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UMR ESPACE 6012 CNRS, Université d’Avignon (UAPV), Avignon, France

Marc Ciligot-Travain
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Abstract: A common research topic has been the search of an optimal center, according to some objective function
that considers the distance between the potential solutions and a given set of points. For crisp data, closed
form expressions obtained are the median center, for the Manhattan distance, and the min-max center, for
the Chebyshev distance. In this paper, we prove that these closed form expressions can be extended to fuzzy
sets by modeling data points with fuzzy numbers, obtaining centers that, through their membership function,
model the “appropriateness” of the final location.

1 INTRODUCTION

Finding an optimal center in space became a com-
mon process in planning, because it allows to affect
a set of demands to one or several locations that of-
fer dedicated facilities. For instance, a center col-
lecting wastes, a vehicle depot for logistic purpose
or a hospital complex, all require a relevant metric
to minimize cost or maximize access to them. Math-
ematicians, economists and geographers developed
methods which locate these centers according to ei-
ther equity (minimax) or versus efficiency (minisum)
objectives, following the work in k-facilities location
problems on networks (Hakimi, 1964), that respec-
tively correspond to the k-median and the k-center.
Indeed, there exist many mathematical problems and
formalisms for optimal location problems (Hansen
et al., 1987). More recently, we can see a larger
scope of the domain and sets where these issues ap-
pear (Chan, 2005). Other books complete the state-of-
the-art (Drezner and Hamacher, 2004; Griffith et al.,
1998; Nickel and Puerto, 2005) or focus on applica-
tions in transportation (Labbé et al., 1995; Thomas,
2002) or health care (Brandeau et al., 2004).

Methodologies for optimal location can be applied
on continuous space, finite space or networks (graphs
or roads for instance). If k= 1, then the aim is to find a
single center. The choice of the metric p is also signif-

icant because it involves, on the one hand, the method
to set the distance separating the demands to the cen-
ter, and on the other, how to combine these distances
according to a given objective function. Thus, there
exist many ways to calculate a center for many points
of demand, even when reducing complexity by con-
sidering a continuous space, a unique center and the
Minkowski distance of Lp norms. The first parame-
ter, p, defines the norm of the distance separating the
demand points to the center: rectilinear (p = 1), Eu-
clidean (p = 2) or Chebyshev’s (p! ¥). The second
parameter, p0, relates to the calculation of the center
itself. The sum of the distances is minimized when
p0 = 1, the sum of the squared distances when p0 = 2
and the maximum of the distances when (p0! ¥).

Among all the possibilities crossing p and p0 of
the Lp norms, only three cases can be computed in
closed form: the median center, which minimizes the
sum of the rectilinear distances (p = p0 = 1), the cen-
troid or barycenter, which minimizes the sum of the
squared Euclidean distances (p= p0= 2) and the min-
max center, which minimizes the maximum of the
maximum distances (p! ¥ and p0! ¥).

Scientists and planners use to consider the final
location to be accurate and crisp, or, at least, as a fi-
nite set of possible predefined locations. However,
there might be uncertainty on the estimated distances,
due to uncertainty carried by the demand location it-
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self. This is particularly true when considering urban
sprawl, as it can generate non negligible variations on
the location of the town’s center, which in place might
affect the location of the optimal center. There is also
the case when subjective or vague information is used
to define the demand location. The result, then, can-
not possibly be a crisp point, and solutions that as-
sume crisp data when non is available, might be at
risk being far from optimal.

By modeling the demand points as bi-dimensional
fuzzy sets we prove in this paper that the results ob-
tained for crisp environments can be easily extended
to the fuzzy ones, attaining homologous closed form
expressions. As the solutions depend only on arith-
metic operations of fuzzy numbers, thus obtaining
fuzzy numbers as its coordinates, the approach fol-
lowed in this work deviates from the path trailed by
many fuzzy location papers, in which constraints are
fuzzy, but the solution is not (Darzentas, 1987; Canós
et al., 1999; Chen, 2001; Moreno Pérez et al., 2004).

Fuzzy solutions also give some leeway to planners
which might be forced to select the final location of
the center away from the place with the highest mem-
bership value, but that can the measure the impact of
their decision and, thus, asses its “appropriateness”.

