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Abstract: The majority of the fuzzy controllers for traffic signal control in the literature operate using raw data from 
single point detectors installed on the intersection’s various approaches. The input variables to the fuzzy 
logic controllers are usually simple estimates of traffic measures such as flow, speed or occupancy, 
estimated from such single detector readings. A room for improvement is sought herein by developing a 
fuzzy logic model (FLM) that could be integrated with smarter “processing” tools to estimate several traffic 
measures from multiple detectors on each approach.  The estimates obtained from this processing tool are 
integrated as input knowledge into the FLM. The devised FLM structure is presented. A mesoscopic 
simulation model is devised to test the effectiveness of the FLM. The premise of the presented FLM is that 
it accounts for the network congestion downstream the individual traffic signals. This makes the FLM 
applicable for network rather than isolated type of signal control. Furthermore, the FLM accounts for transit 
pre-emption control as warranted. Several simulation-based experiments are presented including the basic 
FLM for isolated signal control, the FLM control enabling downstream congestion effect, and the one 
enabling transit pre-emption. The results are presented and discussed in details. 

1 INTRODUCTION 

Fuzzy logic models and artificial intelligence 
methodologies were reported to have promising 
capabilities to deal with highway traffic network 
problems. Some fuzzy logic applications for traffic 
modeling and control were developed using some 
intuitive approaches based on capturing the 
knowledge of the operators or experts (Sugeno and 
Nishida, 1985). More applications were developed 
using heuristic design rules or on-line adaptation of 
initially intuited rules (Zimmermann, 1996). Several 
FLM applications for traffic signal control were 
discussed in (Niittymaki and Pursula, 2000). A 
multi-level FLM coupled with a reasoning approach 
was used in (Niittymaki and Turunen, 2003). 
Multiple upstream detectors were used to measure 
flows and estimate queues. The traffic flows are 
used to estimate the approaches’ traffic intensities, 
which are then used to decide on extension or 
termination of the current phase green using a two-
stage FLM (Triba et al., 1999). 

Fuzzy logic has been occasionally criticized 
because the membership functions and the 
knowledge base (rules) are conventionally set 

intuitively using reasoning arguments of huge data 
sets or trail-and-errors. As such, optimal 
performance is not guaranteed. To overcome these 
deficiencies, the neuro-fuzzy logic approach 
(integrated fuzzy logic and neural nets) had emerged 
in literature as a promising approach in controlling 
complex systems by utilizing the training 
capabilities of the neural nets (Hawas, 2007). 
Among the initial attempts for neuro-fuzzy logic 
applications for traffic signal control is the work 
reported in (Henry et al., 1998). The use of neural 
nets in learning [through simulation data] the best 
detector location as it relates to the signal delay is 
discussed in (Bingham, 2001). A set of simplified 
simulation experiments were developed to assess the 
performance and to illustrate the training of the 
FLM. 

Simulation is recognized in literature as the tool to 
assess the effectiveness of the devised fuzzy logic 
models (Chou and Teng, 2003); (Kosonen, 2003); 
(Murat and Gedizlioglu, 2005). Simulation was also 
adopted together with multi-agent control scheme, 
and fuzzy inference (Kosonen, 2003). Each signal 
operates individually as an agent, negotiating with 
other agents (signals) about the control strategy 

451E. Hawas Y..
A FUZZY LOGIC MODEL FOR NETWORK SIGNAL CONTROL AND TRANSIT PREEMPTION.
DOI: 10.5220/0003685704510458
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (FCTA-2011), pages 451-458
ISBN: 978-989-8425-83-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

(Kosonen, 2003). 
The majority of the fuzzy logic controllers in the 

literature depend on raw counting detector data, with 
very few attempts (Palacharla and Nelson, 1999); 
(Mirchandani and Head, 2001); (Wen, 2007) made 
to transfer such data into other traffic measures that 
could be used to enhance the control intuition and/or 
effectiveness.  Fuzzy logic and neural nets were 
utilized to estimate the link travel time (Palacharla 
and Nelson, 1999). A real-time traffic control system 
that predicts traffic measures [such as travel time, 
queue spillbacks, and turning probabilities to enable 
pro-active control] was introduced in (Mirchandani 
and Head, 2001). A framework for dynamic traffic 
light control coupled with a simulation model [to 
analyze the inter-arrival and inter-departure times to 
estimate the essential traffic measures needed for the 
control logic] was introduced in (Wen, 2007). 

