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Abstract: Detecting new and unknown malware is a major challenge in today¹s software security profession. Most 
existing works for malware detection are based on static features of malware. In this work, we applied a 
reversed engineering process to extract static and behavioural features from malware. Two data sets are 
created based on reversed features and API Call features. Essential features are identified by applying 
Weka’s J48 decision tree classifier to 582 malware and 521 benign software samples collected from the 
Internet. The performance of decision tree and Naïve Bayes classifiers are evaluated by 5-fold cross 
validation with 80-20 splits of training sets. Experimental results show that Naïve Bayes classifier has better 
performance on the smaller data set with 12 reversed features, while J48 has better performance on the data 
set created from the API Call data set with 141 features. 

1 INTRODUCTION 

Malware, short for malicious software, is a sequence 
of instructions that perform malicious activity on a 
computer. The history of malicious programs started 
with “Computer Virus”, a term first introduced by 
(Cohen, 1985). It is a piece of code that replicates by 
attaching itself to the other executables in the 
system. Today, malware includes viruses, worms, 
Trojans, root kits, backdoors, bots, spyware, adware, 
scareware and any other programs that exhibit 
malicious behaviour. 

Malware is a fast growing threat to the modern 
computing world. The production of malware has 
become a multi-billion dollar industry. The growth 
of the Internet, the advent of social networks and 
rapid multiplication of botnets has caused an 
exponential increase in the amount of malware. In 
2010, there was a large increase in the amount of 
malware spread through spam emails sent from 
machines that were part of botnets (Mcafee.com, 
2010a). McAfee Labs have reported 6 million new 
botnet infections in each month of 2010. They also 
detected roughly 60,000 new malware for each day 
of 2010 (Mcafee.com, 2010b). Symantec discovered 
a daily average of 2,751 websites hosting malware in 
January 2011 (Messagelabs.com, 2011). Antivirus 
software, such as Norton, McAfee, Sophos, 
Kaspersky and Clam Antivirus, is the most common 
defense against malware. The vendors of these 

antivirus programs apply new technologies to their 
products frequently in an attempt to keep up with the 
massive assault. These programs use a signature 
database as the primary tool for detecting malware. 
Although signature based detection is very effective 
against previously discovered malware, it proves to 
be ineffective against new and previously unknown 
malware. Malware programmers bypass the known 
signatures with techniques like obfuscation, code 
displacement, compression and encryption. This is a 
very effective way to evade signature based 
detection. Antivirus companies are trying hard to 
develop more robust antivirus software. Some of the 
techniques include heuristics, integrity verification 
and sandboxing. However, in practice, they are not 
really very effective in detecting new malware. We 
are virtually unprotected until the signature of each 
new threat is extracted and deployed. 

Signature detection is mostly accomplished using 
manual methods of reverse engineering. This is 
timely and work intensive. With the staggering 
number of malware generated each day, it is clear 
that automated analysis will be imperative in order 
to keep up. Hence, we cannot depend solely on 
traditional antivirus programs to combat malware. 
We need an alternative mechanism to detect 
unidentified threats.  

In an effort to solve the problem of detecting 
new and unknown malware, we have proposed an 
approach in the present study. The proposed 
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approach uses reverse engineering and data mining 
techniques to classify new malware. We have 
collected 582 malicious software samples and 521 
benign software samples and reverse engineered 
each executable using both static and dynamic 
analysis techniques. By applying data mining 
techniques to the data obtained from the reverse 
engineering process, we have generated a 
classification model that would classify a new 
instance with the same set of features either as 
malware or a benign program. 

The rest of the paper is organized as follows. 
Section 2 discusses previous work based on 
detection of malware using data mining techniques. 
Section 3 presents the reverse engineering 
techniques used in our work. Section 4 explains the 
data mining process and the machine learning tools 
we used for the experiments. Here we present and 
discuss the results and finally, section 5 concludes 
the study and suggests possible future work. 

2 LITERATURE REVIEW 

Significant research has been done in the field of 
computer security for the detection of known and 
unknown malware using different machine learning 
and data mining approaches. 

A method for automated classification of 
malware using static feature selection was proposed 
by (Islam et al., 2010). The authors used two static 
features extracted from malware and benign 
software, Function Length Frequency (FLF) (Cohen, 
1996) and Printable String Information (PSI) (Wang 
et al., 2009). This work was based on the hypothesis 
that “though function calls and strings are 
independent of each other they reinforce each other 
in classifying malware”. Disassembly of all the 
samples was done using IDA Pro and FLF, PSI 
features were extracted using Ida2DB. 