This paper is structured in the following way. In
Section 2, we introduce the closed form expressions
for centers usually used in the literature. Then, on
Section 3, the basic concepts of fuzzy sets and fuzzy
numbers used through our paper are defined. Sec-
tion 4 covers the demonstrations used to prove that
the closed form expressions found for some centers
in crisp environments can be extended to fuzzy points.
A small numerical example, joined by some figures in
which the results can be easily seen, is developed in
Section 5. Finally, Section 6 presents the conclusions
as well as the future work based on our results.

2 THE MEDIAN CENTER AND
THE MIN-MAX CENTER

A recurrent problem in geography is the need to find
the center of a set of demand points that minimizes a
given objective function. Without taking into consid-
eration the road network that links these points, i.e., in
an open space, there are two simple, but also widely
used methods to solve this problem, the median center
and the min-max center.

Definition 1. For a set P = fp(i)g of n points in
R2, i.e., p(i) = fp(i;x); p(i;y)g, the median center m =

fm(x);m(y)g is found by the median of their coordi-
nates in x and y:

m(x) = median
�

p(i;x)
�

(1)

m(y) = median
�

p(i;y)
�
: (2)

Definition 2. For a set P = fp(i)g of n points in
R2, i.e., p(i) = fp(i;x); p(i;y)g, the min-max center z =
fc(x);c(y)g is found by the average of the extremes in
x and y:

z(x) =
max

i=1;:::;n

�
p(i;x)

�
+ min

i=1;:::;n

�
p(i;x)

�
2

(3)

z(y) =
max

i=1;:::;n

�
p(i;x)

�
+ min

i=1;:::;n

�
p(i;x)

�
2

: (4)

The median center is affected by changes in the
middle points, but changes in extreme points affect
only the min-max center. The selection of the ap-
propriate method to find the center depends on which
points are most likely to change (Ciligot-Travain and
Josselin, 2009).

3 FUZZY SETS AND FUZZY
NUMBERS

When it is difficult to say that an object clearly be-
longs to a class, classical set theory loses its useful-
ness. The fuzzy sets theory (Zadeh, 1965) overcomes
this problem by assigning degrees of membership of
elements to a set. In this section we will recall the
concepts of the fuzzy set theory that will be used in
this paper.

3.1 Basic Definitions

Definition 3. A fuzzy subset Ae is a set whose elements
do not follow the law of the excluded middle that rules
over Boolean logic, i.e., their membership function is
mapped as:

µAe : X ! [0;1]: (5)

In general, a fuzzy subset Ae can be represented
by a set of pairs composed of the elements x of the
universal set X, and a grade of membership µAe(x):

Ae =
n�

x;µAe(x)
�
j x 2 X ; µAe(x) 2 [0;1]

o
: (6)

Definition 4. An a-cut of a fuzzy subset Ae is defined
by:

Aa = fx 2 X : µAe(x)� ag ; (7)

i.e., the subset of all elements that belong to Ae at least
in a degree a.
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Definition 5. A fuzzy subset Ae is convex, if and only
if:

lx1 +(1�lx2) 2 Aa8x1;x2 2 Aa; a;l 2 [0;1] ; (8)

i.e., all the points in [x1;x2] must belong to Aa, for any
a.

Definition 6. A fuzzy subset Ae is normal, if and only
if:

max
x2X

�
µAe(x)

�
= 1: (9)

Definition 7. The core of a fuzzy subset Ae is defined
as:

NAe=
n

x : µAe(x) = 1
o
: (10)

Definition 8. A fuzzy number Ae is a normal, convex
fuzzy subset with domain in R for which:

1. x̄ := NAe; card(x̄) = 1, and

2. µAe is at least piecewise continuous.