In summary, the limitations of the fuzzy systems 
for traffic control include the little consideration to 
the effect of the traffic stream composition (small 
cars, vans, trucks, buses, etc). Literally there is no 
consideration for transit vehicles preemptions. 
Among the limitations also is that the traffic 
congestion in the downstream of the signal 
approaches is not accounted for, and as such green 
time might not be effectively allocated to a phase 
(based on its upstream detector counts) in situations 
where the downstream approaches are exhibiting 
extreme congestion or blockage. Furthermore, little 
was reported on how the actual or the predicted 
queue on the approaches can be accurately 
estimated, as it cannot be detected by the typical 
single loop detector arrangement.  

The majority of the fuzzy logic controllers in the 
literature are reactive to the raw detector data 
(counts) on the signal approaches. For instance, 
almost all the reported controllers depend on point 
detector “vehicular” counts with no considerations 
for vehicular types. Treating all types of vehicles 
equally might not result in fair treatment of all 
phases, if the traffic stream composition is varying 
among the phases. An approach with high 
percentage of heavy vehicles or busses should not be 
treated as equal as another approach with similar 
flows of small cars only. A better treatment is to 
account for the passenger car units flow instead of 
the vehicular flow. Alternatively, one could also 
devise a controller to preempt the public busses. 

Furthermore, the raw vehicular counts do not 
explicitly capture the congestion status along the 
approaches. Incorporating additional variables such 
as concentration, actual approach speed, or queue 
length would result in a better logic. As a rule of 

thumb, a single point detector on each approach is 
not enough to capture the congestion status of the 
approach. Furthermore, a logic that depends on one 
traffic measure (such as flow) could employ 
erroneous decisions. 

A more effective controller is sought herein by 
integrating the envisaged FLM to a processing tool 
of the raw data. This tool is intended to process the 
raw data into knowledge to develop smarter logic. 
The knowledge processing tool would utilize the 
detector counts to estimate some input variables to 
the FLM. In this paper, a fuzzy signal controller that 
incorporates “knowledge” in the decision making 
process and not merely raw detector data is 
developed. “Knowledge” term refers to any traffic 
measures estimated from raw data. 

2 OVERVIEW OF FUZZY LOGIC 
SYSTEM 

The developed FLM system requires the installation 
of two detectors for each lane (one downstream, and 
one upstream). This is the minimum requirement 
needed to accurately capture the congestion status of 
the approach. Additional detectors might be installed 
to increase the accuracy of estimating some traffic 
measures such as queue length, but this may be 
argued to be cost ineffective. For simplicity in 
presentation, we assume that the FLM is operating a 
four-phase signal; each approach is assigned a 
separate phase. 

The logic depends on the (passenger car units) 
PCU estimates on each approach. This takes into 
account the traffic stream composition and the 
turning movement percentages (captured by the 
detectors). The field detectors’ readings are 
processed further by some traffic status estimator 
tool, that transfer such field measures into complex 
traffic measures (or “knowledge”), which are then 
used as inputs to the FLM. The knowledge here 
refers to the estimated traffic measures beyond the 
field detector counts. The introduced FLM utilizes 
the estimates of the following traffic measures for 
each phase’s approach: 
• Traffic counts on approach in PCU 
• Queue length (count) on approach in PCU 
• Truck percentage 
• Average approach speed 
• Downstream link blockage index; an index (1-
100) to indicate the congestion status of the 
downstream link (100% indicating a fully blocked 
downstream link) 
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• A transit indicator status (ON/OFF) or (1/0) 
when a transit vehicle is expected to reach/not to 
reach the queue to be served by the phase. 

