2B interactions as well as integration with other software products deployed
internally. Some applications, such as mashups, are built entirely by combining existing
services.

With the ever increasing number of web services available both in the public In-
ternet as well as in the private Intranets, web service discovery has become an im-
portant problem for software developers wanting to use services to build applications.
The UDDI standard was initially proposed to address this problem by providing a cen-
tralized repository of service descriptions. However, some authors consider that the
standard is too complex for end users who just want to publish their services [1] and
also, several problems with the centralized architecture have been identified. Perhaps
the most relevant of these is the fact that registration in a centralized repository is not
mandatory and therefore all unregistered services will not be discoverable by potential
clients [2]. These shortcomings of the UDDI standard have given rise to proposals of
decentralized mechanisms that crawl the web in search of WSDL files and use only the
information found in them.

In [2] the authors propose an extensive classification of different types of web ser-
vice discovery approaches. We are interested in the approaches foundsynttutic

Metke-Jimenez A., Raymond K. and MacColl I..

Information Extraction from Web Services - A Comparison of Tokenisation Algorithms.

DOI: 10.5220/0003698000120023

In Proceedings of the 2nd International Workshop on Software Knowledge (SKY-2011), pages 12-23
ISBN: 978-989-8425-82-9

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

13

matching and semantic matching categories, since these techniques are decentralized
and have proven to be effective in other search domains.ittlese categories the
approaches can be differentiated by the degree of usevewant required. Although
several standards have been proposed to add semantic tiomsta web services [3],

all of these methods require both choosing an ontology adhg@gemantic annotations

to the services. On the other hand, approaches based omatfon retrieval methods
use the information already available in the service dpsori files. We believe these
latter approaches are likely to be more successful becausently there is little incen-

tive for developers to manually annotate web services.

Several researchers have implemented service discovely ttwat rely solely on
the information contained in the web service descriptiasfilt is difficult to measure
the relative performance of these implementations agaiamsh other, and the results
found in the literature vary. In [3] the authors comparedesalvapproaches to web
service discovery, including information retrieval baseethods and semantics based
methods, and found that the semantic based approach ugiagtlSemantic Analysis
outperformed the information retrieval approach. Howeiref1] the authors showed
that when comparing the results of a system based on Latemar8& Analysis with
the results of a system based on the Vector Space Modell imgabved but precision
fell.

In our own experiments we implemented a web service seaginebased on the
Vector Space Model [4] and a semantics based engine usifdgEgemantic Analysis.
In the classic Vector Space Model approach, text documantkié case, WSDL files)
are represented as vectors in a term space. If a term occarslotument then its
value in that dimension of the vector is non-zero. The vaduypically derived from
the frequency of the term in the document and the commonrfefeederm in the
whole document collection. One of the most common weighmgrulas used is Term
Frequency Inverse Document Frequency, although severaltioas of this formula
exist. In our implementation a variation of TFIDF that useklsear scaling was used.
The relevant documents for a query are calculated by reptiegehe query as a vector
in the same term space and then calculating the similarttydsn the query vectors and
the vector representations of the documents in the cadlectn this implementation
cosine similarity, which compares the angle between theovgowas used.

Explicit Semantic Analysis is a method introduced in [5+47Which text in nat-
ural language form is represented in a concept space derivedarticles found in
Wikipedia. In this method each article in Wikipedia is tiexhfis a conceptin a general-
purpose ontology and the text in the articles is used to deterthe degree of related-
ness between the concept and a text snippet. An invertes isdised to build a vector
for each individual term. The inverted index keeps traclefarticles in Wikipedia that
contain each term and their weight (which is typically cédéed using some variant of
TFIDF). The resulting vector for the text snippet is the ceidt vector of the vectors
derived for each term. The similarity between two text seigpran then be calculated
based on these "concept vectors” by using standard veeswebsimilarity similarity
metrics such as cosine similarity. The method is said to péatbecause the concepts
are explicitly defined in Wikipedia in the form of articles.

