## SOME PROBLEMS HANDLED BY PARTICLE SWARM OPTIMIZATION IN AUTOMATIC CONTROL

Guillaume Sandou

Supelec Systems Sciences (E3S), Automatic Control Department, 3, rue Joliot Curie, 91192 Gif-sur-Yvette, France

Keywords: Particle swarm optimization, Automatic control, PID tuning,  $H_{\infty}$  synthesis.

Abstract: Most of the methods to design automatic control laws rely on the solution to optimization problems. However, straightforward formulations of costs and constraints of these problems are mainly non convex, non smooth or non analytic. That is why the classical approach is to simplify the problem so as to get tractable and exactly solvable optimization problems. The use of direct methods such as metaheuristics is underused in the control community. In this paper, a Particle Swarm Optimization method is used to solve some complex initial problems found in the control field to show the interest in the use of such methods.

## **1 INTRODUCTION**

Optimization has traditionally brought efficient methods to compute control laws. However, the traditional methodology is concerned with the design of a simplified model of the plant to control. In parallel, costs and constraints are reformulated so as to express all specifications in a well suited framework.

In the automatic control history, numerous examples of this approach can be found: Linear Quadratic methods, optimal control (Kwakernaak and Sivan, 1972),  $H_2$  or  $H_{\infty}$  control design (Zhou et al., 1996), predictive control (Maciejowski, 2002). However, due to the necessity of this specific structure of the optimization model, some of the specifications cannot be directly taken into account in the design process. They have to be a posteriori checked during an analysis phase. This approach may lead to some iteration between the synthesis and the analysis phases.

Nowadays, three points have to be considered: systems to be controlled are more and more complex, specifications are more and more various and precise, industries want to find best performances. Corresponding optimization problems are non convex, non differentiable, with numerous local optima. In such a context, metaheuristic optimization methods appear to be interesting candidate methods to solve these kinds of problems. In this paper, the main focus is on the use of Particle Swarm Optimization method. The goal of this paper is not to present new results (most of them have already been published in the Automatic Control field by the author) but to show to the metaheuristic community that there is a large application field where such algorithms are really underused and have a great potential.

The paper is organised as follows. In section 2, costs and constraints which are commonly encountered in the Automatic Control domain are called up. Two examples of the application of Particle Swarm Optimization are then presented. In section 3, the optimization of the tuning of Proportional-Integral-Derivative (PID) controller is performed. An advanced control methodology is then studied in section 4, namely the  $H_{\infty}$  synthesis problem. Finally, conclusion remarks are drawn in section 5.

## 2 COST AND CONSTRAINTS IN AUTOMATIC CONTROL

Consider the generic closed loop framework of figure 1. *s* is the Laplace variable.



Figure 1: Classical closed loop framework.

Sandou G..

SOME PROBLEMS HANDLED BY PARTICLE SWARM OPTIMIZATION IN AUTOMATIC CONTROL. DOI: 10.5220/0003672303150319

In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2011), pages 315-319 ISBN: 978-989-8425-83-6

Copyright © 2011 SCITEPRESS (Science and Technology Publications, Lda.)

A system G(s) has to be controlled. The control input is v and the output is y. The controller is  $K(s,\theta)$  and depends on tuning parameters  $\theta$ . r is the reference and the disturbance is d. In this closed loop, any transfer function from an input x to an output z is a function of the parameters  $\theta$ :

$$T_{x \to z}(s) = H(s,\theta) \tag{1}$$

In the same way of thinking, any time response x(t) is a function of  $\theta$ :

$$x(t) = f(\theta, r(\tau), d(\tau), \tau \in [0, +\infty[)$$
(2)

Some of the classical criterions in the case of Single Input Single Output (SISO) are:

