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Abstract: The paper compares different heuristics that are used by greedy algorithms for constructing of decision trees.
Exact learning problem with all discrete attributes is considered that assumes absence of contradictions in the
decision table. Reference decision tables are based on 24 data sets from UCI Machine Learning Repository
(Frank and Asuncion, 2010). Complexity of decision trees is estimated relative to several cost functions:
depth, average depth, and number of nodes. Costs of trees built by greedy algorithms are compared with exact
minimums calculated by an algorithm based on dynamic programming. The results associate to each cost
function a set of potentially good heuristics that minimize it.

1 INTRODUCTION sistency. Several cost functions are considered that
characterize space and time complexity of decision
Decision trees are widely used for representing of trees: depth, average depth, and number of nodes.
knowledge, for prediction and as algorithms in search Since algorithm behavior depends heavily on the in-
theory (Ahlswede and Wegener, 1979), machine put data, we choose reference decision tables close to
learning (Breiman et al., 1984; Quinlan, 1993), fault real-life problems, taking data sets mainly from UCI
diagnosis (Pattipati and Dontamsetty, 1992), etc. Machine Learning Repository (Frank and Asuncion,
Many problems of constructing optimal decision trees 2010) as a base.
are NP-hard (Hyafil and Rivest, 1976). Moreover, Costs of trees constructed by greedy algorithms
for several problem statements an approximation pre-are compared with exact minimum, calculated by
serving reduction is done that guarantees absencean algorithm based on dynamic programming. The
of polynomial complexity algorithms under reason- idea is close to algorithms described in (Garey, 1972;
able assumptions about complexity clasBes)dNP Martelli and Montanari, 1978), but authors devised it
(Alekhnovich et al., 2004; Heeringa and Adler, 2005). independently and made several improvements. For
The majority of approximate algorithms for de- example, the algorithm is capable of founding a set of
cision tree construction are based on greedy ap-optimal trees and perform sequential optimization by
proach. Such algorithms build tree in a top-down different criteria (Moshkov and Chikalov, 2003) (we
fashion, minimizing some impurity criteria at each do not consider these extensions in the paper). An ef-
step. There are several impurity criteria designed us- fective implementation allows for applying the algo-
ing theoretical-information (Quinlan, 1986), statisti- rithm to decision tables containing dozens of columns
cal (Breiman et al., 1984) and combinatorial (Moret (attributes) and hundreds to thousands rows (objects).
et al., 1980) reasoning. For some criteria, bounds on  The paper is organized as follows. Section 2 in-
approximation ratio is obtained that limit deviation troduces basic notions. Section 3 contains general
of tree characteristics from the minimum (Chakar- schema of greedy algorithm. Section 4 describes
avarthy et al., 2007; Heeringa and Adler, 2005; an exact algorithm based on dynamic programming.
Moshkov, 2010). Section 5 presents experimental setup and results of
The aim of our work is comparative analysis experiments. Section 6 contains conclusions.
of several greedy algorithms in application to exact
learning problems. We assume that the decision tables
contain only categorical attributes and free of incon-
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2 BASIC NOTIONS

In this paper, we consider only decision tables with
categorical attributes. These tables do not contain
missing values and equal rows. decision tables

a rectangular tabl@ with m columns andN rows.
Columns ofT are labeled withattributes f{,..., fy.
Rows of T are filled by nonnegative integers which

fine a subtabld (v) of the tableT. If vis the root
thenT(v) = T. Letv be a node ofl that is not
the root, nodes in the path from the rootude la-
beled with attributes;, , . . ., fi;, and edges in this path
be labeled with valuesy,...,a respectively. Then
T(v)=T(fi,,a),...,(fi,a).

Let be a decision tree ovér. We will say that
I" is adecision tree for Tif any nodev of I satisfies

are interpreted as values of these attributes. Rows arehe following conditions:

pairwise different, and each row is labeled with a non-
negative integer which is interpreted as texision
We denote byE(T) the set of attributes (columns of
the tableT), each of which contains different values.
For fi € E(T), let E(T, f;) be the set of values from
the columnf;. We denote byN(T) the number of
rows in the tabler.

