
DYNAMIC ANALYSIS OF MALWARE USING DECISION TREES

Ravinder R. Ravula, Kathy J. Liszka and Chien-Chung Chan
Department of Computer Science, University of Akron, Akron, OH, U.S.A.

Keywords: Malware, Reverse engineering, Data mining, Decision trees.

Abstract: Detecting new and unknown malware is a major challenge in today¹s software security profession. Most
existing works for malware detection are based on static features of malware. In this work, we applied a
reversed engineering process to extract static and behavioural features from malware. Two data sets are
created based on reversed features and API Call features. Essential features are identified by applying
Weka’s J48 decision tree classifier to 582 malware and 521 benign software samples collected from the
Internet. The performance of decision tree and Naïve Bayes classifiers are evaluated by 5-fold cross
validation with 80-20 splits of training sets. Experimental results show that Naïve Bayes classifier has better
performance on the smaller data set with 12 reversed features, while J48 has better performance on the data
set created from the API Call data set with 141 features.

1 INTRODUCTION

Malware, short for malicious software, is a sequence
of instructions that perform malicious activity on a
computer. The history of malicious programs started
with “Computer Virus”, a term first introduced by
(Cohen, 1985). It is a piece of code that replicates by
attaching itself to the other executables in the
system. Today, malware includes viruses, worms,
Trojans, root kits, backdoors, bots, spyware, adware,
scareware and any other programs that exhibit
malicious behaviour.

Malware is a fast growing threat to the modern
computing world. The production of malware has
become a multi-billion dollar industry. The growth
of the Internet, the advent of social networks and
rapid multiplication of botnets has caused an
exponential increase in the amount of malware. In
2010, there was a large increase in the amount of
malware spread through spam emails sent from
machines that were part of botnets (Mcafee.com,
2010a). McAfee Labs have reported 6 million new
botnet infections in each month of 2010. They also
detected roughly 60,000 new malware for each day
of 2010 (Mcafee.com, 2010b). Symantec discovered
a daily average of 2,751 websites hosting malware in
January 2011 (Messagelabs.com, 2011). Antivirus
software, such as Norton, McAfee, Sophos,
Kaspersky and Clam Antivirus, is the most common
defense against malware. The vendors of these

antivirus programs apply new technologies to their
products frequently in an attempt to keep up with the
massive assault. These programs use a signature
database as the primary tool for detecting malware.
Although signature based detection is very effective
against previously discovered malware, it proves to
be ineffective against new and previously unknown
malware. Malware programmers bypass the known
signatures with techniques like obfuscation, code
displacement, compression and encryption. This is a
very effective way to evade signature based
detection. Antivirus companies are trying hard to
develop more robust antivirus software. Some of the
techniques include heuristics, integrity verification
and sandboxing. However, in practice, they are not
really very effective in detecting new malware. We
are virtually unprotected until the signature of each
new threat is extracted and deployed.

Signature detection is mostly accomplished using
manual methods of reverse engineering. This is
timely and work intensive. With the staggering
number of malware generated each day, it is clear
that automated analysis will be imperative in order
to keep up. Hence, we cannot depend solely on
traditional antivirus programs to combat malware.
We need an alternative mechanism to detect
unidentified threats.

In an effort to solve the problem of detecting
new and unknown malware, we have proposed an
approach in the present study. The proposed

74 R. Ravula R., Chan C. and J. Liszka K..
DYNAMIC ANALYSIS OF MALWARE USING DECISION TREES.
DOI: 10.5220/0003660200740083
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2011), pages 74-83
ISBN: 978-989-8425-79-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

approach uses reverse engineering and data mining
techniques to classify new malware. We have
collected 582 malicious software samples and 521
benign software samples and reverse engineered
each executable using both static and dynamic
analysis techniques. By applying data mining
techniques to the data obtained from the reverse
engineering process, we have generated a
classification model that would classify a new
instance with the same set of features either as
malware or a benign program.

The rest of the paper is organized as follows.
Section 2 discusses previous work based on
detection of malware using data mining techniques.
Section 3 presents the reverse engineering
techniques used in our work. Section 4 explains the
data mining process and the machine learning tools
we used for the experiments. Here we present and
discuss the results and finally, section 5 concludes
the study and suggests possible future work.