Compared to the Vector Space Model, Explicit semantic aisjyroduces vectors

14

in a concept space rather than vectors in a term space. Adpending on the docu-
ment set, the vectors in ESA tend to be shorter (the lengthveteor is the number of
articles in Wikipedia) but less sparse than the term veatses! in VSM. ESA is con-
sidered a semantics-based method because the documerr@praented in a concept
space rather than just a term space.

We evaluated the performance of both engines using the satased kindly pro-
vided to us by the authors in [3]. Our initial results showedlttthe ESA implementa-
tion performed worse than the VSM approactipon further investigation we found
that one of the contributing factors for the poor resultshef ESA implementation was
the noise introduced by the incorrect tokenisation of softbeterms extracted from
the non-natural language sections of the WSDL files.

Other researchers have identified the need to find better afagsaling with the
complexities of extracting usable information from the sr@tural language text found
in WSDL files [8]. However, to the best of our knowledge, thiex@o detailed infor-
mation published regarding the accuracy of the tokenisalgorithms found in the
literature. Therefore, we created a data set designedfiadlyito test the accuracy of
different algorithms when tokenizing strings typicallyfad in WSDL files. This paper
addresses the research question of which tokenisationithlgoproduces best results
when dealing with non-natural language strings found in W$[@s.

The rest of this paper is structured as follows. Section 2iges a review of related
work. Section 3 talks about the impact of introducing norsthie tokenisation process.
Section 4 describes the data set that is used to evaluatekbrigation algorithms.
Section 5 shows the evaluation results for three tokepisatigorithms. Section 6 in-
troduces a new algorithm and Section 7 shows its evaluaggurts. Section 8 discusses
future work. Finally, Section 9 summarises the paper’saesecontributions.

2 Background

Few of the WSDL tokenisation algorithms in the literature arplained in detail. One
of the few exceptions can be found in [9]. The authors use anisltion algorithm
that is similar to the Maximum Matching algorithms used inir&se segmentation.
The algorithm starts with the first character and tries to firedlongest matching word
in the dictionary that is completely contained in the stritigho word is found then
the algorithm assumes that the single character is a tokénmaves on to the next
character. If a word is found then the algorithm marks thatsting as a token and
moves on to the next character until there are no more cleassictthe string.

For example, assuming that we wanted to tokenise the stiiogriloadMP3Music”,
and that the words “download”, “MP3", and “music” are in thetbnary, the algorithm
would start looking for the longest word starting with a “tt"'would first find the word
“down” but then it would also find the longer word “downloa&ince no words longer
than “download” are found in the dictionary, that substigarked as a token and the
algorithm starts over from the letter “M”".

! The results are part of an ongoing project and are not showentiezause they are out of the
scope of this paper.

15

The authors argue that relying on naming conventions su€aasel Case is prob-
lematic because many strings do not follow the conventiorectly and because cer-
tain words, such as eBay, make it difficult to comply with tleentions. Also, some
strings found in WSDL files do not even follow a nhaming coni@maind are just a list
of lower case or upper case characters. The authors provédideawith a few examples
of the results obtained using the tokeniser but there isfoorimation about the accuracy
of the algorithm when applied to a large set of strings. Alsere is no reference to the
dictionary that was used. This is important because th@pagnce of this algorithm is
directly related to the dictionary being used. In the exampéntioned in the previous
paragraph, if the term MP3 is not in the dictionary, the resiihe tokenisation is going
to be incorrect (“download” “MP” “3” “Music”, assuming thebdreviation “MP” is in
the dictionary). We will refer to this technique BEM A.

In [3], even though the authors do not explain the algoritised.to tokenise WSDL
names explicitly, we were able to reverse engineer it basetth@r data sets. The to-
keniser does the following:

1. Dashes and underscores are removed from the string.

2. The characters in the string are iterated over from lefigiot. The first characteris
flagged as the start of the current token.

3. When a dot or a space is found a new token is created usirténacters from the
start-of-token flag to the previous character. The dot ocsgharacter is discarded.