The authors used five classifiers; Naive Bayes, 
SVM, Random Forest, IB1 and Decision Table. The 
best results were obtained by AdaBoostM1 with 
Decision Table yielding an accuracy rate of 98.86%. 
It was also observed that the results obtained by 
combining both features were more satisfactory than 
using each kind of features individually. 

(Schultz et al., 2001) used different data mining 
techniques to detect unknown malware. In the 
samples collected, 206 benign executables and 38 
malicious executables were in PE format. Static 
features from each program were extracted using 
three approaches; binary profiling, strings and byte 
sequences. Binary profiling was only  applied  to PE  

files. Other approaches were used for all programs. 
Binary profiling was used to extract three types 

of features; 1) list of Dynamic Link Libraries (DLL) 
used by the PE, 2) function calls made from each 
DLL and 3) unique function calls in each DLL.  The 
“GNU Strings” program was used to extract 
printable strings. Each string was used as a feature in 
the dataset. In the third method for features 
extraction, the hexdump (Miller, 2000) utility 
identified byte sequences, which were used as 
features. 

The authors applied rule based learning 
algorithm RIPPER (Cohen, 1996) to the 3 datasets 
with binary profiling features, Naïve Bayes classifier 
to data with string and byte sequence features and 
finally six different Naïve Bayes classifiers to the 
data with byte sequence features. To compare the 
results from these approaches with traditional 
signature based method, the authors designed an 
automatic signature generator. 

With RIPPER they achieved accuracies of 
83.62%, 89.36%, and 89.07% respectively for 
datasets with features DLLs used, DLL function 
calls and Unique Calls in DLLs. The accuracies 
obtained with Naïve Bayes and Multi-Naïve Bayes 
were 97.11% and 96.88%. With the Signature 
method they achieved 49.28% accuracy. Multi-
Naïve Bayes produced better results compared to the 
other methods. 

In (Wang et al., 2009), the information in PE 
headers was used for the detection of malware, 
based on the assumption that there would be a 
difference in the characteristics of PE headers for 
malware and benign software as they were 
developed for different purposes. Every header (MS 
DOS header, file header, optional header and section 
headers) in the PE was considered as a potential 
attribute. For each malware and benign program, 
position and entry values of each attribute were 
calculated. In parallel, attribute selection was 
performed using Support Vector Machines. The 
dataset was tested with an SVM classifier using five-
fold cross validation. Accuracies of 98.19%, 
93.96%, 84.11% and 89.54% were obtained for 
virus, email worm, Trojans and backdoors 
respectively. Detection rates of viruses and email 
worms were high compared to the detection rates of 
Trojans and backdoors. 

In (Kolter and Maloof, 2004), multiple byte 
sequences from the executables were extracted from 
PE files and combined to produce n-grams. Five 
hundred relevant features were selected by 
calculating the information gain for each feature. 
Several data mining techniques like IBk, TFIDF, 
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naive Bayes, Support Vector Machine (SVM) and 
decision trees applied to generate rules for 
classifying malware.  The authors also used 
“boosted” Naïve Bayes, SVM and decision tree 
learners. The boosted classifiers, SVM and IBk 
produced good results compared to the other 
methods. The performance of classifiers was 
improved by boosting and the overall performance 
of all the classifiers was better with the large dataset 
compared with the small dataset. 

(Komashinskiy and Kotenko, 2010) used 
position dependent features in the Original Entry 
Point (OEP) of a file for detecting unknown 
malware. Decision Table, C4.5, Random Forest, and 
Naive Bayes were applied on the prepared dataset. 
Three assumptions were made for this work. 1) 
Studying the entry point of the program known as 
Original Entry Point (OEP) reveals more accurate 
information. 2) The location of the byte value of 
OEP address was set to zero. The offsets for all 
bytes in OEP were considered to be in the range [-
127,127]. 3) Only a single byte can be read for each 
position value. The dataset contained three features; 
Feature ID, position and byte in position. 

Feature selection was performed to extract more 
significant features. The resulting data was tested 
against all classifiers and the results were compared 
based on ROC-area. Random Forest outperformed 
all the other classifiers. 