2 LITERATURE REVIEW

Significant research has been done in the field of
computer security for the detection of known and
unknown malware using different machine learning
and data mining approaches.

A method for automated classification of
malware using static feature selection was proposed
by (Islam et al., 2010). The authors used two static
features extracted from malware and benign
software, Function Length Frequency (FLF) (Cohen,
1996) and Printable String Information (PSI) (Wang
et al., 2009). This work was based on the hypothesis
that “though function calls and strings are
independent of each other they reinforce each other
in classifying malware”. Disassembly of all the
samples was done using IDA Pro and FLF, PSI
features were extracted using Ida2DB.

The authors used five classifiers; Naive Bayes,
SVM, Random Forest, IB1 and Decision Table. The
best results were obtained by AdaBoostM1 with
Decision Table yielding an accuracy rate of 98.86%.
It was also observed that the results obtained by
combining both features were more satisfactory than
using each kind of features individually.

(Schultz et al., 2001) used different data mining
techniques to detect unknown malware. In the
samples collected, 206 benign executables and 38
malicious executables were in PE format. Static
features from each program were extracted using
three approaches; binary profiling, strings and byte
sequences. Binary profiling was only applied to PE

files. Other approaches were used for all programs.
Binary profiling was used to extract three types

of features; 1) list of Dynamic Link Libraries (DLL)
used by the PE, 2) function calls made from each
DLL and 3) unique function calls in each DLL. The
“GNU Strings” program was used to extract
printable strings. Each string was used as a feature in
the dataset. In the third method for features
extraction, the hexdump (Miller, 2000) utility
identified byte sequences, which were used as
features.

The authors applied rule based learning
algorithm RIPPER (Cohen, 1996) to the 3 datasets
with binary profiling features, Naïve Bayes classifier
to data with string and byte sequence features and
finally six different Naïve Bayes classifiers to the
data with byte sequence features. To compare the
results from these approaches with traditional
signature based method, the authors designed an
automatic signature generator.

With RIPPER they achieved accuracies of
83.62%, 89.36%, and 89.07% respectively for
datasets with features DLLs used, DLL function
calls and Unique Calls in DLLs. The accuracies
obtained with Naïve Bayes and Multi-Naïve Bayes
were 97.11% and 96.88%. With the Signature
method they achieved 49.28% accuracy. Multi-
Naïve Bayes produced better results compared to the
other methods.

In (Wang et al., 2009), the information in PE
headers was used for the detection of malware,
based on the assumption that there would be a
difference in the characteristics of PE headers for
malware and benign software as they were
developed for different purposes. Every header (MS
DOS header, file header, optional header and section
headers) in the PE was considered as a potential
attribute. For each malware and benign program,
position and entry values of each attribute were
calculated. In parallel, attribute selection was
performed using Support Vector Machines. The
dataset was tested with an SVM classifier using five-
fold cross validation. Accuracies of 98.19%,
93.96%, 84.11% and 89.54% were obtained for
virus, email worm, Trojans and backdoors
respectively. Detection rates of viruses and email
worms were high compared to the detection rates of
Trojans and backdoors.

In (Kolter and Maloof, 2004), multiple byte
sequences from the executables were extracted from
PE files and combined to produce n-grams. Five
hundred relevant features were selected by
calculating the information gain for each feature.
Several data mining techniques like IBk, TFIDF,

DYNAMIC ANALYSIS OF MALWARE USING DECISION TREES

75

naive Bayes, Support Vector Machine (SVM) and
decision trees applied to generate rules for
classifying malware. The authors also used
“boosted” Naïve Bayes, SVM and decision tree
learners. The boosted classifiers, SVM and IBk
produced good results compared to the other
methods. The performance of classifiers was
improved by boosting and the overall performance
of all the classifiers was better with the large dataset
compared with the small dataset.

(Komashinskiy and Kotenko, 2010) used
position dependent features in the Original Entry
Point (OEP) of a file for detecting unknown
malware. Decision Table, C4.5, Random Forest, and
Naive Bayes were applied on the prepared dataset.
Three assumptions were made for this work. 1)
Studying the entry point of the program known as
Original Entry Point (OEP) reveals more accurate
information. 2) The location of the byte value of
OEP address was set to zero. The offsets for all
bytes in OEP were considered to be in the range [-
127,127]. 3) Only a single byte can be read for each
position value. The dataset contained three features;
Feature ID, position and byte in position.