Let fi,,....fiy € {f1, ....,fm} and by,....by
be nonnegative integers. We denote by
T(fi;,b1)...(fi,,br) the subtable of the tabld,
which consists of such and only such rows Df
that at the intersection with columrdsg, ..., fi, have
numbersby, ..., b, respectively.  Such nonempty
tables (including the tabl€) will be calledseparable
subtablef the tableT .

Let rows ofT be labeled wittk different decisions
di,...,dk. Fori=1,...k letN; be the number of
rows inT labeled with the decisiod, andp; = N, /N.

We consider four uncertainty measures for deci-
sion tables: entropent(T) = — YK | pilog, pi (we
assume Olog0 = 0), Gini index gini(T) = 1 —
sk, p?, minimum misclassification erromg(T) =
N —max<j<kNj, and the numbet (T) of unordered
pairs of rows inT with different decisions (note that
rt(T) = N2gini(T)/2).

Let fi € E(T) andE(T, fi) = {a1,...,a&}. The
attribute f; divides the tablel into subtablesl; =
T(fi,a1),...,Tt = T(fi,a). We now define an
impurity function | which gives us theimpurity
I(T,fi) of this partition. Let us fix an uncer-
tainty measuré) from the set{ent gini,mert} and
type of impurity function: sum max weighted-
sum or weighted-max Then for the typesum
I(T, fi) = 35_,U(Tj), for the typemax I(T,f;) =
maxi<j<t U (Tj), for the typeweighted-sum (T, fi) =
i-1U(T)N(Tj)/N(T), and for the typeweighted-
max | (T, fi) = maxi<j<tU (Tj)N(T;)/N(T). As are-
sult, we have 16 different impurity functions.

A decision treel” over the tableT is a finite di-
rected tree with the root in which each terminal node
is labeled with a decision. Each nonterminal node
is labeled with an attribute from the sgty, ..., fm},
and for each nonterminal node the outgoing edges
are labeled with pairwise different nonnegative inte-
gers. Letv be an arbitrary node df. We now de-

o If rt(T(v)) =0 thenv is a terminal node labeled
with the common decision foF (v).

e Otherwise, v is labeled with an attributef; €
E(T(v)) and, if E(T(v), fi) = {a1,...,&}, thent
edges leave node and these edges are labeled
with ag, ..., & respectively.

We will consider cost functions which are given in
the following way: values of the considered cost func-
tion Y, which are nonnegative numbers, are defined
by induction on pairgT,I"), whereT is a decision ta-
ble andr is a decision tree fof. Letl" be a decision
tree that contains only one node labeled with a deci-
sion. Theny(T,I) = ¢° wherey? is a nonnegative
number. Letl be a decision tree in which the root
is labeled with an attributé, andt edges start in the
root. These edges are labeled with numlagrs. ., a
and enter roots of decision treEs, ... ,[;. Then

LIJ(Tvr) = F(N(T>ﬂm(T(fival>arl)v'"a
W(T (fi,a),Mt)). HereF(n, W1, Yy, ...) is an operator
which transforms the considered tuple of nonnegative
numbers into a nonnegative number. Note that the
number of variableg1, Y, ... is not bounded from
above.

The considered cost function will be called
monotoneif for any naturalt, from inequalities
€1 < di,...,c < d the inequalityF(a,cy,...,c) <
F(a,d,...,di) follows. Now we take a closer view
of some monotone cost functions.

Number of nodesy(T,I") is the number of nodes
in decision tred . For this cost functiony® = 1 and
F(n W, Wa,....0) =1+ 31 4.

Depth: Y(T,I) is the maximum length of a path
from the root to a terminal node df. For this
cost functiony® = 0 andF (n, Yy, Yz,...,Y) = 1+
maX{LIJ17'-'aLIJt}' —

Total path lengthfor an arbitrary rowd of the ta-
ble T, we denote by(d) the length of the path from
the root to a terminal nodeof I' such thad belongs
to T(v). Theny(T,IN) = 351(8), where we take the
sum on all rows of the tableT. For this cost func-
tion, Y° = 0 andrF (n, Yz, Yz, ..., Pt) = N+ 35 Wi.

Note that theaverage deptiof I is equal to the
total path length divided by (T).
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3 GREEDY APPROACH

Let | be an impurity function. We now describe a
greedy algorithnV, which for a given decision table
T constructs a decision tr&g(T) for the tableT.

