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Abstract: In this paper, we present a new population-based heuristic for the multidimensional 0-1 knapsack problem 
(MKP) which is combined with 0-1 linear programming to improve the quality of the final heuristic 
solution. The MKP is one of the most well known NP-hard problems and has received wide attention from 
the operational research community during the last four decades. MKP arises in several practical problems 
such as the capital budgeting problem, cargo loading, cutting stock problem, and computing processors 
allocation in huge distributed systems. Several different techniques have been proposed to solve this 
problem. However, according to its NP-hard nature, exact methods are unable to find optimal solutions for 
larger problem instances. Heuristic methods have become the alternative, and the last generation of them, 
are being successfully applied to this problem. Hence, in practice, heuristic algorithms to generate near-
optimal solutions for larger problem instances are of special interest. The presented hybrid heuristic 
approach exploits the fact, that using a state-of-the-art solver a small binary linear programming (BLP) 
problem can be solved within reasonable time. The computational experiments show that the presented 
combined approach produces highly competitive results in significantly shorter run-times than the 
previously described approaches. 

1 INTRODUCTION 

The multidimensional 0-1 knapsack problem (MKP) 
is one of the most well known NP-hard problems 
and has received wide attention from the operational 
research community during the last four decades. 
MKP arises in several practical problems such as the 
capital budgeting problem, cargo loading, cutting 
stock problem, and computing processors allocation 
in huge distributed systems. Several different 
techniques have been proposed to solve this 
problem. However, according its NP-hard nature, 
exact methods are unable to find optimal solutions 
for larger problem instances. Heuristic methods have 
become the alternative, and the last generation of 
them, are being successfully applied to this problem. 
Hence, in practice, heuristic algorithms to generate 
near-optimal solutions for larger problem instances 
are of special interest.  

The multidimensional 0-1 knapsack problem 
(MKP) can be defined as 
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where N  is the number of items, M  is the number 
of constraints, 0jP ,  Nj ,,, 21  is the profit 

of item j , 0ijW ,  Mi ,,, 21  are the weights 

of item j , and 0iC ,  Mi ,,, 21  are the 

capacities of the knapsack. 
In this paper, we present a new heuristic for 

MKP combined with BLP to improve the quality of 
the final heuristic solution. The remaining of this 
paper is organized as follows. In Section 2 and 3 we 
describe our new hybrid heuristic algorithm (HH) 
and the BLP model developed to improve the quality 
of the final heuristic solution. In Section 4 we 
present detailed computational results to verify the 
new conception presented in Section 2 and 3. 
Finally, Section 5 draws conclusions from this study. 
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2 HEURISTIC ALGORITHM 

According to the systematic simplifications our 
population-based heuristic algorithm uses only two 
operators (random selection and perturbation) and 
starts with a "more or less random" initial 
population, where it means that the starting 
population is given by random perturbation of the 
relaxed solution: 
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where the relaxation of MKP is defined as follows: 
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Perturbation is a crucial point of our algorithm, 
because we have to balance between the diversity 
and intensity. In our approach, we used a simple but 
effective trick to resolve this problem. When a 
relaxed variable value is one (zero) then we replace 
it with a random value next to one (zero) from a 
truncated gauss distribution with mean one (zero). 
Otherwise, we replace the relaxed variable value 
with a randomly generated truncated gauss 
distribution value, which is spreading around the 
relaxed value. Naturally, the quality of the starting 
population is highly affected by the spreading range. 
The essence of the initial population generation is 
shown in Figure 1-3.  

The two most important parameters of our hybrid 
heuristic algorithm are the population size S  and 
the number of generations G . A solution in the 
current generation g , where  Gg ,,, 21  is 

represented by the following triplet: 
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~
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where vector sI
~

 is the description of the importance 

of the different items, sX  is the vector of the binary 

indicators, and sP  is the profit value in the 
corresponding feasible solution given by a usual 
primary greedy heuristic without “pseudo-utility” 
computation. The heuristic begins with an empty 
solution and adds items to the solution in the given 
importance order without violating constraints. 
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Figure 1: Random perturbation with zero relaxed value. 
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Figure 2: Random perturbation with fractional value. 
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Figure 3: Random perturbation with one relaxed value. 