The above measures are utilized with other fixed 
indicators for each phase (such as link length and 
number of lanes) to estimate the so-called green 
weight for each phase, which is subsequently used in 
estimating the green splits for all the intersection 
traffic signal phases. 

The devised fuzzy controller is assessed using a 
mesoscopic simulation model (developed as a Visual 
Basic Application VBA embedded EXCEL macro), 
which can be then easily integrated with any fuzzy 
logic controller. The FLM is integrated with the 
simulation model via a two-way communication 
protocol coded as a wrapper module macro in 
EXCEL. The DLL representing the FLM is linked to 
the simulator and receives inputs on the traffic 
measures (representing the field detectors data). The 
DLL estimates the traffic signal phase green splits 
for the next time interval, etc. The estimated green 
splits are then used by the simulator to simulate the 
next time cycle. The calibration of the FLM is done 
via systematic sensitivity analysis as will be 
discussed later. 

3 SIGNAL CONTROL FUZZY 
LOGIC STRUCTURE 

Figure 1 shows the fuzzy system structure including 
input variables, rule blocks and output variables. The 
connecting lines symbolize the data flow among the 
various rule blocks. As shown, the system comprises 
four rule blocks denoted by RB1, RB2, RB3 and 
RB4. The first rule block (RB1) has four inputs; the 
incoming approach’s average speed (km/hr), the 
vehicular flow (veh/hr/lane), the length (m), and the 
number of lanes. The second rule block (RB2) has 
three input variables; traffic count on approach 
(pcu), queue count on approach (pcu), and the truck 
percentage. The time varying input variables are 
calculated using the traffic status estimators (Hawas, 
2010). The third rule block (RB3) has two 
intermediate inputs; the output variables of the first 
and second rule blocks. These are denoted by the 
green weight I and II. The output of the third rule 
block is denoted by the total green weight, which 
represents the sum of these input variables (green 
weight I and green weight II). 

The fourth rule block (RB4) has three inputs; the 
total green weight (the output of the third rule 
block), the downstream blockage index, and the 

transit vehicle indicator (a binary variable: 1 if a 
transit vehicle is to be served during the current 
cycle and 0 otherwise). The overall system output is 
denoted by the “final weight” and it represents the 
estimated weight given to the traffic light phase that 
serves the approach under consideration. 

The two rule blocks RB1 and RB2 complete each 
other in estimating the green weight. With reference 
to Figure 2, RB3 acts as “addition” rule block 
(adding the initial weights estimated by the RB1 and 
RB2). The result of such addition (output of RB3) is 
then combined with the effect of the downstream 
blockage [if activated] and the transit vehicle pre-
emption [if activated] in RB4. The multiple rule 
block structure of the FLM is widely recommended 
in literature as it simplifies the sensitivity analysis, 
the calibration process of the fuzzy memberships, 
and the identification of the most significant 
contributing factors. 

The results of the fuzzy-logic inference process 
are linguistic terms describing the output variable 
(e.g. Low Final-Weight, Medium Final-Weight, etc). 
Each linguistic term covers a specific range of 
numerical values. The defuzzification process is 
responsible for converting the linguistic terms to 
numerical crisp values (of this particular range). 

The crisp value obtained by the defuzzification 
process represents the system’s estimate of the 
approach (phase) green weight.  The weight is a real 
number representing the “importance” of serving 
this particular traffic light phase; the higher the 
weight, the more the green to assign to this phase.   