• Cut-off frequency:

$$\omega_{0}(\theta) = \arg\min_{\omega_{1}} \omega_{1}$$
  
s.t  $|T_{\varepsilon \rightarrow y}(j\omega, \theta)| < 1, \forall \omega > \omega_{1}$ ;  
• Module margin:

$$\Delta m(\theta) = \min_{\omega} \left| T_{\varepsilon \to y}(j\omega, \theta) - (-1) \right|;$$

•  $H_{\infty}$  norm of the system (computed for Multi Inputs Multi Outputs system):

$$\left\|T_{r \to y}\right\|_{\infty}(\theta) = \sup_{\omega} \overline{\sigma}(j\omega, \theta) \tag{5}$$

with:

$$\overline{\sigma}(j\omega,\theta) = \max_{i} \sqrt{\lambda_i (T_{r \to y}(j\omega,\theta)^* T_{r \to y}(j\omega,\theta))}$$
(6)

More generally, specifications can be given as temporal templates for transfer function of the system of figure 1. Some classical specifications are given for the Heaviside step response. Once again, all criterion are a function of  $\theta$ .

•  $\alpha\%$  time response:

$$T_{e}(\theta) = \inf_{T>0} \left\{ \begin{array}{l} T \setminus \forall t > T :\\ \left| \varepsilon(t, \theta) \right| \le \alpha / 100 \cdot r(t) \end{array} \right\};$$
(7)

• Maximum of the control input:

$$u_{\max}(\theta) = \max_{t} |u(t,\theta)|.$$
(8)

It appears that the mathematical expressions of these constraints are often non smooth (computations of min/max, absolute value, no analytical expression...). Some classical approaches do exist to

compute a controller which satisfies a given set of specifications. However, the problem is now not only to satisfy a set of constraints, but to optimize the performances of the system and to take into account all constraints in the design procedure. Finally, corresponding optimization problems are hard to solve. That is why the use of metaheuristics optimization methods appears as a very interesting approach to explore.

## 3 PID TUNING AND OPTIMIZATION

In this section, we want to optimize a PID controller for a magnetic levitation, represented in figure 2.



Figure 2: Magnetic levitation system.

To control the system, PID controller with high frequencies filtering is used:

$$C(s) = K(1 + \frac{1}{T_i s} + \frac{T_d s}{1 + \tau_d s}) \cdot \frac{1}{1 + T_f s},$$
(9)  
with  $\tau_d = T_d / 10.$ 

The parameters of the optimization problem are:

$$\theta = (K, T_i, T_d, T_f)^T .$$
<sup>(10)</sup>

The specifications to be achieved are: control input limitations:  $\max |u(t)| \le 10V$ , module margin:

 $\Delta m \ge 0.5$ , 5% time response as low as possible. The problem can be expressed as the following minimization problem:

$$\min_{\theta} \inf_{T>0} \begin{cases} T \setminus \forall t > T :\\ |\varepsilon(t)| \le 5/100 \cdot r(t) \end{cases} + J_1(\theta) + J_2(\theta)$$
  
if 
$$\max_t(|u(t)|) > 10 :\\J_1(\theta) = \exp(\lambda (\max(|u(t)|) - 10)) \qquad (11)$$
  
if 
$$\min_{\omega} |G(j\omega) - (-1)| < 0.5 :\\J_2(\theta) = \alpha \cdot (\min_{\omega} |G(j\omega) - (-1)| - 0.5)^2 \end{cases}$$

A Particle Swarm Optimization method is used to solve the initial problem (Eberhart and Kennedy, 1995), with standard values of parameters (Kennedy and Clerc, 2006). Statistical optimization results are given in table 1. Computation times are 10 seconds with Matlab 2007b on a Pentium IV, 2.0GHz.

Table 1: Results for the time response minimization with penalization on the control input and module margin.

| Best                    | Worst                   | Mean                    | Standard deviation     | In this pap |
|-------------------------|-------------------------|-------------------------|------------------------|-------------|
| 30.8 10 <sup>-3</sup> s | 39.7 10 <sup>-3</sup> s | 31.4 10 <sup>-3</sup> s | 1.1 10 <sup>-3</sup> s | INOLOC      |

### 4 REDUCED ORDER H<sub>∞</sub> SYNTHESIS

#### 4.1 **Problem Statement**

 $H_{\infty}$  synthesis is an efficient tool in automatic control to compute controllers in a closed-loop framework, achieving high and various performances (Gahinet and Apkarian, 1994); (Zhou et al., 1996).