4. When an upper case letter is found a new token is created the characters from
the start-of-token flag to the previous character. The upase letter is flagged as
the start of the next token.

5. The process continues until there are no more charaotére string.

Using the same example we used to describe the previousisakien algorithm,
the result of applying this algorithm would produce theduling tokens: “download”,
“M”, “P3”, “Music”. We will refer to this technique asSimple.

3 Thelmportance of Tokenisation

Tokenising strings in programming-language-type forrmsatdath challenging and im-
portant. Generating the incorrect tokens has a negativadtngn the overall perfor-
mance of a search engine, but the impact is different depgradi the approach being
used. For example, lets consider the string “BINNAME”. Thisng was found in a
WSDL file that describes a fraud detection service. The comey of tokenising it
is “BIN” and “NAME". However, some algorithms incorrectlypkt this string into the
tokens “BINNA” and “ME”. The token “BINNA” can be associatedth the area next
to the Lamington National Park in Australia. The term is umooon and very discrim-
inative. If an approach based on the Vector Space Model @, disis error will likely
generate a false positive if someone is looking for a semétaed to Binna Burra (an
online reservation system for the Binna Burra Lodge, peshagpowever, the error is
likely to go unnoticed when the system is evaluated agaissaradard test collection,
since the information needs included in these benchmarkittebe generic and will
almost certainly not include anything related to Binna Burr

16

In the Explicit Semantic Analysis approach, documentskia tase web services)
are represented in a concept space derived from Wikipetldear This is achieved
by using standard information retrieval techniques to date the degree of related-
ness between the document and every article in Wikipedin ihcorrect token such
as “BINNA” is introduced, the service is likely to be mappddsely to the concepts
related to that token in Wikipedia (which are likely to be #méicles related to Binna
Burra). Depending on the technique being used to calcuiatsimilarity between this
concept vector and other concept vectors, such as the oateefiresent queries, the
negative impact on the overall results can be much morefgignt. For example, if only
the topk concepts in the vectors are used in the comparison, a termasuBINNA”
can cause not only false positives but can also prevent tivecedrom being ranked
high in the results for a relevant query, thus affecting jsiea. This happens because
the irrelevant concepts related to the term “BINNA” will glace the concepts related
to the service’s real purpose

4 Evaluation Data Set and Metrics

In order to evaluate the different tokenisation algorithensollection of strings was as-
sembled from a collection of 576 WSDL fifesThe values of the name attribute of the
following tags in the WSDL namespace were used: servicd, pording, operation,
message, and port. The values of the name attribute of tis@rtdlge type declarations
were also used. The tags used were: element, simpleTyp@leohype, and enumera-
tion.

This extraction process produced a collection of 31126g#:i These strings were
then manually tokenised. When more than one tokenisattennaltive was found for
a string, the one deemed most common was used. For examplgtrithg “wikiweb-
service.GetRecentChanges” was tokenised as “wiki”, “wetBrvice”, “get”, “recent”,
“changes”. Although another valid tokenisation could hagen “wiki”, “webservice”,
“get”, “recent”, because sometimes web services is writéiga single wort] we con-
sidered the first possibility as being the most common.

Three metrics were used to evaluate the tokenisation #tgosi The first one calcu-
lates the percentage of tokenisation results that are ageiplcorrect. For example, if
the correct tokenisation of the string “BINNAME” is “bin” at'‘name”, then the result
is considered correct only when the tokeniser produceg theact tokens. This metric
is referred to as % Perfect Tokenisations.

The second metric is precision. In this context precisiateifined as

t
precision = tc_p’ ()

2 |n this case the term “BINNA” is particularly problematicdmise it is very discriminative.
The impact will depend on the incorrect tokens being gerdrat

® The original dataset included 785 WSDL files, but some of tiegre duplicates and were
removed

4 Wikipedia includes “webservice” as an alternative way telsfweb service”.

17

wherect is the number of correct tokens produced by the tokenisetaiglthe total
number of tokens produced by the tokeniser.
The third metric is recall. In this context recall is defined a

t
recall = <)
rt

wherect is the number of correct tokens produced by the tokenisetaiglthe total
number of tokens in the ground truth (the total number of tisk@at should have been
returned).

