
GENETIC PROGRAMMING WITH EMBEDDED FEATURES
OF SYMBOLIC COMPUTATIONS

Yaroslav V. Borcheninov and Yuri S. Okulovsky
Institute of Mathematics and Computer Sciences, Ural Federal University, Mira str. 56, Yekaterinburg, Russia

Keywords: Genetic programming, Symbolic computations.

Abstract: Genetic programming is a methodology, widely used in data mining for obtaining the analytic form that
describes a given experimental data set. In some cases, genetic programming is complemented by symbolic
computations that simplify found expressions. We propose to unify the induction of genetic programming
with the deduction of symbolic computations in one genetic algorithm. Our approach was implemented as
the .NET library and successfully tested at various data mining problems: function approximation, invariants
finding and classification.

1 INTRODUCTION

Genetic programming (Koza, 1992) is a methodology
of using the genetic algorithms (Goldberg, 1986) to
find a program that performs a user-specified task. We
consider the particular case of genetic programming
that operates not with arbitrary programs, but with
expressions. Genetic programming (GP) is widely
used to obtain the analytic form of the experimental
data in natural sciences (Schmidt and Lipson, 2009),
robotics (Robertson and Dumont, 2002), economics
(Koza, 1994), medicine (Zhang and Wong, 2008), etc.

The classic GP approach can shortly be described
as follows. The expressions are represented as the op-
erator trees. Initially, thepopulationconsists of the
randomly generated expressions. On each algorithm’s
iteration, the following actions are performed:

• Mutation. The randomly chosen expression is
changed by a replacement of a node.

• Crossover. Two randomly chosen expressions ex-
change subtrees.

• After all the mutations and crossovers are per-
formed, the resulting expressions’ set is subjected
to the selection, which evaluates how each expres-
sion fits the experimental data. The least valuable
expressions are then removed from the popula-
tion.

The well known problem of GP is the excessive
growing of expressions, orbloating. Various methods
are proposed to resolve the issue: the limitation of
the tree’s depth; special mutations and crossovers that

preserve the expressions’ size; selection that sorts out
bloated trees (Poli et al., 2008); removal of subtrees
that have lesser analogues in the population (Mori
et al., 2009).

The obvious way to reduce the expression’s size
is the algebraic or numerical simplification. If the
algorithm has succeeded in finding a correct expres-
sion, the expression can be then simplified for a bet-
ter perception. However, aside from producing non-
aesthetic solutions, bloating also significantly reduces
the algorithm’s performance. Recent studies (Zhang
et al., 2006; Kinzett et al., 2008) show the effective-
ness of theonline simplification, when expressions
are simplified during the evolution.

The simplification of the expression inevitably
leads to the potential growing points’ elimination. For
example, while approximating the function(x+1)y2,
the intermediate solution(1+ 1)y1+1 can be found.
This solution will be simplified to 2y2, which requires
at least two mutations to become a correct answer,
e.g. 2y2 ⇒ xy2 ⇒ (x+ 1)y2. The initial solution
(1+1)y1+1 requires only one mutation(1+1)y1+1 ⇒
(x+ 1)y1+1. Hence, the simplification hampers the
evolution in this case. On other hand, the partial
simplification(1+1)y1+1 ⇒ (1+1)y2 does not show
such effect for the function(x+1)y2, but does so for
2yx+1. Therefore, the question of where to apply the
simplification depends on the problem specification,
on the particular found expression, etc.

The main idea of our work is to integrate the on-
line simplification — and, more general, arbitrary
symbolic computations — with genetic programming

476 V. Borcheninov Y. and S. Okulovsky Y..
GENETIC PROGRAMMING WITH EMBEDDED FEATURES OF SYMBOLIC COMPUTATIONS.
DOI: 10.5220/0003682004680471
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2011), pages 468-471
ISBN: 978-989-8425-79-9
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

on the most basic level. Symbolic computations trans-
form the expression according to some rules and do
not change the function, encoded by the expression.
Let us call such transformationsdeductive. Transform
x+2x⇒ 3x is both deductive and simplifying, while
(x+ y)z⇒ xz+ yz is deductive but not simplifying,
since it is not always clear, which form is more prefer-
able. Theinductivetransforms change both the form
of the expression and the encoded function. Muta-
tions and crossovers described above are inductive.