The mean value x̄ (Zimmermann, 2005), also called
maximum of presumption (Kaufmann and Gupta,
1985), identifies a fuzzy number in such a way that
the proposition “about 9” can be modeled with a fuzzy
number whose maximum of presumption is x = 9. As
Zimmermann explains, for computational simplicity
there is a tendency to call “fuzzy number” any nor-
mal, convex fuzzy subset whose membership function
is, at least, piecewise continuous, without taking into
consideration the uniqueness of the maximum of pre-
sumption. Thus, this definition will include “fuzzy
intervals”, fuzzy numbers in which x̄ covers an in-
terval1, and particularly trapezoidal fuzzy numbers
(TrFN).
Definition 9. A TrFN is defined by the membership
function:

µAe(x) =
8>>><>>>:

1� x2�x
x2�x1

; if x1 � x < x2

1; if x2 � x� x3

1� x�x3
x4�x3

; if x3 < x� x4

0 otherwise.

(11)

This kind of fuzzy interval represents the case
when the maximum of presumption, the modal value,
can not be identified in a single point, but only in an
interval between x2 and x3, decreasing linearly to zero
at the worst case deviations x1 and x4. The TrFN is
represented by a 4-tuple whose first and fourth el-
ements correspond to the extremes from where the
membership function begins to grow, and whose sec-
ond and third components are the limits of the in-
terval where the maximum certainty lies, i.e., Ae =
(x1;x2;x3;x4).

1As a matter of fact, they are also called “flat fuzzy num-
bers” (Dubois and Prade, 1979).

Definition 10. The image of a TrFN is defined as:

Im
�
Ae�= (�a4;�a3;�a2;�a1) :

Definition 11. The addition and subtraction of two
TrFN Ae and Be are defined as:

Ae�Be = (a1 +b1;a2 +b2;a3 +b3;a4 +b4) (12)

Ae	Be = Ae� Im(B)e : (13)

3.2 Miscelaneous Definitions

Comparing fuzzy numbers is a task that can only be
achieved via defuzzification, i.e., by calculating its
expected value. For its simplicity, we have selected
the graded mean integrated representation (GMIR) of
a TrFN (Chen and Hsieh, 1999) as the method used in
this paper to defuzzify and compare TrFN.
Definition 12 (Chen and Hsieh, 1999). The GMIR of
non-normal TrFN is:

E
�
Me �=

R max
�

µMe�0
µ
2

�
L�1

Me (µ)+R�1
Me (µ)

�
dµ

R max
�

µMe�0 µdµ

: (14)

Remark 1. For a normal TrFN as defined in (11), the
GMIR is:

E
�
Ae�= a1 +2a2 +2a3 +a4

6
: (15)

Remark 2. The GMIR is linear, i.e., E(Ae � Be) =E(Ae)+E(B)e and E(a �Ae) = a �E(Ae).
To calculate the distance between two TrFN, we

must first define the absolute value of a TrFN. We will
rely on the work of (Chen and Wang, 2009) for this.
Definition 13 (Chen and Wang, 2009). The absolute
value of a TrFN is defined as:

��Ae��=
8><>:

Ae; if E (Ae)> 0
0; if E (Ae) = 0
Im(Ae) ; if E (Ae)< 0:

(16)

Proposition 1. For a TrFN Ae, E(
��Ae��) = ��E(Ae)��.

Proof. For E(Ae)� 0 the proof is trivial. For E(Ae)< 0
we have:

E
����Ae
����= E

�
Im
�

Ae
��

=
�a4�2a3�2a2�a1

6

=�E
�

Ae
�

=
���E �Ae

���� :
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Definition 14. The fuzzy Minkoswki family of dis-
tances between two fuzzy n-dimensional vectors Ae and
Be composed of TrFN:

dpe
�
Ae;Be�=

 
n

å
i=1

����Aie 	Bie
����p
! 1

p

: (17)

Remark 3. As with the crisp Minkowski family of dis-
tances, the fuzzy Manhattan distance is defined for
p = 1, the fuzzy Euclidean distance is defined for
p = 2, and the fuzzy Chebyshev distance is defined
for p = ¥.