The green split, 
,ig  of any phase   and 

intersection i is estimated using a proportion formula 

that entails the weight of the phase,  Wj  as follows: 
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(1)

Where: 

,ig : Actual green time of phase  at intersection i 

 : Total number of phases  

iG : Total actual green time at intersection i 

W : Estimated weight by the FLM for phase   

4 EXPERIMENTAL ANALYSES 
AND RESULTS 

To assess the effectiveness of the FLM, several
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Figure1: Traffic signal control FLM structure, and rule blocks. 

simulation-based scenarios were developed.  A 
single four-leg intersection is tested with different 
traffic and geometric characteristics representing the 
different scenarios. Different approach variables 
were used to introduce variability in approach flow, 
length, number of lanes, free-flow speed, and truck 
percentages. Each approach is assumed to be served 
by a separate phase. Herein, we provide only a 
sample of these scenarios as well as their results. 
Each scenario is tested using a duration time of 1800 
seconds to generate vehicles and 2000 seconds to 
clear the network. All scenarios were also tested 
using a fixed cycle time of 100 seconds. 

The minimum number of phases to serve a four-
leg intersection varies based on the traffic volumes 
and type of the left turning phases (protected, 
permitted). For instance, if a four-leg intersection is 
to be served with the left turning volumes permitted, 
then a two-phase cycle would be needed. A four-
phase signal would be needed if left turning volumes 
are to be served in a protected mode. In this paper, a 
4-phase signal setting was used for simplicity, and to 
account for the fact that any potential left turning 
vehicles along the approach would have to be served 
in a protected mode. 

The FLM applies to any number of phases and 
signal configuration (e.g. two, three, four phase 
signals). For instance, for a 4-leg two-phase signal 
(combining the through movements on opposing 
approaches), the FLM runs similarly on all four 
approaches; estimating a green weight for each. 
Then, the critical approach (of each phase) is 
identified as the one having higher green weight. In 
the implementation of the green splits, the critical 

approach green weight would be considered in 
estimating the phase green times. The green time of 
any phase (combining various movements) is 
determined in accordance to the most critical 
movement served by the phase. The logic allows for 
phase skipping if the phase’s green weight is lesser 
than a pre-specified threshold value (if warranted). If 
a phase is skipped, the following phase in the (fixed) 
sequence is activated. 

The inference engine of the 4th rule block was 
developed using sensitivity analysis.  Initially, a 
correlation coefficient of 1.0 was assumed between 
the total green weight and the final green weight, a 
negative correlation (of -1.0) between the 
downstream congestion index and the final green 
weight, and a positive correlation of (1.0) between 
the final green weight and the transit vehicle 
preemption. The four experimental scenarios (in 
Table 1) were run and the average vehicle travel and 
delay times were estimated. The correlation 
coefficients were then slightly adjusted and again the 
average travel and delay times were estimated. The 
process of readjusting the correlation coefficients 
and the estimation of the travel and delay times were 
repeated until the system converges to minimal 
travel and delay times. The correlation coefficients 
corresponding to the minimal travel and delay times 
are 0.9, -0.8 and 0.75 for the total green weight, the 
downstream congestion index and the transit vehicle 
preemption, respectively. 

The “base” Scenario (I) represents a medium 
congested network, assumes no downstream 
congestion and no transit preemption. The other 
three scenarios are similar to scenario I (in terms of 
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the speed, the vehicular flow, the link length, the 
number of lanes and the truck percentage), but they 
differ in the downstream congestion values and/or 
the transit preemption. 

Several other scenarios were previously tested 
and reported in Hawas (2010) using the isolated 
signal FLM. The reported scenarios accounted only 
for variations in the input variables of RB1 and RB2. 
They also accounted for scenarios with and without 
“knowledge estimator” activated. No consideration 
was given in Hawas (2010) to the downstream 
congestion effect or to the transit vehicle preemption 
influence [the inputs to RB4].  This paper extends on 
the work presented earlier in Hawas (2010) by 
accounting for the downstream congestion and the 
transit preemption. 

The analysis presented in this paper focuses on 
illustrating how the resulting FLM green times are 
influenced by the downstream congestion index and 
the transit vehicle preemption variables.  That is, 
how will the green times patterns correspond to 
various patterns of network congestion and transit 
preemption scenarios. 