Feature selection was performed to extract more
significant features. The resulting data was tested
against all classifiers and the results were compared
based on ROC-area. Random Forest outperformed
all the other classifiers.

A specification language was derived in
(Christodorescu et al., 2007) based on the system
calls made by the malware. These specifications are
intended to describe the behaviour of malware. The
authors also developed an algorithm called
MINIMAL that mines the specifications of
malicious behaviour from the dependency graphs.
They applied this algorithm to the email worm
Bagle.J, a variant of Bagle malware.

Clean and malicious files were executed in a
controlled environment. Traces of system calls were
extracted for each sample during execution. The
dependencies between the system call arguments
were obtained by observing the arguments and their
type in sequence of calls. A dependency graph was
constructed using system calls and their argument
dependencies. A sub graph was then extracted by
contrasting it with the benign software dependence
graph such that it uniquely specifies the malware
behaviour. A new file with these specifications
would be classified as malware.

The Virus Prevention Model (VPM) to detect
unknown malware using DLLs was implemented by
(Wang et al. 2008). Malicious and benign files were
parsed by a program “dependency walker” which

shows all the DLLs used in a tree structure. The list
of APIs used by main program directly, the DLLs
invoked by other DLLs other than main program and
the relationships among DLLs which consists of
dependency paths down the tree were collected. In
total, 93,116 total attributes were obtained. After
pre-processing there were 1,398 attributes. Of these,
429 important attributes were selected and tested.
The detection rate with RBF-SVM classifier was
99.00% with True Positive rate of 98.35% and False
Positive rate of 0.68%.

A similarity measure approach for the detection
of malware was proposed by (Sung et al., 2004),
based on the hypothesis that variants of a malware
have the same core signature, which is a
combination of features of the variants of malware.
To generate variants for different strains of malware,
traditional obfuscation techniques were used. The
source code of each PE was parsed to produce an
API calling sequence which was considered to be a
signature for that file. The resulting sequence was
compared with the original malware sequence to
generate a similarity measure. Generated variants
were tested against eight different antivirus products.
The detection rate of SAVE was far better than
antivirus scanners.

In (Burji et al., 2010), a strain of the Nugache
worm was reverse engineered in order to study its
underlying design, behaviour and to understand
attacker’s approach for finding vulnerabilities in a
system. The authors also reverse engineered 49 other
malware executables in an isolated environment.
They created a dataset using features such as the
MD5 hash, printable strings, number of API calls
made, DLLs accessed and URL referenced. Due to
the multi dimensional nature of the dataset, a
machine learning tool, BLEM2 (Chan and Santhosh,
2003), based on rough set theory was used to
generate dynamic patterns which would help in
classifying an unknown malware. As the size of the
dataset was small, a very few number of decision
rules were generated and the results were generally
not satisfactory.

In another work (Ahmed et al., 2009) based on
dynamic analysis, spatio-temporal information in
API calls was used to detect unknown malware. The
proposed technique consists of two modules; an
offline module that develops a training model using
available data and an online module that generates a
testing set by extracting spatio-temporal information
during run time and compares them with the training
model to classify run time process as either benign
or malicious. In the dynamic analysis, spatial
information was obtained from function call

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

76

arguments, return values and were divided into
seven subsets socket, memory management,
processes and threads, file, DLLs, registry and
network management based on their functionality.
Temporal information was obtained from the
sequence of calls. The authors observed that some
sequences were present only in malware and were
missing in benign programs.

Three datasets were created by combining benign
program API traces with each malware type. The
three datasets were combinations of benign-Trojan,
benign-virus and benign-worm. They conducted two
experiments. The first one studied the combined
performance of spatio-temporal features compared
to standalone spatial or temporal features. The
second experiment was conducted to extract a
minimal subset of API categories that gives same
accuracy as from the first experiment. For this, the
authors combined API call categories in all possible
ways to find the minimal subset of categories that
would give same classification rate as obtained in
first experiment. For the first experiment, the authors
obtained 98% accuracy with naive Bayes and 94.7%
accuracy with J48 decision tree. They obtained
better results with combined features as compared
standalone features. The detection rate of Trojans
was less compared to viruses and worms.