 $H_{\infty}$  synthesis relies on the reformulation of the closed loop problem of figure 1 into a standard form corresponding to the block diagram of figure 3.



Figure 3: Standard form of a closed loop.

The idea of  $H_{\infty}$  synthesis is to solve the following optimization problem:

$$\min_{K(s)} \|T_{w \to z}(s)\|_{\infty} \,. \tag{12}$$

This optimization problem can easily be solved as it can be expressed either by a Linear Matrix Inequality (LMI) problem (Zhou et al., 1996). The main drawback is the controller order: the controller computed by the  $H_{\infty}$  synthesis procedure has the same order of the synthesis model.

To get low order controllers, matrices rank constraints can be added, leading to Bilinear Matrix Inequality (BMI) problems and so to non-convex ones. More recently, some new techniques have began to emerge, adding some random process in the deterministic search algorithm (Arzelier, et al., 2010), and achieving results which are almost similar to those obtained with the HIFOO standard (Burke, et al., 2006).

Consider the state space representation of the plant P(s) of figure 3:

$$\Sigma : \begin{cases} \dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}_{1}w(t) + \mathbf{B}u(t) \\ z(t) = \mathbf{C}_{1}x(t) + \mathbf{D}_{11}w(t) + \mathbf{D}_{12}u(t) , \quad (13) \\ y(t) = \mathbf{C}x(t) + \mathbf{D}_{21}w(t) \end{cases}$$

In this paper, we look for a static feedback:

$$= \underbrace{u(t) = \mathbf{K}y(t), [\Box ATION(14)]}_{(14)}$$

where  $\mathbf{K}$  is a constant matrix of gains. This closed loop is stable if and only if:

$$\Lambda(\mathbf{A} + \mathbf{BKC}) \in \mathfrak{R}^{-},\tag{15}$$

where  $\Lambda(\mathbf{M}) \in \Re^-$  denotes the spectrum of  $\mathbf{M}$ . Considering the direct solution to the optimal  $H_{\infty}$  static output feedback, the problem finally refers to the following optimization problem:

$$\min_{\mathbf{K}\in\mathfrak{R}^{m_{XT}}} \left\| T_{w\to z}(s) \right\|_{\infty} \\
s.t. \begin{cases} u(t) = \mathbf{K}y(t) , \\ \Lambda(\mathbf{A} + \mathbf{B}\mathbf{K}\mathbf{C}) \in \mathfrak{R}^{-} \end{cases}$$
(16)

This kind of criterion can be optimized by PSO which does not require any particular formulation of the cost function. Finally, the design of an  $H_{\infty}$  static output feedback relies on the tuning of a matrix  $\mathbf{K} \in \Re^{m \times r}$  and so to the tuning of  $m \times r$  variables. For this possibly relatively large scale problem, we use the algorithm given in (van den Bergh and Engelbrecht, 2002).

#### 4.2 Numerical Results

For comparison, the algorithm is tested on the benchmark examples given in the COMPleib library (Leibfritz, 2004).

Results obtained with the PSO algorithm have been compared with those obtained with the HIFOO

package (Burke, et al. 2006), which is a deterministic solver and considered as one of the best effective tool for the synthesis of static output feedback, and those obtained in (Arzelier, et al., 2010). Corresponding results are given in table 2.

## 5 CONCLUSIONS

Optimization has always played an important role in the field of Automatic Control. Indeed, most of the existing control design methodologies are concerned with the solution to optimization problems.