As we mentioned the first generation is 
generated from the relaxed solution by random 
perturbation, after that, in each generation we select 
S  "more or less good" solution using the random 
selection operator and perturbate it using the 
perturbation operator shown in Figure 4. The higher 
the profit value, the higher the chance that a solution 
will be selected by the selection operator. When the 
perturbated solution is better than the worst solution 
in the current population, the worst will be replaced 
by the better one. In the algorithm the diversity is 
decreasing systematically generation to generation 
characterized by an exponentially decreasing 
standard deviation function  g ,  Gg ,,, 21 , 

which can be described by a tunable parameter pair: 
 G ,1 . The higher the standard deviation, the 

higher the variability (diversity) of the searching 
process is. The quality of the searching process is 
highly affected by the value of these parameters. In 
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other words, these are the “golden numbers” of the 
algorithm. 
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Figure 4: Random perturbation. 

The algorithm maintains the dynamically 

changing  bestbestP X,  set. 

3 BLP MODEL 

At the termination of the heuristic algorithm, 

solution  bestbestP X,  may be improved at 

reasonable additional CPU time by solving a set of 
randomly generated small BLP problems. 

The idea is a natural extension of the well-known 
"last added items" heuristics (for example: (Loulou, 
Michaelides, 1979); (Volgenant and Zwiers, 2007), 
and (Fleszar and Hindi, 2009)), which exploits the 
fact, that using a state-of-the-art solver, a small BLP 
problem can be solved very quickly. 

The essence of the new approach is very simple: 
we select randomly K  items from the knapsack and 
K  items from the complementary set. After that we 
solve the knapsack problem to optimality for the 
selected subset, and update the best solution if the 
new arrangement is better than the old one. We 
repeat these steps C  times.  

Naturally, the time requirement and the 
efficiency of the improvement is a function of C  
and K . The larger the selected subset size, the 
higher the chance of success but higher the 
computational cost according to the NP-hard nature 
of the BLP subproblems. 

4 COMPUTATIONAL RESULTS 

The algorithm of the proposed model has been 
programmed in Compaq Visual Fortran 6.5. To 
solve the BLP problems the callable version of 
Cplex 12.2 was used. Naturally, this solver can be 

replaced by any other commercial (academic) solver. 
The computational results were obtained by running 
the algorithm on a 1.8 GHz Pentium IV IBM PC 
with 256 MB of memory under Microsoft Windows 
XP operation system.  

Standard “large-sized” test data available from 
OR-Library were used to test the algorithm. These 
data contain randomly generated 0-1 MKPs with 
different numbers of constraints, variables, and 
tightness ratios: 
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There are 10 problem instances for each 
combination giving 270 test cases in total. The 
algorithm was run once for each problem instance. 
Since the optimal solution values for most of these 
problems are not known, the quality of a solution 
was measured by the percentage gap of the solution 
value with respect to the optimal value of the LP-
relaxation of the MKP.  

According to our preliminary investigations, we 
have run our algorithm with the following global 
parameter values, where the bold numbers mean 
MKP specific “golden numbers”: 

S      {10, 100, 1000} 
G      10 

1     0.1 

G    0.01 

K     25 
C     10 

We compared our hybrid heuristic HH with the 
following heuristics of the literature (see: Table 1-2):  
 AGNES (Freville and Plateau , 1994); 
 ADP (Bertsimas and Demir, 2002); 
 SMA (Hanafi et al., 1996); 
 HDP (Boyer et al., 2008); 
 HDP+LPC (Boyer et al., 2008) 
 ILPH (Hanafi and Wilbaut, 2011) 

Numerical results show that HH is a fast algorithm 
that is competitive with the currently best ILPH, 
HDP and HDP+LPC algorithms for MKP for 
instance sets MKNAPCB 1-9 (OR-Library). 