Stepl. Construct a tree consisting of a single node
labeled with the tabld and proceed to the second
step.

Supposé > 1 steps have been made already. The
tree obtained at the stevill be denoted byG.

Step(t+1). If no node of the treds is labeled
with a table then we denote by(T) the treeG. The
work of the algorithmV, is completed.

Otherwise, we choose a nodein the treeG
which is labeled with a subtabf®@ of the tableT. If
rt(®) = 0 then instead 0® we mark the node by
the common decision fo® and proceed to the step
(t+2). Letrt(®) > 0. Then for eacH; € E(©) we
compute the valuE(T, f;). We mark the nodeby the
attribute fi, whereip is the minimumi € {1,...,m}
for which I (T, f;) has the minimum value. For each
o € E(O, fjy), we add to the tre& the nodev(d),
mark this node by the subtab@(f;,,5), draw the
edge fromv to v(d), and mark this edge by. Pro-
ceed to the steft + 2).

4 DYNAMIC PROGRAMMING
APPROACH

In this section, we describe a dynamic programming
algorithm which for a monotone cost functignand
decision tableT finds the minimum cost (relative to
the cost functionp) of decision tree fofl .

Consider an algorithm for construction of a graph
A(T). Nodes ofA(T) are some separable subtables
of the tableT . During each step we process one hode
and mark it with symbol *. We start with the graph
that consists of one nodeand finish when all nodes
of the graph are processed.

Let the algorithm have already performpdteps.
We now describe the step numbgr+ 1). If all

O(fi,a1),...,0(fi,a) do not present in the graph
then add these nodes to the graph. Mark the r@de
with symbol * and proceed to the step numbe#- 2).

Let Y be a monotone cost function given by the
pair §°, F. We now describe a procedure, which at-
taches a number to each nodedT ). We attach the
numbeny® to each terminal node @f(T).

Consider a nod®, which is not terminal, and a
bundle of edges, which starts in this node. Let edges
be labeled with pairgfi,ai1),...,(fi,a), and edges
enter to nodes
O(fi,a1),...,0(fi,a), to which numberaps,... U
are attached already. Then we attach to the consid-
ered bundle the numb&(N(©),y1,...,Y). Among
numbers attached to bundles startinginve choose
the minimum number and attach it to the nddle

We stop when a number will be attached to the
nodeT in the graphA(T). One can show that this
number is the minimum cost (relative to the cost func-
tion ) of decision tree foil .

5 EXPERIMENTAL RESULTS

Different impurity functions give us different greedy
algorithms. The following experiments compare av-
erage depth, number of nodes and depth of decision
trees built by these algorithms with the minimum av-
erage depth, minimum number of nodes and mini-
mum depth calculated by the dynamic programming
algorithm.

The data sets were taken from UCI Machine
Learning Repository (Frank and Asuncion, 2010).
Experiments using data sets which are not from UCI
Machine Learning Repository give us similar results.
Each data set is represented as a table containing
several input columns and an output (decision) col-
umn. Some data sets contain index columns that take
unique value for each row. Such columns were re-
moved. In some tables there were rows that contain
identical values in all columns, possibly, except the
decision column. In this case each group of identical

nodes are processed then the work of the algorithmrows was replaced with a single row with common

is finished, and the resulted graphA¢T). Other-
wise, choose a node (tabl®)that has not been pro-
cessed yet. Ift(®©) = 0, label the considered node
with the common decision fo®, mark it with sym-
bol * and proceed to the step numhgr+ 2). Let
rt(®) > 0. For eachfi € E(©), draw a bundle of
edges from the nod® (this bundle of edges will be
called fi-bundlg. LetE(®, f;) = {ay,...,a}. Then
drawt edges fron® and label these edges with pairs
(fi,a),...,(fi,a&) respectively. These edges enter
into nodesO(fi,a1),...,0(fi,&). If some of nodes
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values in all input columns and the most common

value in the decision column. In some tables there

were missed values. Each such value was replaced
with the most common value in the corresponding

column.