To combine inductive and deductive transforms,
we introduce the following changes in the classic ge-
netic programming algorithm. For the mutations, a
collection of rules is defined. Each rule transforms an
expression in inductive or deductive way. When we
need to perform the mutation operation, we randomly
select a rule from the collection and apply it to an ex-
pression. Crossover is also defined by the set of rules.
Crossover’s rules have a slightly different format, they
accept two expressions and produce one.

Inductive transforms bloat the tree, while deduc-
tive transforms hamper the induction. Therefore, in-
ductive and deductive tendencies are in the opposi-
tion. Therefore, we should measure the fitness for
both tendencies independently, to find the appropri-
ate balance between them. In our variation of GP,
the selection is performed based on various metrics.
We calculate these metrics for each expression, obtain
their weighted total, and then remove the expressions
that have the least weighted total in the population.

Our approach was implemented in C# language
(Drayton et al., 2002) as a library for .NET frame-
work, and tested in various data mining problems.
The project will be released under GPL v.3. license.

2 ALGORITHM’S ESSENTIALS

An expression is represented as a tree ofnodes. Three
types of nodes are considered:constants, variables
andoperators. Each node has areturn type, which
is an arbitrary C# type. Different return types can be
used in one expression.

Each tree can be compiled into .NET lambda ex-
pression. Supposef (x1, . . . ,xn) is a function en-
coded by a tree. Leta be an array of the argu-
mentsa = (x1, . . . ,xn). A node for a constantc is
compiled into the lambdaa 7→ c. A node for thei-
th variable is compiled toa 7→ a[i]. If a node en-
codes an operatorg(y1, . . . ,yk), it is compiled into
a 7→ g(c1(a), . . . ,c2(a)), whereci is the compiledi-
th child of the node. The compilation of the nodes is
possible due to the abstract syntax trees, one of .NET
features. It improves the performance of the evalua-

tion.
Trees can be modified according to rules. A rule

consists of a condition and an action. The first stage
of a rule’s application is finding all the tuples of nodes
that satisfy the condition. The second stage is to ap-
ply the action to one of the selected tuples. Let us
consider some examples of the rules.

select ?A where A.Type=double
mod A→Plus(A,c) (R1)

HereA is an identifier of selected node,c is a ran-
dom constant. The rule R1 processes a tree and selects
all its nodes ofdouble type. It is possible to apply the
rule to one of the selected nodes, and replace the node
with a new subtree.

The R1 rule allows us introducing an addition in a
tree. Due to the type checkA.Type=double, thePlus
operation can only be applied to adouble node, and
therefore the tree remains correct. That shows how
the rules assure the correctness of the mutations and
crossover.

The following R2 rule shows, how the operation
can be removed from a tree.

select ?A(.B) where A.Type=B.Type
mod A→B (R2)

The rule R2 searches for all pairs(A,B), whereA is
an arbitrary node,B is an arbitrary child ofA, and
types ofA andB coincide. In each such pair,A can be
replaced withB.

We also need rules for simplification of expres-
sions. The following rules R3 and R4 are examples of
such rules.

select ?A(.B,.C) where A is Plus &&
B is Const &&
C is Const

mod A→B.Val+C.Val

(R3)

select ?A(B(C)) where A is Minus &&
B is Minus

mod A→C
(R4)

Crossover can also be based on the rules. The
following rule R5 is the simplest crossover that ex-
changes subtrees.

select ?A,?B where A.Type=B.Type
produce A→B; ret A.Root (R5)

This rule accepts two trees, searches for a pair
(A,B) whereA is from the first tree,B is from the sec-
ond tree, and their types coincide. Since the rule ac-
cepts two trees instead of one, it is not clear in which
of them the crossover’s result is stored. To resolve
this, themod clause is replaced with theproduce
clause, which modifies trees and returns some node
as the result of the rule’s application. More complex
crossover schemata are available. For example, the
following rule R6

GENETIC PROGRAMMING WITH EMBEDDED FEATURES OF SYMBOLIC COMPUTATIONS

477

select A,B where A.Type=double &&
B.Type=double

produce ret Div(Plus(A,B),2)
(R6)

is applicable only to the trees’ rootsA andB and re-
turns their half-sum.