A specification language was derived in 
(Christodorescu et al., 2007) based on the system 
calls made by the malware. These specifications are 
intended to describe the behaviour of malware. The 
authors also developed an algorithm called 
MINIMAL that mines the specifications of 
malicious behaviour from the dependency graphs. 
They applied this algorithm to the email worm 
Bagle.J, a variant of Bagle malware. 

Clean and malicious files were executed in a 
controlled environment. Traces of system calls were 
extracted for each sample during execution. The 
dependencies between the system call arguments 
were obtained by observing the arguments and their 
type in sequence of calls. A dependency graph was 
constructed using system calls and their argument 
dependencies. A sub graph was then extracted by 
contrasting it with the benign software dependence 
graph such that it uniquely specifies the malware 
behaviour.  A new file with these specifications 
would be classified as malware. 

The Virus Prevention Model (VPM) to detect 
unknown malware using DLLs was implemented by 
(Wang et al. 2008). Malicious and benign files were 
parsed by a program “dependency walker” which 

shows all the DLLs used in a tree structure. The list 
of APIs used by main program directly, the DLLs 
invoked by other DLLs other than main program and 
the relationships among DLLs which consists of 
dependency paths down the tree were collected. In 
total, 93,116 total attributes were obtained. After 
pre-processing there were 1,398 attributes. Of these, 
429 important attributes were selected and tested. 
The detection rate with RBF-SVM classifier was 
99.00% with True Positive rate of 98.35% and False 
Positive rate of 0.68%. 

A similarity measure approach for the detection 
of malware was proposed by (Sung et al., 2004), 
based on the hypothesis that variants of a malware 
have the same core signature, which is a 
combination of features of the variants of malware. 
To generate variants for different strains of malware, 
traditional obfuscation techniques were used. The 
source code of each PE was parsed to produce an 
API calling sequence which was considered to be a 
signature for that file. The resulting sequence was 
compared with the original malware sequence to 
generate a similarity measure. Generated variants 
were tested against eight different antivirus products. 
The detection rate of SAVE was far better than 
antivirus scanners. 

In (Burji et al., 2010), a strain of the Nugache 
worm was reverse engineered in order to study its 
underlying design, behaviour and to understand 
attacker’s approach for finding vulnerabilities in a 
system. The authors also reverse engineered 49 other 
malware executables in an isolated environment. 
They created a dataset using features such as the 
MD5 hash, printable strings, number of API calls 
made, DLLs accessed and URL referenced. Due to 
the multi dimensional nature of the dataset, a 
machine learning tool, BLEM2 (Chan and Santhosh, 
2003), based on rough set theory was used to 
generate dynamic patterns which would help in 
classifying an unknown malware. As the size of the 
dataset was small, a very few number of decision 
rules were generated and the results were generally 
not satisfactory. 

In another work (Ahmed et al., 2009) based on 
dynamic analysis, spatio-temporal information in 
API calls was used to detect unknown malware. The 
proposed technique consists of two modules; an 
offline module that develops a training model using 
available data and an online module that generates a 
testing set by extracting spatio-temporal information 
during run time and compares them with the training 
model to classify run time process as either benign 
or malicious. In the dynamic analysis, spatial 
information was obtained from function call 

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

76



 

arguments, return values and were divided into 
seven subsets socket, memory management, 
processes and threads, file, DLLs, registry and 
network management based on their functionality. 
Temporal information was obtained from the 
sequence of calls. The authors observed that some 
sequences were present only in malware and were 
missing in benign programs. 

Three datasets were created by combining benign 
program API traces with each malware type. The 
three datasets were combinations of benign-Trojan, 
benign-virus and benign-worm. They conducted two 
experiments. The first one studied the combined 
performance of spatio-temporal features compared 
to standalone spatial or temporal features. The 
second experiment was conducted to extract a 
minimal subset of API categories that gives same 
accuracy as from the first experiment. For this, the 
authors combined API call categories in all possible 
ways to find the minimal subset of categories that 
would give same classification rate as obtained in 
first experiment. For the first experiment, the authors 
obtained 98% accuracy with naive Bayes and 94.7% 
accuracy with J48 decision tree. They obtained 
better results with combined features as compared 
standalone features. The detection rate of Trojans 
was less compared to viruses and worms. 

In the second experiment, combination of API 
calls related to memory management and file I/O 
produced best results with an accuracy of 96.6%. 