Figure 2 illustrates the results of scenario I. 
Figures 2A and 2B shows the estimated queue 
length and the traffic count on each approach 
(estimated by the knowledge estimator). Because of 
the identical traffic conditions on all approaches 
(speed, traffic volume, link length, number of lanes, 
truck percentage), the approaches exhibit similar 
queue length and traffic count patterns. The resulting 
green times (of the FLM) are equal among the 
various phases as shown in Figure 2C. 

Table 1: Basic information of different tested scenarios. 

Scenario* 
Downstream congestion 

index 
Transit vehicle pre-

emption 

I 
10% or less on 

downstream links of all 
approaches 

No transit preemption 

II 
10% or less on 

downstream links of all 
approaches 

Transit preemption on 
NB approach only 

III 
80% or less on 

downstream link of NB 
approach 

No transit preemption 

IV 
80% or less on 

downstream link of NB 
approach 

Transit pre-emption 
on NB approach only 

*All scenarios are set equal in link speed, link length, number of 
lanes, link vehicular flow, and truck percentage (60 km/hr speed, 
500 veh/hr/lane vehicular flow, 500 m length, 2 lanes and 10% 
trucks). 
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(2A) Approach queue length (in PCU). 
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(2B) Approach volume count (PCU/lane). 
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(2C) Phase green times (sec). 

Figure 2: Results of experimental scenario I. 

Scenario II is quite similar to scenario I. Slight 
congestion is exhibited on the downstream 
approaches (a congestion index of 10% or less) as 
shown in Figure 3A. The only difference (between 
the two scenarios) is that the transit vehicles 
incoming on the North bound (NB) approach are 
pre-empted (in scenario II). Figure 3B illustrates the 
cycles during which transit vehicles arrive at the 
intersection. The resulting FLM signal green times 
(in Figure 3C) are somehow identical for all the 
approaches except the NB. The resulting green time 
pattern of the NB approach (in Figure 3C) is 
consistent with the transit vehicle arrival pattern 
(Figure3B). 

A FUZZY LOGIC MODEL FOR NETWORK SIGNAL CONTROL AND TRANSIT PREEMPTION

455



 

3

1

7

0

3

5

7 7

3 3

9

5

1

6

1

4

7

2

4

6

3

0

8

1

3

9 9

8 8 8

2

7

5

2

0

9

4

1

10

99

6

2 2

8

0

1

6

7 7

8

9

4

1

2

7

8

6

5 5

2

0

9

6

2

7 7

3

2

5

10

2

1

5

1 1

6

9

5

7

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D
o
w
n
st
re
a
m
  B
lo
ck
a
g
e
 In
d
e
x

Cycle

Downstream Congestion

Dn_Str‐Cong_N

Dn_Str‐Cong_W

Dn_Str‐Cong_S

Dn_Str‐Cong_E

 
(3A) Downstream approach congestion index. 
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(3B) Transit vehicles arrival pattern. 
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(3C) Phase green times (sec). 

Figure 3: Results of experimental scenario II. 

Scenario II represents the case of the FLM 
control system that is not only reactive to the traffic 
conditions along the incoming approaches, but also 
reactive to the incoming transit vehicles. Currently, 
all transit vehicles are pre-empted equally. That is, 
the FLM operates with a binary variable that 
activates the system’s transit pre-emption logic, 
without providing any preferential treatment to 
various transit vehicles. The FLM shall be extended 
in further research to provide various levels of pre-
emption based on the vehicle type, the transit 
vehicle’s passenger occupancy and the distance 
between the transit vehicle and the approach’s stop-
line. 

Scenario III is developed by introducing slight 
variations to scenario I. Similar to scenario I, slight 
congestion is exhibited on the downstream 
approaches of the intersection (a congestion index of 
10% or less) as shown in Figure 3A. Only the 
downstream of the NB approach exhibits oscillating 
congestion (congestion index of 80% or less) as 
shown in Figure 4A. The transit pre-emption is 
activated. The resulting FLM signal green times (in 
Figure 4B) of the NB approach is lesser than that of 
the other approaches (although the traffic conditions 
are identical). The FLM (due to the congestion 
downstream the NB approach) allocates lesser green 
times to the NB phase. The higher the congestion 
index, the lesser the green times. 
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(4A) Downstream approach congestion index.  
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(4B) Phase green times (sec). 