We have developed an elegant way to define rules
in C#. The rules can be programmed in the almost
natural way, by only defining its logic, without exces-
sive code to adopt this logic to C#. That was achieved
with the intensive use of lambda-expressions, gener-
ics and code generation. For example, rule R1 can be
programmed with the code in List. 1.

Listing 1: Rule R1 definition in C#.
var rule=Rule

.New("Intro +")

.Select("?A")

.Where<INode>(c=>c.A.Type
==typeof(double))

.Mod(c=>c.A.Replace(new Plus(c.A,0)))

Rules are very numerous and their categorization
is necessary. The first category is universal rules that
are applicable to any expressions. The rules R2 and
R5 are in this category. The second category of rules
describes data types. The following rules are required
for each data type:

T1 Introduction of the constant: replacement of a
subtree with the return typeT to a constant of the
same type;

T2 Introduction of the varuable: replacement of a
subtree with the return typeT to a variable of the
same type;

T3 Adjustment of the constant: replacement of a con-
stant by another constant with the close value.
For example, floating point constantc may be
replaced to a random number from an interval
[c(1− ε),c(1+ ε)].

Rules of the third category describedomainsof op-
erations: the sets of operations that are often used in
expressions together. For example, the algebraic do-
main consists of addition, subtraction, multiplication,
and so on. In each domain, the following types of
rules should be developed:

D1 Introduction of each operator (R1);

D2 Calculation rules for each operator (R3);

D3 Deductive rules for the operators (R4, distributiv-
ity laws, De Morgan’s laws);

D4 Special crossover rules, if they are available (R6).

In the programming implementation, an arbitrary
amount oftags can be chosen for each rule. Tags

indicate the category of the rule, the domain it be-
longs to, whether the rule is purposed for mutation
or crossover, etc. During the work of the algorithm,
each tag is associated with its weight. We calculate
the weight of each rule as a product of associated tags’
weights. The weight of the rule determines how often
it will be used. The probability of applying a rule with
weightw is w/W, whereW is a total sum of all rules’
weights. Tags and weights allow us managing the al-
gorithm. For example, on the early stage, when the
optimal solution is not found, inductive rules should
be applied more often. When the optimal solution is
found and we need to get its acceptable presentation,
we should use calculation and deductive rules.

3 APPLICATION AREAS AND
METRICS

In the function approximationproblem we are given
a set of tuples{(xi,1,xi,2, . . . ,xi,m,yi) : i = 1, . . . ,n},
whereyi = f (xi,1, . . . ,xi,m) ·ci andci is a random num-
ber from the interval[1−α,1+α]. The goal is to find
the analytic form off . To do that, we use our algo-
rithm with the following two metrics.Fitnessmetric
for the functiong, found by the algorithm, is calcu-
lated as

ρ(g) =

(

1+
n

∑
i=1

|g(xi,1, . . . ,xi,m)− yi|

)−1

.

Taking the reciprocal value is important, because it
allows bounding the value ofρ, and provides corre-
spondence between a higher value ofρ and a better
expression.

Lengthmetricλ(g) is a number, reciprocal to the
count of operations ing. Valuation of an expression
is determined as a weighted totale(g) = wρρ(g) +
wλλ(g). Typically, wρ = 1 and wλ = 0.1. In our
implementation of the algorithm, we allow user ad-
justing metrics’ weights during the algorithm’s work.
Such adjustment leads to interesting effects. For ex-
ample, setting the weight of the length metric to a
negative value can drive the algorithm out of the local
minimum. On the other hand, when the averageρ of
the population is high, increasing the length metric to
0.2–0.3 allows finding the most compact form ofg.

In the invariants findingproblem we are given the
set {(xi,1,xi,2, . . . ,xi,m) : i = 1, . . . ,n} and need to
find suchf that f (xi,1, . . . ,xi,m)≈ 0 (or equals to zero
in the absence of the noise). The algorithm requires
three metric to solve the problem. The first metric is

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

478

the length metricλ. The second metric is theinvari-
ancemetric

ι(f) =

(

1+
m

∑
i=1

f 2(xi,1, . . . ,xi,m)

)−1

.