Remark 4. In our proofs, we will use the form:

dep �Ae;Be�=
n

å
i=1

����Aie 	Bie
����p

; (18)

except for p = ¥ in which:

de¥
�
Ae;Be�= arg���Aie	Bie���

n
max
i=1

E
����Aie 	Bie

���� : (19)

4 FUZZY MEDIAN CENTER AND
FUZZY MIN-MAX CENTER

We will prove that for a set of fuzzy points, the fuzzy
median center and the fuzzy min-max center are ex-
tensions of their respective counterparts in crisp set-
tings, i.e., that they can be obtained by the median or
the average of the maximum X and Y coordinates of
the fuzzy points, respectively.

Proposition 2. For two TrFN p(1)g and p(2)g, such that

E(p(1)g) < E(p(2)g), argmin
ce E(åi2f1;2g d1e (p(i)f ;ce)) =

fce : E(ce) 2 [E(p(1)g);E(p(2)g)]g.

Proof. Let p(i)f = (p(i)1 ; p(i)2 ; p(i)3 ; p(i)4 ) and
ce= (c1;c2;c3;c4), hence:

d1e
�

p(i)f ;ce
�

=
���p(i)f 	 ce

��� :
By properties of the GMIR:

E
�

p(i)f 	 ce
�
= E

�
p(i)f
�
�E

�
ce� :

If E(ce)� E(p(1)g) and by (16), then:

de1
�

p(1)g;ce
�
= p(1)g	 ce; (20)

de1
�

p(2)g;ce
�
= p(2)g	 ce: (21)

By (20) and (21):

argmin
ce E

 
å

i2f1;2g

�
de1
�

p(i)f ;ce
��!

= p(1)g;

as p(1)g	ce= (0;0;0;0) and p(2)g	ce= p(2)g	 p(1)g. For

any fce : E(ce)< E(p(1)g)g, E(p(2)g	 ce)> 0 and E(ce	
p(1)g)> E(p(2)g	 p(1)g).

Equivalently, if E(p(2)g)� E(ce) by (16), then:

de1
�

p(1)g;ce
�
= ce	 p(1)g; (22)

de1
�

p(2)g;ce
�
= ce	 p(2)g: (23)

By (22) and (23),

argmin
ce E

 
å

i2f1;2g

�
de1
�

p(i)f ;ce
��!

= p(2)g;

as ce	 p(2)g = (0;0;0;0) and ce	 p(1)g = p(2)g	 p(1)g. For

any fce : E(p(2)g)< E(ce)g, E(ce	 p(2)g)> 0 and E(ce	
p(1)g)> E(p(2)g	 p(1)g).

Given that E(p(1)g)< E(ce) and by (16), then:

de1
�

p(1)g;ce
�

= ce	 p(1)g
=

�
c1�p

(1)
4 ;c2�p

(1)
3 ;c3�p

(1)
2 ;c1�p

(1)
4

�
:(24)

Given that E(ce)< E(p(2)g) and by (16), then:

de1
�

p(2)g;ce
�

= p(2)g	 ce
=

�
p
(2)
1 �c4 ;p

(2)
2 �c3 ;p

(2)
3 �c2 ;p

(2)
4 �c1

�
:(25)

From (24) and (25):

åi2f1;2g
�

de1
�

p(i)f;ce�� =
�

c1�p
(1)
4 ;c2�p

(1)
3 ;c3�p

(1)
2 ;c4�p

(1)
1

�
��

p
(2)
1 �c4 ;p

(2)
2 �c3;p

(2)
3 �c2 ;p

(2)
4 �c1

�
=

�
p
(2)
1 �p

(1)
1 +c1�c4 ;p

(2)
2 �p

(1)
2 +c2�c3;

p
(2)
3 �p

(1)
3 +c3�c2 ;p

(2)
4 �p

(1)
4 +c4�c1

�
:

(26)

Applying GMIR to (26) :

E
�

åi2f1;2g
�

de1
�

p(i)f;ce��
�
= E

�
p(2)g� p(1)g

�
: (27)

Being that (27) is independent from ce:
argmin

ce E
�

åi2f1;2g
�

de1
�

p(i)f;ce���=nce:E
�

ce�2hE�p(1)f�
;E
�

p(2)f�io
:
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The result obtained in Proposition 2 shows than
any fuzzy point ce between two fuzzy points p(1)g and

p(2)g gives an equally good solution to the problem
of the minimization of distances. An arbitrary, but
frequently found solution to the crisp version of this
problem, is using the average of both points:

ce= p(1)g� p(2)g
2

: (28)

In the following proposition we will see what hap-
pens for a set of n fuzzy points, but first, let us define
the notion of order statistic for fuzzy numbers.
Definition 15. For a set P = fp(i)f g; 8i = 1; : : : ;n; of

TrFN, the k�th order statistic p([k])g is defined as the

k�th point for which E(p([k])g )� E(p([k+1])

^
).