When tokenising long multi-word strings, the results oftifvee metrics can be sig-
nificantly different. For example, suppose the correct migation of the string “wiki-
webservice.GetRecentChanges” is “wiki”, “web”, “servicéget”, “recent”, and
‘changes™. If an algorithm tokenises the string as “wikiiebservice”, “get”, “recent”,
and “changes”, the first metric just counts the result asgo@irong. The second metric
counts four correct tokens (the tokens “wiki”, “get”, “re@® and “changes”) and five
tokens produced by the tokeniser, resulting in a precisatuevof 80%. The third metric
counts the same four tokens as correct and six tokens in tundrtruth, resulting in
a recall value of 66.66%. If this were the only string in thélextion the percentage
of perfect tokenisations would be 0%, the average precismid be 66.66%, and the
average recall would be 80%.

5 Evaluation of Existing Tokenisation Techniques

Along with the two tokenisation techniques discussed intiSe@ a third technique
that uses the Camel Case naming convention to decide hovkémise strings was
implemented. The technique does the following:

1. Dashes and underscores are removed from the string.

2. The characters in the string are iterated over from lefigiat. The first character is
flagged as the start of the current token.

3. The second character is analysed to determine if thertutoken is in lower case
(all characters are lower case), upper case (all charaatengpper case), or camel
case (the first character is upper case and the rest are lagse). c

4. The token boundary is determined based on the type of wetettid in the previ-
ous step. If the word is lower case or camel case then the warddary is flagged
when an upper case character is found. The detected tokennddeénclude the
upper case character, which is flagged as the start of a n@n.tok

5. If the word is upper case then the word boundary is flaggeenwehlower case

character is found. In this case the upper case charactetégore the lower case
character is not included in the token because it is assuoneel the first character
of the next token.

. Numbers are considered to be part of the current token.

7. When a dot or a space are found a new token is created usiobahacters from the
start-of-token flag to the previous character. The dot ocsgharacter is discarded.

8. The process continues until there are no more charaatére string.

»

18

Using the same example once more, the result of applyingtéletsnique would
produce the following tokens: “download”, “MP3", “MusicWe will refer to this tech-
nigue adNaming Convention.

The three techniques, Simple [3], Maximum Matching [9], &laing Convention,
were evaluated using the tokenisation data set. For therivaxi Matching technique,
four dictionaries were used. The dictionaries were deriv@t WordNet, the entries in
the English language Wiktionatythe titles of the English language Wikipedia, and the
entire corpus of the English language Wikipedia. Table shine number of words
in each of these dictionaries. The results of the evaluatiershown in Table 2.

Table 1. Sizes of the dictionaries.

Dictionary |[Number of Words
WordNet 87539
Wikipedia Titles 1039508
Wiktionary Titles 1805285
Wikipedia Corpus 5549346

Table 2. Results of the evaluation of three tokenisation algorithms

Tokeniser Dictionary — [% Perfect Tokenisatiofi Precisiof% Recal
Simple NA 71.11% 81.59% | 83.9%
Maximum Matching WordNet 52.53% 67.11% | 72.34%
Maximum Matching Wiktionary 45.56% 61.62% | 62.92%
Maximum Matching Wikipedia Titles 41.55% 56.72% | 57.11%
Maximum MatchingWikipedia Corpus 24.53% 41.37% | 39.73%
Naming Convention NA 88.15% 94.49% | 93.49%

The results show that the performance of the Maximum Matchokenisation al-
gorithm is heavily dependent on the dictionary being usddoAusing a dictionary
containing more words doesn’t necessarily increase therighgn’'s performance. In
fact, the worst performance was obtained when using thesadjctionary, in this case,
the one derived from the entire Wikipedia corpus. The penéorce degrades because
Wikipedia includes many non-words that are incorrecthyniifeed by the algorithm as
the right tokens. For example, when given the string "APRfhgathe MMA algo-
rithm using the WordNet-derived dictionary correctly takses it into "apr”, "soap”,
and "in". However, the same algorithm produces the incarrekens "aprs”, "oapi”,
and "n” when using the Wikipedia-corpus-derived dictionaecause the terms "aprs”
and "oapi” are contained somewhere in Wikipedia (APRS isabenym for Auto-
matic Packet Reporting System and OAPI is the acronym forAfhiean Intellectual
Property Organization).