Table 2: Computation of  $H_{\infty}$  static output feedbacks.

| Ex. | n  | m | r  | HIFOO                 | Ar. et al | PSO                   |
|-----|----|---|----|-----------------------|-----------|-----------------------|
| A1  | 5  | 3 | 3  | 4.14 10 <sup>-7</sup> | 1.76 10-6 | 4.7 10 <sup>-22</sup> |
| A2  | 5  | 3 | 3  | 0.1115                | 0.1115    | 0.1115                |
| A5  | 4  | 2 | 2  | 669.56                | 661.7     | 665.09                |
| A9  | 10 | 4 | 5  | 1.0029                | 1.0061    | 1.098                 |
| A10 | 55 | 2 | 2  | Inf                   | Inf       | Inf                   |
| A11 | 5  | 2 | 4  | 2.8335                | 2.8375    | 2.8609                |
| A12 | 4  | 3 | 4  | 0.3120                | 0.6165    | 0.3134                |
| A13 | 28 | 3 | 4  | 163.33                | 395.0404  | 167.36                |
| A14 | 40 | 3 | 4  | 101.7203              | 319.31    | 101.96                |
| A18 | 10 | 2 | 2  | 12.6282               | 10.6214   | 27.18                 |
| H1  | 4  | 2 | 1  | 0.1539                | 0.1538    | 0.1529                |
| Н3  | 8  | 4 | 6  | 0.8061                | 0.8291    | 0.8399                |
| H4  | 8  | 4 | 6  | 22.8282               | 22.8282   | 23.43                 |
| Н5  | 4  | 2 | 2  | 8.8952                | 17.6061   | 10.0031               |
| H6  | 20 | 4 | 6  | 192.3445              | 401.7698  | 195.86                |
| H7  | 20 | 4 | 6  | 192.3885              | 353.9425  | 194.24                |
| D2  | 3  | 2 | 2  | 1.0412                | 1.0244    | 1.0255                |
| D4  | 6  | 4 | 6  | 0.7394                | 0.7404    | 0.7863                |
| D5  | 4  | 2 | 2  | 1035.5                | 1030.82   | 1028                  |
| J2  | 21 | 3 | 3  | 183.3512              | 365.09    | 192.17                |
| J3  | 24 | 3 | 6  | 5.0963                | 9.194     | 5.138                 |
| R1  | 4  | 2 | 3  | 0.8694                | 0.8661    | 0.8738                |
| R2  | 4  | 2 | 2  | 1.1492                | 1.1482    | 1.1451                |
| R3  | 12 | 1 | 3  | 74.2513               | 74.2513   | 74.2513               |
| W1  | 10 | 3 | 4  | 4.0502                | 4.1055    | 6.4843                |
| B2  | 82 | 4 | 4  | 0.6471                | 2.90      | 1.0345                |
| S   | 60 | 2 | 30 | 0.0201                | 0.02      | 0.0200                |
| Р   | 5  | 1 | 3  | 32.2258               | 0.0087    | 0.0571                |
| T1  | 7  | 2 | 4  | 0.3736                | 0.3799    | 0.4038                |
| T2  | 7  | 2 | 3  | 5200                  | 5200      | 5200                  |
| Т3  | 7  | 2 | 3  | 0.4567                | 0.3264    | 0.5829                |
| N1  | 3  | 1 | 2  | 13.9089               | 13.458    | 13.8189               |
| N2  | 2  | 1 | 1  | 2.2216                | 2.2050    | 2.2049                |
| N5  | 7  | 1 | 2  | 266.54                | 266.5445  | 266.4023              |
| N6  | 9  | 1 | 4  | 5602                  | 5602      | 5593                  |
| N7  | 9  | 1 | 4  | 74.0757               | 74.0372   | 74.0326               |
| N9  | 5  | 3 | 2  | 28.6633               | 31.03     | 30.1549               |
| N12 | 6  | 2 | 2  | 16.3925               | 16.3116   | 17.7568               |
| N13 | 6  | 2 | 2  | 14.0589               | 14.0579   | 14.4829               |
| N14 | 6  | 2 | 2  | 17.4778               | 17.4757   | 17.5063               |
| N15 | 3  | 2 | 2  | 0.0982                | 0.0980    | 0.0980                |
| N16 | 8  | 4 | 4  | 0.9556                | 0.9556    | 0.9560                |
| N17 | 3  | 2 | 1  | 11.2182               | 11.2182   | 11.4864               |