Tables 1-3 show results of experiments with 24
data sets and three cost functions: average depth,
number of nodes and depth respectively. Each row
contains data set hame, minimum cost of decision
tree (mincost), calculated with the dynamic pro-
gramming algorithm (see column Opt), and infor-
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Table 1: Results of Experiments with Average Depth.

sum weighted-sum

Name Opt ent gini me rt ent gini me rt
adult-stretch 150 0.00 [ 0.00 | 133 [0.00 |[0.00 |[O0.00 |133 | 000
agaricus-lepiota 152|054 [ 054 | 001 {000 [000 |0.00 [000 |O0.30
balance-scale 355|000 | 000 |002 |[0.00 |0.00 | 000 | 0.02 | 0.00
breast-cancer 32409 |09 | 025 |0.02 |0.08 | 014 | 0.02 | 0.03
cars 295|004 | 004 | 026 | 028 |0.00 | 000 | 036 | 0.49
flags 272] 243 | 258 [ 018 [ 0.04 [ 016 | 016 | 0.04 | 0.03
hayes-roth-data 262001 [ 001 [001 [0.00 [0.01 |0.01 |0.00 |O0.00
house-votes-84 354|066 | 097 | 049 | 0.06 | 004 | 0.07 | 0.06 | 0.02
lenses 1.80 | 0.00 | 0.00 | 0.67 | 0.67 | 0.67 | 0.00 | 0.67 | 0.67
lymphography 267 | 166 | 166 | 026 | 0.06 | 0.17 | 0.17 | 0.05 | 0.04
monks-1-test 250|080 | 080 | 000 | 000 | 000 |000 |0.00 | 000
monks-1-train 253071 [ 071 [ 000 [0.09 |[026 | 027 | 0.00 | 0.00
monks-2-test 530 001 [ 001 [001 [0.05 [0.02 |0.02 |0.05 | O0.05
monks-2-train 411|014 | 014 | 010 | 002 | 006 | 0.06 | 0.04 | 0.04
monks-3-test 183|124 | 052 | 052 |000 |000 |014 | 0.00 | 0.00
monks-3-train 251 | 050 | 021 | 008 |0.01 |001 | 001 | 001 |O0.01
nursery 3451 017 | 022 | 009 | 009 | 001 [O0.00 |O012 | 021
poker-hand-training-tru¢ 4.09 | 0.60 | 0.60 | 0.14 | 001 | 0.01 | 0.01 | 0.01 | 0.01
shuttle-landing-control | 233 | 0.69 | 0.69 | 026 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00
soybean-small 134 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 041
spect-test 295[ 101 | 088 | 067 | 018 |0.03 | 013 | 0.17 | 0.16
teeth 278 | 058 | 062 | 000 | 0.02 |0.02 | 0.00 | 0.02 | 0.02
tic-tac-toe 435|012 | 007 | 011 | 013 | 006 | 005 | 0.16 | 0.17
zoo-data 229069 | 069 | 007 [ 0.04 |[0.04 | 0.04 | 0.04 | 0.05
Average 0.565 | 0.539 | 0.230 | 0.073 | 0.069 | 0.055| 0.131 | 0.113

Table 2: Results of Experiments with Number of Nodes.