In the case of ILPH the authors investigated only 
the 90 largest (hardest) instances with .500N  We 
have to mention, that in Table 1 we compared the 
ILPH results with the relaxed solutions. In (Hanafi 
and Wilbaut, 2011) the authors compared the ILPH 
results with the currently best solutions of the 
literature, which is a dynamically changing measure 
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Table 1: Average gap (%). 

   Average gap (%) 

Set N M 

HH HH HH HDP 

HDP SMA ADP AGNES ILPH 

   + 

100 1000 10000 LPC 

1 100 5 0.95 0.8 0.72 0.57 0.69 2.68 1.72 0.88  

2 250 5 0.34 0.29 0.23 0.16 0.22 1.17 0.58 0.29  

3 500 5 0.21 0.14 0.10 0.07 0.08 0.59 0.26 0.12 0.05 

4 100 10 1.45 1.27 1.16 0.95 1.22 3.60 1.97 1.54  

5 250 10 0.59 0.49 0.44 0.32 0.46 1.60 0.76 0.57  

6 500 10 0.32 0.25 0.21 0.16 0.21 0.80 0.38 0.26 0.11 

7 100 30 2.28 1.96 1.87 1.81 2.04 5.13 2.70 3.22  

8 250 30 1.04 0.89 0.79 0.77 0.89 2.60 1.18 1.41  

9 500 30 0.63 0.51 0.45 0.42 0.48 1.45 0.58 0.72 0.31 

      0.87 0.73 0.66 0.58 0.70 2.18 1.13 1.00  

Table 2: Average processing time (sec). 

   Average processing time (sec) 

Set N M 

HH HH HH HDP 

HDP SMA ADP AGNES ILPH 

   + 

100 1000 10000   LPC 

1 100 5 0.09 0.30   3.18   0.60    0.03 0.03   

2 250 5 0.14 0.60   6.43   1.00 0.10   0.57 0.07   

3 500 5 0.24 1.45 14.85   1.13 0.53   4.57 0.30 0.10   46.27 

4 100 10 0.10 0.24   3.20   1.00 0.03   0.03 0.03   

5 250 10 0.15 0.63   6.69   0.97 0.17   0.70 0.10 0.03  

6 500 10 0.26 1.50 15.85   4.03 0.83   5.70 0.43 0.13  278.03 

7 100 30 0.11 0.26   3.33   3.97 1.67   0.10 0.07 0.03  

8 250 30 0.17 0.66   7.39 21.20 9.87   1.40 0.37 0.10  

9 500 30 0.25 1.79 18.08 93.37 26.4 11.90 1.20 0.30  

      0.17 0.83   8.78 14.14 4.95   2.78 0.29 0.12 1928.50 

 

of performance and therefore maybe confusing 
sometimes. 

According to our preliminary investigation, the 
HH algorithm is not so sensitive to the “fine 
tuning” of the standard deviation parameters. In 
other words, these parameters can be kept “frozen” 
in the algorithm independently from the problem 
parameters: NM , , which results in a practically 

“tuning-free” core algorithm. Naturally 1 is more 

important than G . When 1  extremely small, than 

the searching process is unable to leave the relaxed 
solution, when it is extremely large then the 
algorithm forgets the relaxed solution and 
practically it is working as a "brutal-force-search" 
in the starting population uploading phase. 

5 CONCLUSIONS 

In this paper, we presented a new heuristic for 
MKP combined with 0-1 linear programming to 
improve the quality of the final heuristic solution. 
The presented hybrid heuristic approach exploits 
the fact, that using a fast state-of-the-art solver a 
small BLP problem can be solved within 
reasonable time. 

The computational experiments show that the 
presented hybrid heuristic produces highly 
competitive results in significantly shorter run-
times than the previously described approaches. 

An open and challenging question is that what 
would be the "best" selected/unselected subset 
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selection strategy in the local BLP problems.  
Another interesting question would be to 

investigate the relation between the BLP size and 
the solution quality (time) in the function of the 
problem parameters: NM , .  

These questions are under investigation and the 
answers will be presented in a forthcoming paper. 
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