Figure 4: Results of experimental scenario III. 

Scenario IV combines the congestion 
downstream the NB approach (Figure 5A) and the 
transit preemption on the NB approach (Figure 5B). 
The resulting NB green times as such oscillates to 
balance the two conflicting criteria; lesser green time 
due to the downstream congestion and the higher 
green time due to the transit preemption.  The 
resulting green times of the various intersection 
phases is illustrated in Figure 5C. 
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Figure 5: Results of experimental scenario IV. 

5 CONCLUSIONS AND FUTURE 
RESEARCH 

This paper presented a FLM that can be coupled 
with smart “processing” tools to estimate several 
traffic measures from multiple detectors on each 
approach. The estimates obtained from this 
processing tool are integrated as inputs into the 
FLM. The FLM explicitly accounts for the 
congestion on the links downstream the controlled 
intersection. As such, the FLM can be regarded as a 
semi-network control procedure. The FLM can also 
adjust the signal settings to provide transit 

preemptions. The presented FLM was tested with 
four scenarios to assess the sensitivity of the model 
to the downstream and the transit preemption 
variables. 

The resulting green time patterns clearly 
illustrate the sensitivity of the FLM to the 
congestion and the transit preemption variables. 
More research is being undertaken to demonstrate 
the presented model effectiveness in real-life 
conditions. Also, comparative analysis of the 
presented FLM effectiveness vis-à-vis other real-
time signal controllers shall be considered for future 
research. 

Further appealing improvement to the system can 
be achieved by further processing of the raw data to 
have estimates of the expected approach delays. The 
green splits can be then adjusted to explicitly assign 
green weight based on expected delay estimates. 
This will be considered for the future upgrades of 
the FLM. More sophisticated knowledge can be 
formed by considering more than two detectors, and 
better accuracy can be sought through modifying the 
detector locations. 

The presented FLM control system is not only 
reactive to the traffic conditions along the incoming 
approaches, but also reactive to the incoming transit 
vehicles and the downstream approaches congestion. 
Currently, all transit vehicles are pre-empted 
equally. That is, the FLM operates with a binary 
variable that activates the system’s transit pre-
emption logic, without providing any preferential 
treatment to various transit vehicles. The FLM shall 
be extended in further research to provide various 
levels of pre-emption based on the vehicle type, the 
transit vehicle’s passenger occupancy and the 
distance between the transit vehicle and the 
approach’s stop-line. 

The downstream congestion is modelled herein 
through congestion index that quantifies the degree 
of downstream link occupancy. Future research shall 
include the coupling of the FLM with smart 
processors that can utilize the downstream 
approach’s detector readings to provide better 
estimates of the downstream congestion status; the 
distribution of the vehicles, and extent of queues 
along the downstream links. 

Moreover, the FLM shall be also restructured as 
a multi-level control system for incident detection, 
signal control and transit priority. These systems 
however if deployed individually may result in 
conflicting decisions and as such they need to be 
integrated to insure consistency of decisions leading 
to optimized traffic network performance. The 
multi-level FLM is envisaged to comprise three 
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levels. The first level shall be responsible for 
detecting incidents in urban networks using field 
street detectors. The second level shall operate a 
heuristic based logic for real-time signal control with 
extended capabilities to operate special scenarios if 
incidents are detected, aiming at better traffic 
management during such incidents. The third level 
shall deploy several strategies for transit vehicles 
priority. The three levels shall operate in a closed 
loop fashion to insure consistency of decisions and 
better traffic management. The system shall be 
tested within a simulation-based environment under 
various operational conditions reflecting network 
congestion, incident situations, and transit demand 
patterns. 
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