In the second experiment, combination of API
calls related to memory management and file I/O
produced best results with an accuracy of 96.6%.

In some of the above mentioned works, only
static features such as byte sequences, printable
strings and API call sequences were used. Though
effective in detecting known malware, they would
be ineffective if the attackers use obfuscation
techniques to write malware. To solve this problem,
some other works (Burji et al., 2010 and Ahmed et
al., 2009) used dynamic detection methods. The
work done in (Ahmed et al., 2009) used only
dynamic API call sequences. Using only API calls
may not be effective in detecting malware. In
(Ahmed et al., 2009), malwares were reversed to
find their behaviour and applied data mining
techniques to the data obtained from reversing
process. A very small number of rules were
generated and the results were not effective as the
experiments were conducted on very few numbers of
samples.

Our work is different from all the above works as
we combined static and behavioural features of all
malware and benign software. It is an extension of
the work done in (Ahmed et al., 2009) but it differs
significantly, as we performed rigorous reverse
engineering of each executable to find their inner

workings in detail. We also used a large number
(582 malicious and 521 benign) of samples which
would facilitate determining more accurate
behaviour of malicious executables.

3 REVERSE ENGINEERING

Reverse engineering malware can be defined as an
analysis of a program in order to understand its
design, components and its behavior to inflict
damage on a computer system. The benefit of
reverse engineering is that it allows us to see the
hidden behavior of the file under consideration,
which we can’t see by merely executing it (Rozinov,
2005).

In the reverse engineering process we used both
static and dynamic analysis techniques. There are
many different tools available for each technique.
All the tools used for our work are open source. In
total, we reverse engineered 1103 PE (Portable
Executable) files of which 582 were malicious
executables and 521 were benign executables. All
malicious executables were downloaded from
Offensivecomputing.net and all benign executables
were downloaded from Sourceforge.net and
Brothersoft.com.

3.1 Controlled Environment

For static analysis of executables, we do not require
a controlled environment. In this case, we do not run
the executable to collect features. In the case of
dynamic analysis, the code to run is malicious and
dangerous. The environment for the reversing
process must be isolated from the other hosts on the
network. We apply the industry common standard, a
virtual machine. Due to a strong isolation between
the guest operating system in VM and host operating
systems, even if the virtual machine is infected with
a malware, there will be no effect of it on the host
operating system.

For the analysis of malware we needed
virtualization software that would allow quick
backtrack to the previous system state after it has
been infected by the malware. Each time a malware
is executed in dynamic analysis process, it would
infect the system. Analysis of subsequent malware
had to be performed in a clean system. We chose
VMware Workstation as virtualization software for
our work.

DYNAMIC ANALYSIS OF MALWARE USING DECISION TREES

77

3.2 Static Analysis

In general, it is a good idea to start analysis of any
given program by observing the properties
associated with it and predicting the behavior from
visible features without actually executing it. This
kind is known as static analysis. The advantage with
static analysis is that it gives us an approximate idea
of how it will affect the environment upon execution
without actually being executed. However, most of
the time, it is not possible to predict the absolute
behavior of a program with just static analysis.

There are many different tools available that aid
in static analysis of executables for example,
decompilers, disassemblers, Source code analyzers
and some other tools that help in extracting useful
features from executables. The tools we used were
Malcode Analyst Pack from idefense.com, PEiD
from peid.has.it and IDA Pro Disassembler hex-
rays.com.

3.2.1 Cryptographic Hash Function

A unique cryptographic hash value is associated
with each executable file. This value differentiates
each file from others. We started our reverse
engineering process of each executable by
calculating its hash value.

The reason for calculating the hash value is
twofold. First, there is no unique standard for
naming malware. There may be multiple names for a
single piece of malware so by calculating hash value
of each sample we know that all of them are indeed
the same. This results in eliminating ambiguity in
the reverse engineering process. The second reason
is that if an executable is modified, its hash value
will also be changed. That way we can identify that
changes were made to the executable and thereby
analyzing it to detect the changes made.

MD5, SHA1 and SHA256 are the widely used
hash functions. We used Malcode Analyst Pack
(MAP) tool to compute the MD5 (Message Digest 5)
hash value of each PE file that we analysed.