Proposition 3 (Fuzzy median center in R). For a
set P = fp(i)f g; i = 1; : : : ;n, of TrFN, c�e is the point

for which argmin
ce E(ån

i=1 de1(p([i])g ;ce)) = fce : E(ce) 2
[E(p([

n
2 ])

]
);E(p([

n
2+1])

^
)]g, if n is even, but if it is odd

argmin
ce E(ån

i=1(de1(p([i])g ;ce))) = p([
n+1

2 ])

^
.

Proof. Given that the k�th order statistic of the set P
is p([k])g , we can apply iteratively the result in Proposi-
tion 2. In first place, it is known that:

argmin
ce

E

 
å

i2f1;ng
de
�

p([i])g ;ce
�!

=

�
ce : E

�
ce
�
2
�

E
�

p([1])g
�
;E
�

p([n])g
���

:

From Definition 15, it is also known that:�
E
�

p([2])g
�
;E
�

p([n�1])

^

��
2
h
E
�

p([1])g
�
;E
�

p([n])g
�i

;

so the solution is now:

argmin
ce

E

 
å

i2f1;2;n�1;ng
d1e
�

p([i])g ;ce
�!

=

�
ce : E

�
ce
�
2
�

E
�

p([2])g
�
;E
�

p([n�1])

^

���
:

If we keep applying iteratively this logic, and n is
even, we get that

argmin
ce

E

 
n

å
i=1

d1e
�

p([i])g ;ce
�!

=

�
ce : E

�
ce
�
2
�

E
�

p([
n
2 ])

]

�
;E
�

p([
n
2 +1])

^

���
:

If n is odd, we will have three points in the next-to-

last iteration,
�

p([
n�1

2 ])

^
; p([

n+1
2 ])

^
; p([

n+3
2 ])

^

�
. We can

present the problem as:

argmin
ce

E
n

å
i=1

�
d1e
�

p([i])g ;ce
��

=

argmin
ce

E

0@ n�3
2

å
i= n�1

2

d1e
�

p([i])g ;ce
�1A

= argmin
ce

E

0@ å
i=f n�1

2 ; n�3
2 g

d1e
�

p([i])g ;ce
�
+

d1e
�

p([
n+1

2 ])

^
;ce
��

:

We know that:

argmin
ce

E

0@ å
i=f n�1

2 ; n�3
2 g

�
d1e
�

p(i)g;ce
��1A=

(
ce : E

�
ce
�
2

"
E

 
p([

n�1
2 ])

^

!
;E

 
p([

n�3
2 ])

^

!#)
:

Therefore, it is clear that:

argmin
ce E

�
d1e
�

p([
n+1

2 ])

^
;ce
��

= p([
n+1

2 ])

^
:

So, given that ce= p([
n+1

2 ])

^
and that E(p([

n+1
2 ])) 2

[E(p([
n�1

2 ])

^
);E(p([

n�3
2 ])

^
)], for n even:

argmin
ce E

 
n

å
i=1

�
d1e
�

p(i)f ;ce
��!

= p([
n+1

2 ])

^
:

Applying (28) to the result of Proposition 3 we get
the definition of the median for a set of TrFN.

Definition 16. The median of a set P = fp(i)f g; 8i =1; : : : ;n; of TrFN is defined as:

median(P) =

8>>><>>>:
p([

n
2 ])

]
�p([

n
2 +1])

^2 ; if n is odd,

p([
n+1

2 ])

^
; if n is even.