However, these two metrics are not enough. The ex-
pression 1

2100+x
is almost invariant on smallx, how-

ever this expression is not acceptable. The solution is
introducing thetautologymetric

τ(f) = 1−

(

1+
k

∑
i=1

f 2(yi,1, . . . ,yi,m)

)−1

,

whereyi, j are random numbers. Typical weights of
metrics arewι = 1, wτ = 1 andwλ = 0.1.

In classificationproblem we are given the set
{(xi,1,xi,2, . . . ,xi,m,ci) : i = 1, . . . ,n}, whereci is a
Boolean value indicating whether the corresponded
tuple belongs to a class. We need to use the rules for
floating point type and associated operators’ domains;
rules to support Boolean type (defined by items T1–
T3 in the section 2); rules to support relation operators
<, >, = (only D1 and D2, because these operators do
not preserve the operands’ types); rules for operators
∨, ∧, ¬ (D1–D4).

The fitness metric is adjusted as follows

σ(g) =
(

1+
|{i : g(xi,1, . . . ,xi,m) = ci}|

n

)−1

.

4 CONCLUSIONS AND FUTURE
WORK

We have proposed a methodology of genetic pro-
gramming algorithm that embeds the features of
symbolic computations. This approach was imple-
mented in .NET library. We have supported alge-
braic, trigonometric and comparison operations with
floating-points numbers, as well as logical operations
with Boolean values. Using the library, we were able
to solve the different data mining problems: function
approximation, invariants finding and classification.

Our future research will be conducted in the fol-
lowing directions:

• Finding the parameters that provide the most ef-
ficient GP performance. By our observation,
changing of rules’ and metrics’ weights leads to
significant changes in performance. Moreover,
changing the parameters during the algorithm’s
work has different effect depending on the current
state of the population. We believe that the thor-
ough examination of such effects can lead to sig-
nificant improvements in genetic programming.

• Using genetic programming in new domains:
fuzzy numbers, fuzzy logic, temporal logic, etc.

• Exploring substitutions for length metric. Length
metric does not seem to catch the intuitive mean-
ing of a “good” expression. We plan to introduce
computation complexity and aesthetics metrics in-
stead, and understand how it improves the work of
the algorithm.

ACKNOWLEDGEMENTS

The work is supported by the Russian Federation
President’s program MK-844.2011.1.

REFERENCES

Drayton, P., Albahari, B., and Neward, T. (2002).C# in a
Nutshell. O’Reilly.

Goldberg, D. (1986).Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison-Wesley.

Kinzett, D., Johnston, M., and Zhang, M. (2008). Numer-
ical simplification for bloat control and analysis of
building blocks in genetic programming.Evolution-
ary Intelligence, 4.

Koza, J. R. (1992).Genetic programming: on the program-
ming of computers by means of natural selection. MIT
Press, Cambridge, MA.

Koza, J. R. (1994). Genetic programming for economic
modeling. In Intelligent Systems for Finance and
Business.

Mori, N., McKay, B., Hoai, N. X., Essam, D., and Takeuchi,
S. (2009). A new method for simplifying algebraic
expressions in genetic programming called equiva-
lent decision simplification. Journal of Advanced
Computational Intelligence and Intelligent Informat-
ics, 13(14):237–238.

Poli, R., Langdon, W. B., McPhee, N. F., and Koza, J. R.
(2008).A Field Guide to Genetic Programming.

Robertson, A. P. and Dumont, C. (2002). Design of robot
calibration models using genetic programming. In
Mayorga, R. V. and Rios, A. S.-D. L., editors,Pro-
ceedings of the Third International Symposium on
Rob. and Autom., volume 3, pages 449–454.

Schmidt, M. and Lipson, H. (2009). Distilling free-
form natural laws from experimental data.Science,
324(5923):81–85.

Zhang, M. and Wong, P. (2008). Genetic programming
for medical classification: a program simplification
approach.Genetic Programming and Evolvable Ma-
chines, 9(2):229–255.

Zhang, M., Wong, P., and Qian, D. (2006). Online pro-
gram simplification in genetic programming.Simu-
lated Evolution and Learning - SEAL, pages 592–600.

GENETIC PROGRAMMING WITH EMBEDDED FEATURES OF SYMBOLIC COMPUTATIONS

479