In some of the above mentioned works, only 
static features such as byte sequences, printable 
strings and API call sequences were used. Though 
effective in detecting known malware, they would 
be ineffective if the attackers use obfuscation 
techniques to write malware. To solve this problem, 
some other works (Burji et al., 2010 and Ahmed et 
al., 2009) used dynamic detection methods. The 
work done in (Ahmed et al., 2009) used only 
dynamic API call sequences. Using only API calls 
may not be effective in detecting malware. In 
(Ahmed et al., 2009), malwares were reversed to 
find their behaviour and applied data mining 
techniques to the data obtained from reversing 
process. A very small number of rules were 
generated and the results were not effective as the 
experiments were conducted on very few numbers of 
samples.  

Our work is different from all the above works as 
we combined static and behavioural features of all 
malware and benign software. It is an extension of 
the work done in  (Ahmed et al., 2009) but it differs 
significantly, as we performed rigorous reverse 
engineering of each executable to find their inner 

workings in detail. We also used a large number 
(582 malicious and 521 benign) of samples which 
would facilitate determining more accurate 
behaviour of malicious executables. 

3 REVERSE ENGINEERING 

Reverse engineering malware can be defined as an 
analysis of a program in order to understand its 
design, components and its behavior to inflict 
damage on a computer system. The benefit of 
reverse engineering is that it allows us to see the 
hidden behavior of the file under consideration, 
which we can’t see by merely executing it (Rozinov, 
2005). 

In the reverse engineering process we used both 
static and dynamic analysis techniques. There are 
many different tools available for each technique. 
All the tools used for our work are open source. In 
total, we reverse engineered 1103 PE (Portable 
Executable) files of which 582 were malicious 
executables and 521 were benign executables. All 
malicious executables were downloaded from 
Offensivecomputing.net and all benign executables 
were downloaded from Sourceforge.net and 
Brothersoft.com. 

3.1 Controlled Environment 

For static analysis of executables, we do not require 
a controlled environment. In this case, we do not run 
the executable to collect features. In the case of 
dynamic analysis, the code to run is malicious and 
dangerous. The environment for the reversing 
process must be isolated from the other hosts on the 
network. We apply the industry common standard, a 
virtual machine. Due to a strong isolation between 
the guest operating system in VM and host operating 
systems, even if the virtual machine is infected with 
a malware, there will be no effect of it on the host 
operating system. 

For the analysis of malware we needed 
virtualization software that would allow quick 
backtrack to the previous system state after it has 
been infected by the malware. Each time a malware 
is executed in dynamic analysis process, it would 
infect the system. Analysis of subsequent malware 
had to be performed in a clean system. We chose 
VMware Workstation as virtualization software for 
our work.  
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3.2 Static Analysis 

In general, it is a good idea to start analysis of any 
given program by observing the properties 
associated with it and predicting the behavior from 
visible features without actually executing it. This 
kind is known as static analysis. The advantage with 
static analysis is that it gives us an approximate idea 
of how it will affect the environment upon execution 
without actually being executed. However, most of 
the time, it is not possible to predict the absolute 
behavior of a program with just static analysis. 

There are many different tools available that aid 
in static analysis of executables for example, 
decompilers, disassemblers, Source code analyzers 
and some other tools that help in extracting useful 
features from executables. The tools we used were 
Malcode Analyst Pack from idefense.com, PEiD 
from peid.has.it and IDA Pro Disassembler hex-
rays.com.  

3.2.1 Cryptographic Hash Function 

A unique cryptographic hash value is associated 
with each executable file. This value differentiates 
each file from others. We started our reverse 
engineering process of each executable by 
calculating its hash value. 

The reason for calculating the hash value is 
twofold. First, there is no unique standard for 
naming malware. There may be multiple names for a 
single piece of malware so by calculating hash value 
of each sample we know that all of them are indeed 
the same. This results in eliminating ambiguity in 
the reverse engineering process. The second reason 
is that if an executable is modified, its hash value 
will also be changed. That way we can identify that 
changes were made to the executable and thereby 
analyzing it to detect the changes made. 

MD5, SHA1 and SHA256 are the widely used 
hash functions. We used Malcode Analyst Pack 
(MAP) tool to compute the MD5 (Message Digest 5) 
hash value of each PE file that we analysed. 