Table 2: Computation of  $H_{\infty}$  static output feedbacks. (cont.)

| F10 | 5 | 2 | 3 | 79853    | 82314    | 80658    |
|-----|---|---|---|----------|----------|----------|
| F11 | 5 | 2 | 3 | 7719     | 78248    | 77213    |
| F14 | 5 | 2 | 4 | 53156    | 557008   | 535040   |
| F15 | 5 | 2 | 4 | 17521    | 202610   | 178900   |
| F16 | 5 | 2 | 4 | 44432    | 465790   | 447500   |
| F17 | 5 | 2 | 4 | 30024    | 303380   | 300240   |
| F18 | 5 | 2 | 2 | 124.7259 | 154.9970 | 126.6402 |
| TM  | 6 | 2 | 4 | 2.5267   | 2.1622   | 2.8015   |
| FS  | 5 | 1 | 3 | 96925    | 87160    | 84727    |

However, in the classical approach, particular expressions and reformulation of initial costs and constraints functions are used to get an optimization problem which can be exactly solved. To capture the difficulties of the initial optimization problems an underused approach relies on the use of stochastic algorithms which are able to deal with whatever costs and constraints. In this paper, the main focus is on the use of Particle Swarm Optimization algorithm to solve some generic Automatic Control problems: PID optimization, and reduced order  $H_{\infty}$  synthesis. All these results are much than satisfactory, showing the interest of using such algorithms, as results are quite similar to standard deterministic algorithms.

Finally, Automatic Control appears as a large, mostly unexplored, field of applications for the metaheuristic community.

## REFERENCES

Nΰ

- Arzelier, D., Gryazina, E. N., Peaucelle, D., Polyak, T., 2010. Mixed LMI/Randomized methods for static output feedback control design. In: *Proceedings of the IEEE American Control Conference*, Baltimore, USA.
- Burke, J. V., Henrion, D., Lewis, A. S., Overton M. L., 2006. HIFOO - A Matlab package for fixed-order controller design and  $H_{\infty}$  optimization. In: *Proceedings of the IFAC Symposium on Robust Control Design*, Toulouse.
- Eberhart, R. C., Kennedy, J., 1995. A new optimizer using particle swarm theory. In *Proc. of the Sixth International Symposium on Micromachine and Human Science*, Nagoya, Japan. pp. 39-43.
- Gahinet, P., Apkarian, P., 1994. A linear matrix inequality approach to  $H_{\infty}$  control. In: *Int. Journal of Robust and Nonlinear Control*, vol. 4, pp. 421-448.
- Kennedy, J., Clerc, M., 2006. Standard PSO. http://www.particleswarm.info/Standard PSO 2006.c.
- Kwakernaak, H., Sivan, R., 1972. Linear optimal control New York: Willey-interscience.
- Leibfritz, F., 2004. COMPleib: COnstraint Matrixoptimization Problem library - a collection of test examples for nonlinear semidefinite programs, control system design and related problems. *Technical report*.

University of Trier, Department of Mathematics, URL: www.complib.de.

Maciejowski, M., 2002.. Predictive Control with

*Constraints.* Prentice Hall, England. Van den Bergh F., Engelbrecht A. P., 2002. A new locally convergent particle swarm optimiser. In: *Proceedings* of the IEEE Conference on Systems, Man and cybernetics, Hammamet, Tunisia. Zhou, K., Doyle, J. C., Glover, K., 1996. Robust and

optimal control, New Jersey: Prentice-Hall.

# SCIENCE ANE INOL IGY PUBLIC ATIONS