In an R2 space, the solution is equivalent, as we
will see in the following proposition.
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Proposition 4. For a set P =n
P(i)f : P(i)f =

n
p(i; j)g

o
; 8i = 1; : : : ;n; j 2 fx;yg

o
,

where p(i; j)g is a TrFN,

argmin
Ce E

�
å

n
i=1 de1

�
P(i)f ;Ce

��
=n

median
�

p(i;x)g
�
;median

�
p(i;y)g

�o
.

Proof. Due to the linearity of the GMIR:

E
�

å
n
i=1

�
de1
�

P(i)f ;Ce
���

=å
n
i=1 å j2fx;yg

�����E
 

p(i; j)g
!
�E
�

c je
������

=å
n
i=1

�����E
 

p(i;x)g
!
�E
�

c(x)f
������+

å
n
i=1

�����E
 

p(i;y)g
!
�E
�

c(y)f
������: (29)

As both terms in (29) are independent from each
other:

min
c( j)

 
å

j2fx;yg

n

å
i=1

����E�p(i;x)g
�
�E

�
c(x)f
�����
!

=

å
j2fx;yg

min
c( j)

n

å
i=1

����E�p(i;x)g
�
�E

�
c(x)f
����� :

The optimization problem is then reduced to ap-
plying independently for each j 2 fx;yg the result of
Proposition 3 with Definition 16. Thus:

argmin
Ce

E

 
n

å
i=1

de1
�

P(i)f ;Ce
�!

=

�
median

�
p(i;x)g

�
;median

�
p(i;y)g

��
: (30)

Finally, we will address the subject of the fuzzy
min-max center, found using (19).

Proposition 5. For a set P =
n

p(i)f
o
; 8i = 1; : : : ;n; of

TrFN, maxn
i=1(E(

���p(i)f 	 ce
���) = 1

2 �E(p([n])� p([1])):

Proof. Let E(ce) = 1
2 (E(p([1])) + E(p([n])g )). Due

to the linearity of the GMIR and Proposition 1,
maxn

i=1(E(
���p(i)f 	 ce

���) = maxn
i=1

���E(p(i)f )�E(ce)
��� :

So:

�
E

 
p([n])g

!
�E(p([1]))
2 �E

 
p([i])f

!
�

E

 
p([n])g

!
+E

 
p([1])g

!
2

�
E

 
p([n])g

!
�E(p([1]))
2

then:

����������
E

 
p([i])f

!
�

E

 
p([n])g

!
+E

 
p([1])g

!
2

����������
�

E

 
p([n])g

!
�E(p([1]))
2

maxn
i=1

����������
E

 
p([i])f

!
�

E

 
p([n])g

!
+E

 
p([1])g

!
2

����������
�

E

 
p([n])g

!
�E(p([1]))
2 :

In fact:����������
E

 
p([n])g

!
�

E

 
p([n])g

!
+E

 
p([1])g

!
2

����������
=

����������
E

 
p([n])g

!
�E

 
p([1])g

!
2

����������

=

����������
�

E

 
p([n])g

!
�E

 
p([1])g

!
2

����������

=

����������
E

 
p([1])g

!
�

E

 
p([n])g

!
+E

 
p([1])g

!
2

����������

�

����������
E

 
p([i])f

!
�

E

 
p([n])g

!
+E

 
p([1])g

!
2

����������
:

So:

maxn
i=1

��������E
�

p([i])f �
�

E
�

p([n])g�
+E
�

p([1])g�
2

��������=
E
�

p([n])g�
�E
�

p([1])g�
2 ;

i.e.:

n
max
i=1

���E �p([i])g
�
�E

�
ce�
���= E

�
p([n])g

�
�E

�
p([1])g

�
2

:

Proposition 6. For a TrFN c0e, such that

for every TrFN pe maxn
i=1(E(

���p(i)f 	 pe
���) �

maxn
i=1(E(

���p(i)f 	 c0e
���)), then E(ce) = (c0e).