3.2.2 Packer Detection

Malware authors employ various techniques to
obfuscate the content of the malware they have
written and making it unable to be reversed. Using
packers is one of them. A packer is a program that
helps in compressing another executable program,
thereby hiding the content. Packers help malware
authors hide actual program logic of the malware so
that a reverse engineer cannot analyze it using static
analysis techniques alone. Packers also help evade

detection of the malware from antivirus programs.
In order to execute, a packed malware must

unpack its code into memory. For this reason, the
authors of the malware include an unpacker routine
in the program itself. The unpacker routine is
invoked at the time of execution of the malware and
converts the packed code into original executable
form. Sometimes they use multiple levels of packing
to make the malware more sophisticated (Kang et
al., 2007).

Detection of a packer with which a malware is
packed is very important for the analysis of the
malware. If we know the packer, we can unpack the
code and then analyze the malware. We used the
PEiD tool which is a free tool for the detection of
packers. It has over 600 different signatures for the
detection of different packers, cryptors and
compilers. It displays the packer with which the
malware is packed by simply opening the malware
using PEiD. If the signature of the packer or
compiler with which the malware is packed is not
present in the PEiD database it will report that it
didn’t find any packers.

3.2.3 Code Analysis

The next step for better understanding the nature of
malware is to analyze its source code. Although
there are many decompilers that help in decompiling
executables into high level languages, analyzing the
malware by keeping the source code in low level
language reveals more information. IDA Pro
disassembler from DataRescue is a popular choice
for the disassembly of executable program into
Assembly Language.

We used the IDA Pro Disassembler for the code
analysis of malware. In this step, we have gone
through the assembly code of each PE file to find
useful information and to understand the behavior of
it. Following is the list of features that we were able
to extract from the assembly code of PE files.

• Type of file from the PE header. If it was not
a PE file, we discarded it.

• List of strings embedded in the code that
would be useful for predicting the behavior of
the PE.

• The programming language with which the
PE was written.

• Compile date and time.

3.3 Dynamic Analysis

In static analysis of executables, we only analyze the
static code of the executable and approximately

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

78

predict its properties and behavior. We know that the
authors of malware use techniques such as binary
obfuscation and packing to evade static analysis
techniques. To thoroughly understand the nature of
the malware we cannot rely on static analysis
techniques alone. If a program has to be run, the
whole code must be unpacked and loaded into
primary memory. Every detail of the executable
program is revealed at run time regardless of how
obfuscated the code is and what packer the
executable is packed with (Skoudis, 2004). In
dynamic analysis, we observe the full functionality
of the malware and its effect on the environment as
it executes.

Tools that help in dynamic analysis of
executables include debuggers, registry monitors,
file system monitors, network sniffers and API call
tracers. The tools we used in this step were Filemon,
Regshot and Maltrap.

3.3.1 File System Monitor

When a program is executed it makes changes to the
file system. The file system activity made by the
program helps partly in determining its behavior.
We used File Monitor (Filemon) from Microsoft
Sysinternals to monitor file system activity of all the
processes running on a windows system. It installs a
device driver which keeps track of all the file system
activity in the system. However, we only need the
information related to a particular process under
consideration, therefore, we can use a filter which
lets us select a particular process for which we want
to monitor file system activity by removing all the
other processes from the list. Each file system
activity made by the PE on the file system produces
one line of output in the Filemon GUI window.

3.3.2 Registry Monitor

Windows Registry is a huge database hosting
configuration details of the operating system and the
programs installed on it. Registry entries are divided
into hives and represented in a tree structure on
Windows systems. Most applications use two hives
frequently; HKLM and HKCU. HKLM stands for
Hive Key Local Machine and contains settings of
the operating system. HKCU stands for Hive Key
Current User and contains configuration details for
the user currently logged into the system.

Malware authors frequently use registries to
infect systems. One usual technique employed is to
insert an entry at the location HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Windows\Curre
ntVersion\RUN so that each time system boots up

the malware is executed. There is an extensive list of
such keys in the Windows registry and they are used
by attackers for their malicious purposes.

Regshot is a product of Microsoft Sysinternals
that helps in the reverse engineering process by
monitoring the Windows Registry. It lists the
changes made in the windows registry upon
installation of software. We used this tool to record
the changes in the windows registry made by
malware and benign software in the Windows
Registry.