sum weighted-sum

Name Opt ent gini me rt ent gini me rt
adult-stretch 5 0.00 | 0.00 | 360 | 000 | 0.00 | 0.00 | 3.60 | 0.00
agaricus-lepiota 21 057 | 057 | 062 | 038 |038 |038 | 038 | 300
balance-scale 501 0.00 | 0.00 [ 007 | 000 |000 |000 |007 |O0.00
breast-cancer 161 045 | 045 | 037 | 032 | 025 | 025 | 029 | 041
cars 396 0.10 | 010 | 038 | 021 | 003 | 003 | 070 | 135
flags 97 080 | 101 | 034 | 062 | 025 | 025 | 059 | 0.61
hayes-roth-data 52 0.06 | 0.06 | 0.06 | 002 | 006 | 006 | 0.02 | 0.02
house-votes-84 45 102 | 138 | 102 [ 036 | 018 | 027 | 031 |0.27
lenses 8 0.00 [ 000 |[088 | 088 |088 |000 |088 |0.88
lymphography 53 089 | 089 | 053 | 066 | 043 | 043 | 055 | 0.77
monks-1-test 37 351 | 351 |011 | 011 | 011 | 011 | 011 | 0.11
monks-1-train 36 186 | 186 | 011 | 067 | 128 | 139 | 011 | 011
monks-2-test 403 0.00 [ 000 [009 |[058 [019 |019 | 058 | 058
monks-2-train 129 016 [ 016 | 043 | 035 | 023 |023 |034 | 044
monks-3-test 17 365 | 171 |[271 | 000 |[000 |012 | 0.00 | 0.00
monks-3-train 38 082 | 037 |018 | 018 | 011 | 011 | 0.18 | 0.18
nursery 1066 | 058 | 1.11 | 096 | 095 | 0.09 | 002 | 1.35 | 137
poker-hand-training-true 18832 | 0.36 | 0.36 | 0.23 | 0.19 | 018 | 0.17 | 0.18 | 0.20
shuttle-landing-control | 15 013 | 013 | 000 | 0.00 | 000 | 000 | 000 | 0.00
soybean-small 6 017 | 017 | 017 | 017 | 017 | 017 | 017 | 2.83
spect-test 29 172 1.45 166 | 083 (014 | 034 | 069 | 0.76
teeth 35 009 | 009 | 000 | 003 | 003 |000 |003 |O0.03
tic-tac-toe 244 068 | 041 | 048 | 100 | 041 | 032 | 105 | 109
zoo-data 17 059 | 059 |035 |03 |03 |03 | 035 | 047
Average 0.758 | 0.682 | 0.639 | 0.368 | 0.239 | 0.216 | 0.522 | 0.645
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Table 3: Results of Experiments with Depth.

max weighted-max weighted-sum
rt ent gini me rt ent gini me rt
100 [ 100 | 1.00 | 100 | 100 [ 0.00 | 0.00 | 1.00 | 0.00
0.00 [ 000 [ 000 [000 [033 [033 [033 |033 | 033
0.00 | 000 [ 000 [ 000 [0.00 |[0.00 |[000 | 000 | 0.00
0.00 0.00 | 000 | 000 | 000 | 017 | 033 0.00 0.00
0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00

Name Opt

adult-stretch
agaricus-lepiota
balance-scale
breast-cancer
cars

flags 025 | 025 | 025 |025 | 025 | 075 | 075 | 025 | 025
hayes-roth-data 000 | 000 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
house-votes-84 033 | 033 | 033 | 033 | 033 | 033 | 033 | 033 | 033
lenses 033 | 033 | 033 | 033 | 033 | 033 | 000 | 033 | 033
lymphography 025 | 025 |025 | 025 | 025 | 050 | 050 | 0.25 | 0.25

000 | 000 | 0.00 | 0.00 | 000 | 000 | 000 | 0.00 |O0.00
000 | 000 | 000 | 0.00 |000 |100 | 100 | 0.00 | 0.00
000 | 000 | 000 | 0.00 | 000 | 000 | 000 | 000 |0.00
020 [ 020 | 020 | 020 | 020 | 020 | 020 | 020 | 0.20
033 | 033 | 033 | 033 |033 |000 |000 | 000 |0.00
0.00 | 0.00 | 0.00 | 0.00 | 000 | 025 | 025 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 000 | 0.00 | 0.00 | 0.00
0.00 | 000 | 0.00 | 0.00 | 000 | 000 | 020 | 0.00 | 0.00
000 [ 000 | 000 | 000 | 000 |000 |000 |0.00 |O0.00
000 | 000 | 000 | 000 | 000 |000 |000 | 000 |O0.00

monks-1-test
monks-1-train
monks-2-test
monks-2-train
monks-3-test
monks-3-train

nursery
poker-hand-training-true
shuttle-landing-control
soybean-small

IO K00 N A U1 0Of A W[ O O W| WKW O B KOO B WIN

spect-test 013 | 013 | 013 | 013 | 013 | 013 | 050 | 0.25 | 0.13
teeth 0.00 | 0.00 | 0.00 | 000 | 000 | 0.00 | 0.00 | 0.00 | 0.00
tic-tac-toe 017 | 017 | 017 | 017 | 017 | 017 | 017 | 0.17 | 0.17
zoo-data 000 | 0.00 | 0.00 | 0.00 | 000 | 000 | 000 | 0.00 |0.00
Average 0.125 | 0.125 | 0.125 | 0.125| 0.139 | 0.173 | 0.190 | 0.130 | 0.083