Proof. Let E(ce) = 1
2 (E(p([1])) + E(p([n])g )). Taking

pe= ce:
n

max
i=1

�
E
�����p(i)f 	 c0e

������� n
max
i=1

�
E
�����p(i)f 	 ce

������

=

E
�

p([n])g
�
�E

�
p([1])g

�
2

;
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so:

E
�����p([1])g 	 c0e

������ E
�

p([n])g
�
�E

�
p([1])g

�
2

E
�����p([n])g 	 c0e

������ E
�

p([n])g
�
�E

�
p([1])g

�
2

and:

E
�

c0e
�
�

E
�

p([n])g
�
�E

�
p([1])g

�
2

+E
�

p([1])g
�

=

E
�

p([n])g
�
+E

�
p([1])g

�
2

E
�

c0e
�
� E

�
p([n])g

�
�

E
�

p([n])g
�
�E

�
p([1])g

�
2

=

E
�

p([n])g
�
+E

�
p([1])g

�
2

:

So:

E
�
c0e�=

E
�

p([n])g
�
+E

�
p([1])g

�
2

Proposition 7. For a set P =
n

p(i)f
o
; 8i = 1; : : : ;n;

of TrFN and a TrFN pe, maxn
i=1(E(

���p(i)f 	 pe
���) =

maxn
i=1(E(

���p(i)f 	 ce
���):

Proof. Let E(ce) = 1
2 (E(p([1]))+E(p([n])g )). If E(pe)�E

�
ce�, E(p([n]))

^
�E(pe)� E(p([n]))

^
�E(ce). So:

n
max
i=1

�����E(p([i]))

^
�E(pe)

������
�����E(p([n]))

^
�E(pe)

�����
�

E
�

p([n])g
�
�E

�
p([1])g

�
2

=
n

max
i=1

����E�p([i])g
�
�E

�
ce
����� :

If E(pe) � E
�
ce�, E(pe) � E(p([1]))

^
� E(ce) �

E(p([1]))
^

. So:

n
max
i=1

�����E(p([i]))

^
�E(pe)

������
�����E(pe)�E(p([1]))

^

�����
�

E
�

p([n])g
�
�E

�
p([1])g

�
2

=
n

max
i=1

����E�p([i])g
�
�E

�
ce
����� :

Again, due to the linearity of the GMIR,
maxn

i=1

���E(p([i])g )�E(ce)
���= maxn

i=1 E
���p([i])g 	 ce

���
Proposition 8. For a set P = fP(i)f : P(i)f =

fp(i; j)g gg; 8i 2 1; : : : ;n; j 2 fx;yg, where p(i; j)gis a TrFN, and the fuzzy center Ce = fc( j)f g,maxn
i=1(d

¥f(P(i)f ;Pe))�maxn
i=1(d

¥f(P(i)f ;Ce)).
Proof. Let E(c( j)f ) = 1

2 E(p([1]; j)

^
� p([n]; j)

^
) and a the

fuzzy point Pe = fp( j)gg. Then:

maxn
i=1 d¥e

 
d¥

 
P(i)f;Pe

!!
=maxn

i=1 max j2fx;yg E

 �����p(i; j)g	p( j)f
�����
!

=max j2fx;ygmaxn
i=1

�����E
 

p(i; j)g
!
�E

 
p( j)f

!�����:
From Proposition 7, we will recall that:

maxn
i=1

����E�p(i; j)g�
�E
�

p( j)f������maxn
i=1

����E�p(i; j)g�
�E
�

c( j)f�����;
so:

max j2fx;ygmaxn
i=1

�����E
 

p(i; j)g
!
�E

 
p( j)f

!������
max j2fx;ygmaxn

i=1

�����E
 

p(i; j)g
!
�E

 
c( j)f

!�����
=maxn

i=1 d¥e
 

P(i)f;Ce
!
:

Proposition 9. For a set P =n
P(i)f : P(i)f =

n
p(i; j)g

o
; 8i 2 1; : : : ;n; j 2 fx;yg

o
,

where p(i; j)g is a TrFN, the fuzzy min-max center

C�f =
n

c( j)f
o

is argmin
Ce maxn

i=1 d¥f
�

P(i)f ;Ce
�
= fce :

E(c( j)) = 1
2 E(p([1]; j)

^
� p([n]; j)

^
)g.

Proof. Let the fuzzy point Pe = fp( j)gg, then:

maxn
i=1 E

 
d¥e
 

P(i)f;Pe
!!