3.3.3 API Call Tracer

Windows API (Application Program Interface) also
known as Win API, is a long list of functions that
provide system level services to the user programs.
Every Windows application is implemented using
the Win API functions.

Keeping track of the sequence of API Calls made
by an application helps in the reverse engineering
process. It allows us to go through each call and
thereby predicting the behavior of that software.
Maltrap is a software that lists the sequence of calls
made by the software while execution.

4 DECISION TREE MINING

In this section, we explain our implementation of the
KDD process to find patterns that would help in
classifying malware from benign software.

4.1 Feature Extraction

From static analysis of each sample in the reverse
engineering process we have the MD5 hash of the
file, file size in bytes, the packer used (if any, a
determination of whether it contains unique strings,
a time stamp and the programming language used to
write the file.

From the dynamic analysis, for each file, we
stored a log of file system activity, registry activity
and the sequence of API calls made by the sample
while running.

From the file system activity log we were able to
extract three important features; the decisions of
whether the sample under consideration attempted to
write to another file, if the sample accessed another
directory and all unique DLLs accessed during
execution.

From the registry activity we extracted three
features; registry keys added, registry keys deleted

DYNAMIC ANALYSIS OF MALWARE USING DECISION TREES

79

and registry values modified. The log contains all
the registry keys modified by executables with their
modified values. We removed the key values and
recorded only the keys.

From the API call log we extracted the unique
API calls made by each sample. We combined all
the unique API calls made by each file and removed
duplicates. Over the entire sample space, we
identified 141 unique API calls. We also noted if a
sample contained any URL references or attempted
to access the Internet, making. With this step we
completed processing of raw data for feature
selection.

4.2 Data Sets

We prepared two datasets: the first dataset with 15
features, 1103 instances and the second dataset with
141 features, 1103 instances. We named the first
dataset DRF (Dataset with Reversed Features) and
the second dataset DAF (Dataset with API Call
Features). Table 1 shows the list of 15 attributes and
decision label in DRF. All the 141 attributes in DAF
are of type binary except the decision label which is
Boolean. The first three attributes File Name, File
Size, and MD5 Hash do not provide useful
information for classification purpose. We collected
this information and retain it for tracking and other
research purposes, however, they are removed from
data sets used in the following experiments.

Table 1: Attributes in DRF.

S.NO Attribute Name Type
1 FILE NAME NOMINAL

2 FILE SIZE NOMINAL

3 MD5 HASH NOMINAL

4 PACKER NOMINAL

5 FILE ACCESS BINARY

6 DIRECTORY ACCESS BINARY

7 DLLs NOMINAL

8 API CALLS NOMINAL

9 INTERNET ACCESS BINARY

10 URL REFERENCES BINARY

11 REGISTRY KEYS ADDED NOMINAL

12 REGSITRY KEYS DELETED NOMINAL

13
REGISTRY VALUES

MODIFIED
NOMINAL

14 UNIQUE STRINGS BINARY

15
PROGRAMMING

LANGUAGE
NOMINAL

16 DECISION LABEL BOOLEAN

In addition, values of attributes Registry Keys
Added, Registry Keys Deleted, Registry Keys
Modified, API CALLs and DLLs varies widely from
very small to very large. They were discretized by
using tools available in Weka. The ranges we
obtained for each attribute after transforming the
dataset are shown in Table 2.

We prepared second dataset from DRF by
replacing the discrete values with the discretized
values shown in Table 2. We call it DDF (Dataset
with Discretized Features).

Table 2: Discretized Values.

 ATTRIBUTE
NAME

DISCRETIZED
VALUES

1 KEYS ADDED (-INF-1] (1-INF)

2 REGISTRY VALUES
MODIFIED (-INF-12.5] (12.5-INF)

3 API CALLS (-INF -5.5] (5.5-22.5]
(22.5-41.5] (41.5- INF)

4 DLLs (-INF -16.5] (16.5- INF)

4.3 Experimental Results

We conducted experiments on the datasets derived
from reversed features: DRF and DDF, and data set
derived from API call features: DAF. The J48
decision tree and Naïve Bayes algorithms in WEKA
(Witten and Frank, 2005) were used to generate
classifiers. We applied 5-fold cross validation with
80-20 splits for training and testing.