mation about cost of decision trees built by each maxandweighted-sundominatesveighted-maxTa-
of the considered greedy algorithms. Instead of the ble 2 presents results for two best typesimand
cost of decision tree, constructed by greedy algo- weighted-sum One can see that along with the av-
rithm (greedycost), we consider relative difference erage depth, the two best impurity functions are given
of greedycost and mincost: by combinations ofveighted-surwith Gini index and

greedycost— min_cost entropy. _ _ _
min.cost . Experiments with depth lead to different ranking

The last line shows average relative difference of of impurity functions. The typeveighted-sundomi-

reedycost and mincost. We will evaluate greed natessum and theweighted-maxominatesmax by
greedy s 9 Y each uncertainty measure with the exceptiorrtof
algorithms based on this parameter.

Let us remind that each imourity function is Table 3 shows results for the best functions: combi-
\ ; purity nations ofweighted-maxand weighted-sunwith all
defined by its type gum max weighted-sumor

weighted-mak and uncertainty measurert, gini, four uncertainty measures, and the combination of
me, orrt) maxandrt.

. . One can see that the best impurity function is
Considering average depth, we noticed that the _. S : :
type sumdomi%atesmgx i.e.p it has less value of 9Ven by the combination ofveighted-sunwith rt.

. ; The following combinations give us similar results:
average relative difference between greedgt and sumandrt, weighted-maandent, weighted-maand
min_cost for each uncertainty measure. Similarly, the gini weig’hted—maxand me andmaxandrt. The
typeweighted-sundominatesveighted-maxTable 1 greedy algorithm based on the last combination is
presents results for two best typesmandvv_mghted_— known to be close (from the point of view of accu-
Sler Snﬁ gan Sﬁ%fza:ithne woibﬁftémpl;;?t’hﬂgﬁ?ons racy) to the best approximate polynomial algorithms
%ge?( (?he )c/r?t%rion 3sgdsbyeC?A\ReT -(SBL:eiman ot al for minimization of decision tree depth under some
1984)) and entropy (the criterion used by ID3 (Quin- assumptions about the clau® (Moshkov, 2005).
lan, 1986)).

Analysis of experiments for the number of nodes
lead us to the same results. The tyguendominates
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6 CONCLUSIONS Moret, B. E., , and R. C. Gonzalez, M. T. (1980). The activ-

ity of a variable and its relation to decision tree&€M
The paper is devoted to the study of 16 greedy al- Trans. Program. Lang. Syse:580-595.
gorithms for decision tree construction. For 24 data Moshkov, M. J. (2005). Time complexity of decision trees.
sets from UCI ML Repository (Frank and Asuncion, T. Rough Se18400:244-459. _ _ _
2010) we compare average depth, number of nodesMoshkov, M. J. (2010). Greedy algorithm with weights
and depth of decision trees, constructed by these al- floor 4?33222223;9 construction. Fundam. Inform.
gorithms, with minimum average depth, minimum ) '

b f nod d mini depth f d b Moshkov, M. J. and Chikalov, I. V. (2003). Consecu-
number of nodes and minimum depth found by an tive optimization of decision trees concerning vari-

algorithm based on dynamic programming approach. ous complexity measure§undamenta Informaticae
The obtained results show that for the average depth 61(2):87-96.

and number of nodes the greedy algorithms used by pattipati, K. R. and Dontamsetty, M. (1992). On a general-

CART (Breiman et al., 1984) and by ID3 (Quinlan, ized test sequencing problentEEE Transactions on

1986) are the best among the considered greedy algo-  Systems, Man, and Cyberneti2®(2):392-396.

rithms. However, for the minimization of depth, we Quinlan, J. R. (1986). Induction of decision tre@dach.

probably should use some other greedy algorithms. Learn, 1:81-106.

Quinlan, J. R. (1993)C4.5: Programs for Machine Learn-
ing (Morgan Kaufmann Series in Machine Learning)
Morgan Kaufmann, 1 edition.
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