The best performing algorithm is the one based on namingergions. This tells
us that most non-natural language text within WSDL files igtem following some
naming convention and done correctly. However, around 168teotext in the WSDL

® Technically the entries in Wiktionary are the titles of thikipages. The content in the body
of the wiki pages was not used.

19

files does not follow a naming convention or does so incalgrddtese results were used
as a motivation for the design of the WEASEL tokeniser.

6 TheWEASEL Tokeniser

Finding the right tokenisation for a given string requireswledge that can be obtained
from the string itself or from some external source. Theidiary used in the Maxi-
mum Matching algorithm is an example of external informatiocat can be used in the
tokenisation process. The letter cases used in both thel&and Naming Convention
algorithms is an example of information that can be foundhandtring itself.

The results in Section 5 show that the best performing algyois were the ones that
used the letter case information to determine how to tolksethis strings. This suggests
that this information should not be ignored. It would alsersethat using a general
purpose dictionary as a source of external information iyaoy useful in the quest for
achieving the perfect tokenisation, considering that reigas of the dictionary used,
the performance of the Maximum Matching algorithm was thes@oHowever, this
can be attributed to the fact that the algorithm only ex@orae word combination
possibility out of many. Also, a dictionary specifically ®ohfor a particular domain
might improve the algorithm'’s performance.

Table 3 shows some examples of the strings that the Naminge@tion tokeniser
had trouble tokenising correctly. The incorrectly tokexistrings can be classified into
the following categories:

1. Strings that contain numbers, where the tokens arounduimbers are split incor-
rectly.

2. Strings that do not use any naming convention.

3. Strings that use some naming convention but use it inctbyre

Table 3. Examples where the Naming Convention tokeniser had traokknising correctly.

WSDL Name Tokens Expected Tokens
BINNAME binname bin, name
historicoptiondatawsdl historicoptiondatawsdl historic, option, data, wsdl
CensuslSSﬂBetSurnamp;ensuslSSO, get, surnajoensus, 1850, get, surname
AxesgraphType | axesgraph, type axes, graph, type

Strings in the first category are difficult to tokenise cotiyewithout using exter-
nal information because the numbers are sometimes parédbkiens, in strings such
as “findMP3Service”, and sometimes are independent tokerstrings such as “In-
terestRateSwaps10Month”. Strings in the second categerglso difficult to tokenize
correctly because it is hard to differentiate between shvgbrd strings written in lower
camel case and multi-word strings written all in the sameitetase. Finally, the strings
in the third category are the most difficult to tokenise cotlyebecause it is hard to iden-
tify the cases where a naming convention has been usedéatigrespecially when this
information is being used as the primary mechanism to iflewtord boundaries.

The first version of the WEASEL tokeniser (referred toVA&ASEL vl in the
tables) attempts to improve the performance of the Namingv@ation algorithm by

20

dealing with the first problem. By using a dictionary the aition tries to identify if
a number found within a string belongs to the current toklee rext token, or should
be treated as a separate token. It also uses the commontikessafrds, which can be
easily calculated by counting word occurrences in a largeegg-purpose text (in this
case the whole English language Wikipedia corpus). Therigtgo does the following:

1. The string is tokenised using the Naming Convention élgor.

2. When a number is detected in any token the number is sepdram the token. For
example, if the initial tokenisation of the string “IntetRateSwaps10Month” pro-
duces the tokens “Interest”, “Rate”, “Swaps10”, and “Mdnthe token “Swaps10”
is split into “Swaps” and “10”.