=maxn
i=1 max j2fx;yg E

 �����p(i; j)g	p( j)f
�����
!

=maxn
i=1 max j2fx;yg

�����E
 

p(i; j)g
!
�E

 
p( j)f

!�����:
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By the result of Proposition 8:

E
�

c( j)f
�
=

E
�

p(i; j)g
�
+E

�
p( j)g
�

2
:

Then:

n
max
i=1

d¥f
�

P(i)f ;Pe
�
� n

max
i=1

d¥f
�

P(i)f ;Ce
�
:

Given that the solution of the fuzzy min-max cen-
ter is a set of fuzzy points, we will extend the result
for crisp values with the following definition.

Definition 17 (Fuzzy min-max center in R2). For a
set P =

n
P(i)f : P(i)f =

n
p(i; j)g

o
; 8i 2 1; : : : ;n; j 2 fx;yg

o
,

where p(i; j)g is a TrFN, the fuzzy min-max center Ce =n
c( j)f
o

is defined as:

c( j)f :=
p([1]; j)

^
� p([n]; j)

^
2

: (31)

5 NUMERICAL EXAMPLE

In the following numerical example we will see how
the three centers are found and how much they differ
from each other. Lets suppose there are three fuzzy
demand points:

P(1)g =
n

p(1;x)
]

; p(1;y)
]

o
p(1;x)
]

= (18;35;37;40)
p(1;y)
]

= (31;49;49;68)

P(2)g =
n

p(2;x)
]

; p(2;y)
]

o
p(2;x)
]

= (58;75;75;94)
p(2;y)
]

= (87;103;105;121)

P(3)g =
n

p(3;x)
]

; p(3;y)
]

o
p(3;x)
]

= (73;83;86;107)
p(3;y)
]

= (10;20;21;29)
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Figure 1: Fuzzy median center.
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Figure 2: Fuzzy min-max center.

The expected values for these three points would be:

E
�

p(1;x)
]

�
= 33:667

E
�

p(1;y)
]

�
= 49:167

E
�

p(2;x)
]

�
= 75:333

E
�

p(2;y)
]

�
= 104

E
�

p(3;x)
]

�
= 86:333

E
�

p(3;y)
]

�
= 20:167

For these points, the fuzzy median center (see Fig-
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ure 1) would be:

Me =
n

m(x)g ;m(y)g
o

m(x)g = median
^

i=1;:::;3

�
p(i;x)g

�
= (58;75;75;94)

m(y)g = median
^

i=1;:::;3

�
p(i;y)g

�
= (31;49;49;68) :

And the min-max center (see Figure 2) would be:

Ze =
n

z(x)f ;z(y)f
o

z(x)f = 1
2 åi2f1;3g p([i];x)

^= (49:667;64:333;66;80:333)

z(y)f = 1
2 åi2f1;3g p([i];y)

^= (42:667;57:333;58:333;72:667) :

As we can see from the figures, the option of using
fuzzy numbers to model the demand points is much
more closer to what in reality geographers and plan-
ners face. The results obtained will give them flexi-
bility in the final location of the center, according to
constraints not easily modeled otherwise.

6 CONCLUSIONS

In this paper we have shown that the results found for
the solution of the median center and the min-max
center can be extended to fuzzy environments, where
both the demand points and the center are modeled
with fuzzy numbers. The use of fuzzy numbers is due
to the need to reflect the uncertainty about available
information on demand. Not only the data might be
vague or subjective, but it could also involve disagree-
ments or lack of confidence in the methodology used
in its collection. Therefore, it is necessary to have a
solution that, while simply obtained, incorporates this
uncertainty.

Fuzzy solutions can also give flexibility to plan-
ners on the final location of the center, according to
constraints that are not easily modeled. The selected
center will have a membership value that reflects its
“appropriateness” according to the data.

Future work deriving from this methodology will
follow solving the fuzzy 1-median problem as well
as the barycenter, when the solution is modeled with
fuzzy numbers. We would like to use the results found
for multicriteria analysis, creating a fuzzy Pareto front
by intersecting the solutions found for different values
of p.
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