Figure 1 shows that the number of API Calls
made by a PE was selected as the root node of the
decision tree. API Calls, Unique Strings, URL
References, Internet Access, Packer, Registry Keys
Deleted, Directory Access and Registry Keys
Modified were the most used attributes in the
classification model although we note that it used all
the other attributes in the dataset.

The decision tree in Figure 2 shows that 9
attributes, API Calls, Unique Strings, URL
References, Packer, Registry Keys Deleted, Registry
Keys Modified, Directory Access, Registry Keys
added and Internet Access were used in the
classification model. In this case, the attributes
DLLs and File Access were not used in the decision
rules for classification.

In the experiment with the DAF data set, out of
141 attributes, 31 attributes were selected by J48 in
the decision tree. The API Call “IsDebuggerPresent”
is used as the root node in the tree. The most used
attributes in the classification model are
IsDebuggerPresent, WriteProcessMemory, RegSet
ValuesExW, GetVolumeInformationW, bind,

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

80

CreateProcessW and Connect. However, the
attributes that contributed to distinguish malware
from the benign software were Connect, ReadFile,
CreateRemoteThread, InternetOpenA and
RegDeleteValueW.

Figure 1: J48 Decision Tree for DRF.

The performance of the decision tree classifiers
is shown in Table 3 where TP, TN, FP, FN denote
True Positive, True Negative, False Positive, and
False Negative rates respectively.

Figure 2: J48 Decision Tree for DDF.

Table 3: Performance of J48 decision trees.

Data TP TN FP FN ROC
Area

Overall
Accuracy

DRF 0.793 0.809 0.191 0.207 0.843 80.09%

DDF 0.847 0.782 0.218 0.153 0.815 81.45%

DAF 0.832 0.947 0.053 0.168 0.917 89.14%

The Naïve Bayes algorithm of WEKA was

applied to the same data, and the performance is
shown in Table 4.

Table 4: Performance of Naïve Bayes.

Data TP TN FP FN ROC
Area

Overall
Accuracy

DRF 0.856 0.773 0.227 0.144 0.889 81.45%

DDF 0.865 0.836 0.164 0.135 0.912 85.07%

DAF 0.701 0.947 0.053 0.299 0.921 82.81%

From Table 3 and 4, it shows that Naïve Bayes

performs slightly better than J48 tree classifier in
experiments with DRF and DDF data sets, which has
12 attributes. In experiments with the DAF data,
which has 141 attributes, the feature selection
algorithm used in J48 provides an advantage.

DYNAMIC ANALYSIS OF MALWARE USING DECISION TREES

81

5 CONCLUSIONS

In this work, the problem of detecting new and
unknown malware is addressed. Present day
technologies and our approach for the detection of
malware are discussed. An isolated environment was
set up for the process of reverse engineering and
each executable was reversed rigorously to find its
properties and behavior. On the data extracted from
the reversing process, different data mining
techniques were used to procure patterns of
malicious executables and thereby classification
models were generated. To test the models, new
executables were supplied from the wild with the
same set of features. The results thus obtained
proved to be satisfactory.

From analyzing the experimental results, we can
conclude that finding static and behavioral features
of each malware through reverse engineering and
applying data mining techniques to the data helps in
detecting new generation malware. Considering the
rapidly increasing amount of malware appearing
each day, this method of detection can be used along
with current practice detection techniques.

We have reversed each strain of malware and
benign executables to extract all the features we
could with the help of the tools used by the
computer security profession. However, we were not
able to analyze the process address space of the
executables in the physical memory as the memory
analysis tools were released after we completed the
reversing step. Analyzing the address space would
reveal more interesting information about the
processes and thereby analyzing their behavior more
accurately.

Reversing each malware manually is a time
consuming process and requires much effort with the
thousands of new malware being generated. One
way to cope up with this problem is to automate the
whole reverse engineering process. Although there
are some tools for automated reverse engineering,
they do not record the full details of malware. A
more specific tool that does rigorous reversing
would help in combating large amounts of malware.
We consider these two tasks as the future work that
aid in detecting new malware more efficiently.

REFERENCES

Ahmed, F., Hameed, H., Shafiq, M. Z. and Farooq, M.,
2009. Using spatio-temporal information in API calls
with machine learning algorithms for malware
detection. In AISec ’09: Proceedings of the 2nd

ACMworkshop on Security and artificial intelligence,
pages 55–62, New York, NY, USA, 2009. ACM.