3. The different combinations between the number and iteoaading tokens are
looked up in the dictionary. In the example, these combamativould be “Swaps10”
and “10Month”.

4. If none of the combinations are found in the dictionarynttiee number is treated
as a separate token. This is what happens in this exampldaricobrrect tokeni-
sation is now fixed.

5. If only one of the combinations is found in the dictionamg that combination is
considered the correct token.

6. If both combinations are found in the dictionary then tbebination that is most
common is chosen as the correct token.

The second version of the WEASEL tokeniser (referred toV&ASEL v2 in the
tables) attempts to solve the second problem by using amitgosimilar to the Max-
imum Matching algorithm to tokenise strings that do not usg maming convention.
The algorithm is only used when a string is detected to beayntipper case or entirely
lower case and does the following:

1. Starting from the first character, the algorithm looksdibthe words in the dictio-
nary that start with that character and match the next ckemram the string. For
example, for the string "BINNAME”, the algorithm would findé words “b”, “bi”,
“bin”, and “binna” (assuming these words are in the dictigna

2. A score is assigned to each word based on its length and oanass. The simple
formulaScore(t) = commonness(t) * length(t)* is used, withk = 2. The ratio-
nale behind this formula is that it is more likely for a tokerbie the correct choice
if itis longer and more common. The consténs used to increase the relevance of
the token’s length against its commonness. The value ofdhstant was derived
by experimenting with a subset of the ground truth that idetlionly lower case
strings.

3. For each word the algorithm is run recursively startirayrfrthe next character in
the string, until no more characters are left. For exampmle{tie token “b”, the
algorithm would run recursively using the rest of the strimgthis case “inname”.
This produces a set with several possible tokenisations.

4. Each tokenisation possibility is given a score, whichinspte the average of the
scores for each token. The one with the highest score iswedur

21

The difference with the Maximum Matching algorithm is tHaistalgorithm assem-
bles several possible tokenisation alternatives, baseddeowords found in the dictio-
nary, and also uses the commonness information to selebegigossibility. The main
drawback is its complexity, both in time and space. The dlgoar is very inefficient,
but in practice it works well for short strings. A simple aptzation for strings longer
than a certairk is to limit the recursive runs to the top two scoring wordsyoithis
reduces the amount of computation and memory significantly.

Although this algorithm performs well for multi-word stgs that use no naming
convention, it can introduce noise when used in a colledtiaits include single-letter
words written in lower camel case, if the words are not patthefdictionary (words
might be abbreviated or might even be in another languagehis case the algorithm
will try to tokenize the words further and is likely to end ujithvseveral short words
that are unrelated to the service.

Table 4. Results of the WEASEL tokeniser evaluation.

Tokeniser Dictionary |% Perfect Tokenisatiof® Precision% Recal
Naming Convention NA 88.15% 94.49% | 93.49%
WEASEL v1 WordNet 94.17% 96.65% | 96.71%
WEASEL v1 Wiktionary 94.31% 96.72% | 96.75%
WEASEL vl | Wikipedia Titles 93.72% 96.55% | 96.37%
WEASEL vl |Wikipedia Corpus 91.84% 95.89% | 95.43%
WEASEL v2 WordNet 92.65% 95.23% | 95.33%
WEASEL v2 Wiktionary 94.34% 96.8% | 96.84%
WEASEL v2 | Wikipedia Titles 93.93% 96.79% | 96.61%
WEASEL v2 |Wikipedia Corpu$ 92.02% 96.11% | 95.66%

7 WEASEL Evaluation

Table 4 shows the results of evaluating the different veisaf the WEASEL tokeniser
using the same four dictionaries that were used with the Mari Matching algorithm.

The results of the Naming Convention algorithm, the bediopeting algorithm of the

ones evaluated before, are also included.