3.2.2 Packer Detection 

Malware authors employ various techniques to 
obfuscate the content of the malware they have 
written and making it unable to be reversed. Using 
packers is one of them. A packer is a program that 
helps in compressing another executable program, 
thereby hiding the content. Packers help malware 
authors hide actual program logic of the malware so 
that a reverse engineer cannot analyze it using static 
analysis techniques alone.  Packers also  help  evade  

detection of the malware from antivirus programs. 
In order to execute, a packed malware must 

unpack its code into memory. For this reason, the 
authors of the malware include an unpacker routine 
in the program itself. The unpacker routine is 
invoked at the time of execution of the malware and 
converts the packed code into original executable 
form. Sometimes they use multiple levels of packing 
to make the malware more sophisticated (Kang et 
al., 2007).  

Detection of a packer with which a malware is 
packed is very important for the analysis of the 
malware. If we know the packer, we can unpack the 
code and then analyze the malware. We used the 
PEiD tool which is a free tool for the detection of 
packers. It has over 600 different signatures for the 
detection of different packers, cryptors and 
compilers. It displays the packer with which the 
malware is packed by simply opening the malware 
using PEiD. If the signature of the packer or 
compiler with which the malware is packed is not 
present in the PEiD database it will report that it 
didn’t find any packers.  

3.2.3 Code Analysis  

The next step for better understanding the nature of 
malware is to analyze its source code. Although 
there are many decompilers that help in decompiling 
executables into high level languages, analyzing the 
malware by keeping the source code in low level 
language reveals more information. IDA Pro 
disassembler from DataRescue is a popular choice 
for the disassembly of executable program into 
Assembly Language. 

We used the IDA Pro Disassembler for the code 
analysis of malware. In this step, we have gone 
through the assembly code of each PE file to find 
useful information and to understand the behavior of 
it. Following is the list of features that we were able 
to extract from the assembly code of PE files. 

• Type of file from the PE header. If it was not 
a PE file, we discarded it. 

• List of strings embedded in the code that 
would be useful for predicting the behavior of 
the PE. 

• The programming language with which the 
PE was written. 

• Compile date and time. 

3.3 Dynamic Analysis 

In static analysis of executables, we only analyze the 
static code of the executable and approximately 
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predict its properties and behavior. We know that the 
authors of malware use techniques such as binary 
obfuscation and packing to evade static analysis 
techniques. To thoroughly understand the nature of 
the malware we cannot rely on static analysis 
techniques alone. If a program has to be run, the 
whole code must be unpacked and loaded into 
primary memory. Every detail of the executable 
program is revealed at run time regardless of how 
obfuscated the code is and what packer the 
executable is packed with (Skoudis, 2004). In 
dynamic analysis, we observe the full functionality 
of the malware and its effect on the environment as 
it executes.  

Tools that help in dynamic analysis of 
executables include debuggers, registry monitors, 
file system monitors, network sniffers and API call 
tracers. The tools we used in this step were Filemon, 
Regshot and Maltrap. 

3.3.1 File System Monitor  

When a program is executed it makes changes to the 
file system. The file system activity made by the 
program helps partly in determining its behavior. 
We used File Monitor (Filemon) from Microsoft 
Sysinternals to monitor file system activity of all the 
processes running on a windows system. It installs a 
device driver which keeps track of all the file system 
activity in the system. However, we only need the 
information related to a particular process under 
consideration, therefore, we can use a filter which 
lets us select a particular process for which we want 
to monitor file system activity by removing all the 
other processes from the list. Each file system 
activity made by the PE on the file system produces 
one line of output in the Filemon GUI window.  

3.3.2 Registry Monitor  

Windows Registry is a huge database hosting 
configuration details of the operating system and the 
programs installed on it. Registry entries are divided 
into hives and represented in a tree structure on 
Windows systems. Most applications use two hives 
frequently; HKLM and HKCU. HKLM stands for 
Hive Key Local Machine and contains settings of 
the operating system. HKCU stands for Hive Key 
Current User and contains configuration details for 
the user currently logged into the system. 

Malware authors frequently use registries to 
infect systems. One usual technique employed is to 
insert an entry at the location HKEY_LOCAL_ 
MACHINE\SOFTWARE\Microsoft\Windows\Curre
ntVersion\RUN so that each time system boots up 

the malware is executed. There is an extensive list of 
such keys in the Windows registry and they are used 
by attackers for their malicious purposes. 

Regshot is a product of Microsoft Sysinternals 
that helps in the reverse engineering process by 
monitoring the Windows Registry. It lists the 
changes made in the windows registry upon 
installation of software. We used this tool to record 
the changes in the windows registry made by 
malware and benign software in the Windows 
Registry.  