Burji, S., Liszka, K. J., and Chan, C.-C., 2010. Malware
Analysis Using Reverse Engineering and Data Mining
Tools. The 2010 International Conference on System
Science and Engineering (ICSSE 2010), July 2010, pp.
619-624.

Chan, C.-C. and Santhosh, S., 2003. BLEM2: Leaming
Bayes' rules from examples using rough sets. Proc.
NAFIPS 2003, 22nd Int. Conf. of the North American
Fuzzy Information Processing Society, July 24 - 26,
2003, Chicago, Illinois, pp. 187-190.

Christodorescu, M., Jha, S. and Kruegel, C., 2007. Mining
specifications of malicious behaviour. Proc. ESEC/FS
2007, pp. 5–14.

Cohen, F., 1985. Computer Viruses. PhD thesis,
University of Southern California.

Cohen, W., 1996. Learning Trees and Rules with Set-
Valued Features. American Association for Artificial
Intelligence (AMI), 1996.

Islam, R., Tian, R., Batten, L. and Versteeg, S.C., 2010.
Classification of Malware Based on String and
Function Feature Selection. 2010 Second Cybercrime
and Trustworthy Computing Workshop, Ballarat,
Victoria Australia., July 19-July 20, ISBN: 978-0-
7695-4186-0.

Kang, M. G., Poosankam, P. and Yin, H., 2007. Renovo:
A hidden code extractor for packed executables. In
Proc. Fifth ACM Workshop on Recurring Malcode
(WORM 2007), November 2007.

Kolter, J. and Maloof, M., 2004. Learning to detect
malicious executables in the wild. Proc. KDD-2004,
pp. 470–478.

Komashinskiy, D. and Kotenko, I. V., 2010. Malware
Detection by Data Mining Techniques Based on
Positionally Dependent Features. PDP '10
Proceedings of the 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based
Processing., IEEE Computer Society Washington,
DC, USA ©2010. ISBN: 978-0-7695-3939-3

Mcafee.com, 2010a. Retrieved from: http://www.mcafee.
com/us/resources/reports/rp-quarterly-threat-q3-
2010.pdf

Mcafee.com, 2010b. Retrieved from: http://www.
mcafee.com/ us/ resources/reports/rp-good-decade-for-
cybercrime.pdf

Messagelabs.com, 2011. Retrieved from: http://www.
messagelabs.com/mlireport/MLI_2011_01_January_Fi
nal_en-us.pdf

Miller, P., 2000. Hexdump. Online publication, 2000
http://www.pcug.org.au/ millerp/hexdump.html

Rozinov, K., 2005. Reverse Code Engineering: An In-
Depth Analysis of the Bagle Virus. Information
Assurance Workshop, 2005. IAW '05. Proceedings
from the Sixth Annual IEEE SMC, 15-17 June 2005,
pp. 380 – 387.

Schultz, M. G., Eskin, E., Zadok, E. and Stolfo, S. J.,
2001. Data Mining Methods for Detection of New
Malicious Executables. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, IEEE

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

82

Computer Society, 2001, pp. 38-49.
Skoudis, E., 2004. Malware: Fighting Malicious Code.

Prentice Hall.
Sung, A., Xu, J., Chavez, P., Mukkamala, S., 2004. Static

analyzer of vicious executables (save). Proc. 20th
Annu. Comput. Security Appl. Conf., 2004, pp. 326–
334.

Wang, T.-Y., Wu, C.-H. and Hsieh, C.-C., 2008. A Virus
Prevention Model Based on Static Analysis and Data
Mining Methods. CITWORKSHOPS '08, Proceedings
of the 2008 IEEE 8th International Conference on
Computer and Information Technology Workshops,
pp. 288 – 293.

Wang, T.-Y., Wu, C.-H. and Hsieh, C.-C., 2009. Detecting
Unknown Malicious Executables Using Portable
Executable Headers. Fifth International Joint
Conference on INC, IMS and IDC, pp.278-284, 2009.

Witten, I. H. and Frank, E., 2005. Data Mining: Practical
Machine Learning Tools and Techniques, Second
Edition. ISBN: 0-12-088407-0.

DYNAMIC ANALYSIS OF MALWARE USING DECISION TREES

83