The results show that version two using the dictionary @etifrom Wiktionary
produced the best results. The numbers show a significambirament over the per-
formance achieved by the Naming Convention algorithm. idersne using the same
dictionary comes in a close second. The performance of tiwesalgorithms is very
similar but version one performs slightly faster when deglivith long tokens that use
no naming convention. The results also show that the pedoom of these algorithms
is dependent on the external algorithm being used. Theodiaty that produced the
best results was the one derived from Wiktionary and the bategroduced the worst
results was the one derived from the whole Wikipedia corphsse results are consis-
tent with the ones observed in the evaluation of the MMA &thars where these two
dictionaries were also the best and worst respectively.

22

8 FutureWork

Although the new tokenisation algorithm performs bett@mtiother algorithms avail-
able in the literature, there is still room for improvemefhother source of exter-
nal information that was not used and might be useful in gedeenarios is context.
Analysing tokens extracted from other sections of a WSDLd#e help find common
patterns that may be useful when dealing with a complexgsttinfact, context is used
a lot by humans when manually tokenising difficult strings.

Although the levels of noise generated by the new algoritaresmuch lower than
the existing algorithms, it is important to inspect the tymd tokens being generated
incorrectly. Incorrect tokens such as “binna” are likelyhtve a significant impact on
the performance of some semantics-based systems, butdnttwkens such as “whois-
goingtobepresident” are not as problematic.

Finally, the new tokenisation algorithm will be used in tingplementation of the
web service engine based on Explicit Semantic Analysis. WEIA v2 using Wik-
tionary produced the best results and will therefore be irsgead of the original MMA
implementation. We expect the performance to improve diiersuperior performance
of the new algorithm.

9 Conclusions

In this paper, the performance of tokenization technigusesiuo extract information
from programming-language-type text is identified as onéhefkey aspects that di-
rectly affects the performance of certain semantics-basedce discovery approaches.
A data set containing a large set of strings extracted fronDWfiles is used to eval-
uate three existing tokenization algorithms. Finally a ragorithm that outperforms
existing algorithms is introduced.

Acknowledgements

This research is supported in part by the CRC Smart Servestablished and sup-
ported under the Australian Government Cooperative Rele@entres Programme,
and a Queensland University of Technology scholarship.

References

1. Wu, C,, Chang, E.: Aligning with the web: an atom-baseditecture for web services
discovery. Service Oriented Computing and Application2d0f) 97-116 10.1007/s11761-
007-0008-x.

2. D'Mello, D., Ananthanarayana, V.: A review of dynamic wadrvice description and discov-
ery techniques. In: 2010 First International Conferencéntegrated Intelligent Computing,
IEEE (2010) 246-251

3. Bose, A.: Effective web service discovery using a comtmmeof a semantic model and a data
mining technique. Master’s thesis, Queensland Univerdifiechnology (2008)

23

. Salton, G., Wong, A., Yang, C.: A vector space model foomatic indexing. Communica-
tions of the ACM 18 (1975) 613-620

. Gabrilovich, E.: Feature generation for textual infotima retrieval using world knowledge.
PhD thesis, Israel Institute of Technology (2006)

. Gabrilovich, E., Markovitch, S.: Computing semantiatetiness using wikipedia-based ex-
plicit semantic analysis. In: Proceedings of the 20th miéonal Joint Conference on Artifi-
cial Intelligence. Volume 7., Morgan Kaufmann Publishers. (2007) 1606—-1611

. Gabirilovich, E., Markovitch, S.: Wikipedia-based setim@aimterpretation for natural language
processing. Journal of Artificial Intelligence Research(3309) 443-498

. J.Hou, J.Zhang, R.Nayak, A.Bose: Semantics-based weicseiscovery using information
retrieval techniques. In: Pre-Proceedings of the Initeafor the Evaluation of XML Retrieval
2010, IR Publications (2010) 274 — 285

. Wu, C., Chang, E., Aitken, A.. An empirical approach fomsatic web services discovery.
In: Software Engineering, 2008. ASWEC 2008. 19th Australtanference on, IEEE (2008)
412-421