3.3.3 API Call Tracer  

Windows API (Application Program Interface) also 
known as Win API, is a long list of functions that 
provide system level services to the user programs. 
Every Windows application is implemented using 
the Win API functions. 

Keeping track of the sequence of API Calls made 
by an application helps in the reverse engineering 
process. It allows us to go through each call and 
thereby predicting the behavior of that software. 
Maltrap is a software that lists the sequence of calls 
made by the software while execution.  

4 DECISION TREE MINING 

In this section, we explain our implementation of the 
KDD process to find patterns that would help in 
classifying malware from benign software.  

4.1 Feature Extraction  

From static analysis of each sample in the reverse 
engineering process we have the MD5 hash of the 
file, file size in bytes, the packer used (if any, a 
determination of whether it contains unique strings, 
a time stamp and the programming language used to 
write the file. 

From the dynamic analysis, for each file, we 
stored a log of file system activity, registry activity 
and the sequence of API calls made by the sample 
while running.  

From the file system activity log we were able to 
extract three important features; the decisions of 
whether the sample under consideration attempted to 
write to another file, if the sample accessed another 
directory and all unique DLLs accessed during 
execution.  

From the registry activity we extracted three 
features; registry keys added, registry keys deleted 
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and registry values modified. The log contains all 
the registry keys modified by executables with their 
modified values. We removed the key values and 
recorded only the keys.  

From the API call log we extracted the unique 
API calls made by each sample. We combined all 
the unique API calls made by each file and removed 
duplicates. Over the entire sample space, we 
identified 141 unique API calls. We also noted if a 
sample contained any URL references or attempted 
to access the Internet, making. With this step we 
completed processing of raw data for feature 
selection. 

4.2 Data Sets  

We prepared two datasets: the first dataset with 15 
features, 1103 instances and the second dataset with 
141 features, 1103 instances. We named the first 
dataset DRF (Dataset with Reversed Features) and 
the second dataset DAF (Dataset with API Call 
Features). Table 1 shows the list of 15 attributes and 
decision label in DRF. All the 141 attributes in DAF 
are of type binary except the decision label which is 
Boolean. The first three attributes File Name, File 
Size, and MD5 Hash do not provide useful 
information for classification purpose. We collected 
this information and retain it for tracking and other 
research purposes, however, they are removed from 
data sets used in the following experiments.  

Table 1: Attributes in DRF. 

S.NO Attribute Name Type 
1 FILE NAME NOMINAL 

2 FILE SIZE NOMINAL 

3 MD5 HASH NOMINAL 

4 PACKER NOMINAL 

5 FILE ACCESS BINARY 

6 DIRECTORY ACCESS BINARY 

7 DLLs NOMINAL 

8 API CALLS NOMINAL 

9 INTERNET ACCESS BINARY 

10 URL REFERENCES BINARY 

11 REGISTRY KEYS ADDED NOMINAL 

12 REGSITRY KEYS DELETED NOMINAL 

13 
REGISTRY VALUES 

MODIFIED 
NOMINAL 

14 UNIQUE STRINGS BINARY 

15 
PROGRAMMING 

LANGUAGE 
NOMINAL 

16 DECISION LABEL BOOLEAN 

In addition, values of attributes Registry Keys 
Added, Registry Keys Deleted, Registry Keys 
Modified, API CALLs and DLLs varies widely from 
very small to very large. They were discretized by 
using tools available in Weka. The ranges we 
obtained for each attribute after transforming the 
dataset are shown in Table 2.  

We prepared second dataset from DRF by 
replacing the discrete values with the discretized 
values shown in Table 2. We call it DDF (Dataset 
with Discretized Features). 

Table 2:  Discretized Values. 

 ATTRIBUTE 
NAME 

DISCRETIZED 
VALUES 

1 KEYS ADDED (-INF-1] (1-INF) 

2 REGISTRY VALUES 
MODIFIED (-INF-12.5] (12.5-INF) 

3 API CALLS (-INF -5.5] (5.5-22.5] 
(22.5-41.5] (41.5- INF) 

4 DLLs (-INF -16.5] (16.5- INF) 

4.3 Experimental Results  

We conducted experiments on the datasets derived 
from reversed features: DRF and DDF, and data set 
derived from API call features: DAF. The J48 
decision tree and Naïve Bayes algorithms in WEKA 
(Witten and Frank, 2005) were used to generate 
classifiers. We applied 5-fold cross validation with 
80-20 splits for training and testing.  

Figure 1 shows that the number of API Calls 
made by a PE was selected as the root node of the 
decision tree.  API Calls, Unique Strings, URL 
References, Internet Access, Packer, Registry Keys 
Deleted, Directory Access and Registry Keys 
Modified were the most used attributes in the 
classification model although we note that it used all 
the other attributes in the dataset. 

The decision tree in Figure 2 shows that 9 
attributes, API Calls, Unique Strings, URL 
References, Packer, Registry Keys Deleted, Registry 
Keys Modified, Directory Access, Registry Keys 
added and Internet Access were used in the 
classification model. In this case, the attributes 
DLLs and File Access were not used in the decision 
rules for classification. 

In the experiment with the DAF data set, out of 
141 attributes, 31 attributes were selected by J48 in 
the decision tree. The API Call “IsDebuggerPresent” 
is used as the root node in the tree. The most used 
attributes in the classification model are 
IsDebuggerPresent, WriteProcessMemory, RegSet 
ValuesExW, GetVolumeInformationW, bind, 
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CreateProcessW and Connect. However, the 
attributes that contributed to distinguish malware 
from the benign software were Connect, ReadFile, 
CreateRemoteThread, InternetOpenA and 
RegDeleteValueW. 

 
Figure 1:  J48 Decision Tree for DRF. 

The performance of the decision tree classifiers 
is shown in Table 3 where TP, TN, FP, FN denote 
True Positive, True Negative, False Positive, and 
False Negative rates respectively. 

 
Figure 2:  J48 Decision Tree for DDF. 

Table 3: Performance of J48 decision trees. 

Data TP TN FP FN ROC 
Area 

Overall 
Accuracy 

DRF 0.793 0.809 0.191 0.207 0.843 80.09% 

DDF 0.847 0.782 0.218 0.153 0.815 81.45% 

DAF 0.832 0.947 0.053 0.168 0.917 89.14% 

 
The Naïve Bayes algorithm of WEKA was 

applied to the same data, and the performance is 
shown in Table 4. 

Table 4: Performance of Naïve Bayes. 

Data TP TN FP FN ROC 
Area 

Overall 
Accuracy 

DRF 0.856 0.773 0.227 0.144 0.889 81.45% 

DDF 0.865 0.836 0.164 0.135 0.912 85.07% 

DAF 0.701 0.947 0.053 0.299 0.921 82.81% 

 
From Table 3 and 4, it shows that Naïve Bayes 

performs slightly better than J48 tree classifier in 
experiments with DRF and DDF data sets, which has 
12 attributes. In experiments with the DAF data, 
which has 141 attributes, the feature selection 
algorithm used in J48 provides an advantage.  
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5 CONCLUSIONS 

In this work, the problem of detecting new and 
unknown malware is addressed. Present day 
technologies and our approach for the detection of 
malware are discussed. An isolated environment was 
set up for the process of reverse engineering and 
each executable was reversed rigorously to find its 
properties and behavior. On the data extracted from 
the reversing process, different data mining 
techniques were used to procure patterns of 
malicious executables and thereby classification 
models were generated. To test the models, new 
executables were supplied from the wild with the 
same set of features. The results thus obtained 
proved to be satisfactory.  

From analyzing the experimental results, we can 
conclude that finding static and behavioral features 
of each malware through reverse engineering and 
applying data mining techniques to the data helps in 
detecting new generation malware. Considering the 
rapidly increasing amount of malware appearing 
each day, this method of detection can be used along 
with current practice detection techniques. 

We have reversed each strain of malware and 
benign executables to extract all the features we 
could with the help of the tools used by the 
computer security profession. However, we were not 
able to analyze the process address space of the 
executables in the physical memory as the memory 
analysis tools were released after we completed the 
reversing step. Analyzing the address space would 
reveal more interesting information about the 
processes and thereby analyzing their behavior more 
accurately.  

Reversing each malware manually is a time 
consuming process and requires much effort with the 
thousands of new malware being generated. One 
way to cope up with this problem is to automate the 
whole reverse engineering process. Although there 
are some tools for automated reverse engineering, 
they do not record the full details of malware. A 
more specific tool that does rigorous reversing 
would help in combating large amounts of malware. 
We consider these two tasks as the future work that 
aid in detecting new malware more efficiently. 
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