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Abstract: A reliable server assignment (RSA) problem in networks is defined as determining a deployment of 
identical servers on a network to maximize a measure of service availability.  In this paper, a simulation 
optimization approach is introduced based on a Monte Carlo simulation and embedded into a Clonal 
Selection Algorithm (CSA) to find diverse solutions for the RSA problem, which is important in simulation 
optimization.  The experimental results show that the simulation embedded-CSA is an effective heuristic 
method to discover diverse solutions to the problem. 

1 INTRODUCTION 

The reliable server assignment (RSA) problem on 
networks is described as assigning identical servers 
to network nodes to maximize a measure of service 
availability under a budget constraint.  Given an 
undirected network G=(V, E), where V={1,…,n} is 
the node set, E={(i, j)} is the edge set, the RSA 
problem is expressed as  
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where si is the binary server assignment decision 
variable indicating whether a server is assigned to 
node i (si=1) or not (si=0), ci is the cost of deploying 
a server at node i, and R() is a measure of the 
availability of a service provided by identical 
servers.  

The definition of service availability R() depends 
on the nature of the service is provided by a 
network. For example, a computer network will not 
function properly if the servers providing the 
Domain Name System (DNS) service to the network 
are inaccessible. Therefore, DNS servers are 
replicated over a network to ensure their availability. 
In this paper, the critical service rate (CSR), which 
was first defined in (Kulturel-Konak and Konak, 

2009), is used as the objective function. The CSR 
quantifies a network’s ability to continue providing a 
service in the case of catastrophic edge or node 
failures. In a catastrophic failure mode, the edges 
and nodes are assumed to be in only two states, 
operative or failed. Let r(i, j) be the reliability of edge 
(i, j)E and ri be the reliability of node iV. For 
computational tractability, edge and node failures 
are assumed to be state-independent. When edge (i,j) 
fails, the communication between nodes i and j is 
interrupted if it cannot be rerouted through an 
alternative path. When a node fails, the network 
traffic cannot be routed through the node. 

For a given server assignment S={s1,…,sn}, 
CSR(S) is defined as the probability that more than a 
predetermined fraction () of the operational nodes 
have access to at least one server in case of a 
component failure as follows: 
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where X denotes a binary state vector of the network 
such that at least one node is operational, i(X|S)=1 
if there exists at least one path between node i and a 
server node (i(X|S)=0 otherwise), vi(X)=1 if node i 
is operational in state X (vi(X)=0 otherwise), and  
is the critical service level. 

The RSA problem as described in this paper was 
first defined in (Kulturel-Konak and Konak, 2009), 
and an Ant Colony Optimization (ACO) algorithm 
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was developed to solve the problem. (Kulturel-
Konak and Konak, 2010) also applied a simulation 
embedded-Particle Swarm Optimization (PSO) 
algorithm to the problem with very promising 
results. Recently, three nature-inspired heuristics, 
namely, ACO, PSO, and Clonal Selection Algorithm 
(CSA), were compared in (Konak and Kulturel-
Konak, 2011) in terms of their performances and 
convergence properties. In this paper, a CSA is 
applied to the problem with an emphasis to discover 
not only good but also diverse solutions. 

In general networks, exactly calculating CSR(S) 
is not practical in reasonable CPU times because its 
evaluation is NP-hard as it is the case in many 
network reliability analysis problems (Ball, 1980). 
Therefore, solutions searched by the CSA are 
evaluated by a Monte Carlo (MC) simulation. The 
CSA, the MC simulation, and a hashing method are 
integrated in a way to minimize the computational 
effort to efficiently evaluate candidate solutions and 
to reduce the effect of the noise in the objective 
function due to the MC simulation. 

When simulation is used to evaluate alternative 
solutions in a heuristic algorithm, it is important for 
the algorithm to return multiple solutions because 
the evaluation of solutions includes error due to 
simulation. In the context of the RSA problem, 
decision makers wish to have a set of alternative 
server assignments with high levels of service 
availability. This observation is motivated by the 
fact that in most real-life reliability optimization 
problems, component reliabilities are not hard facts, 
but estimations based on historical observations. 
Therefore, providing decision makers with a set of 
alternative solutions allows them to determine the 
final design by weighing other factors in addition to 
system availability. The CSA in this paper returns a 
set of solutions instead of a single best solution. The 
CSA is compared with two previous meta-heuristics, 
namely the ACO and the PSO, with respect to its 
ability to discover good solutions with diverse 
structures.  The computational results show that the 
CSA can discover more diverse set of solutions than 
the ACO and PSO while its performance is par with 
them. 

2 A CSA ALGORITHM FOR THE 
RSA PROBLEM 

Artificial Immune Systems (AIS) are relatively new 
bio-inspired computational algorithms. The early 
theoretical immunology work (Farmer et al., 1986); 

(Perelson, 1989); (Varela et al. 1988) has prepared 
the origins for AIS.  There has been an increasing 
interest in AIS approaches to different problems, 
such as scheduling, image processing, bio 
informatics etc., after early applications on machine 
learning (Dasgupta, 1998); (Dasgupta and Nino, 
2009); (Hart and Timmis, 2009). 

One of the population based AIS algorithms, 
namely CSA, is applied to solve the RSA problem in 
this paper. The first CSA was developed based on 
the foundational clonal selection theory of Burnet 
(1959). The basic immunological components are: 
maintaining a specific memory set, selecting and 
cloning most stimulated antibodies, removing poorly 
stimulated or non-stimulated antibodies, 
hypermutating (i.e., affinity maturation) activated 
immune cells and generating and maintaining a 
diverse set of antibodies (Dasgupta, 1998). The 
principle of the theory is mainly as follows: The 
antigen (i.e., the foreign molecule that the immune 
system is defending against) selects the lymphocytes 
(i.e., B-cells or white blood cells that detect and stop 
antigens) with receptors which are capable of 
reacting with a part of the antigen. The rapid 
proliferation of the selected cell occurs during the 
selection to combat the invasion (i.e., clonal 
expansion and production of antibodies). While 
duplicating the cells, copying errors occur (i.e., 
somatic hypermutation) resulting in an improved 
affinity of the progeny cells receptors for the 
triggering antigen. CSA has been applied to many 
engineering and optimization problems. A basic 
CSA has been proposed by De Castro and von 
Zuben (2000) and later renamed as CLONALG by 
De Castro and von Zuben (2002), and they also 
provide the extensive analysis on the algorithmic 
computational complexity. In the general 
CLONALG first, antibodies (i.e., candidate 
solutions) are selected based on affinity either by 
matching against an antigen pattern or via evaluation 
of a pattern by an objective function (affinity means 
objective function value in optimization problems). 
Then, selected antibodies are cloned proportional to 
their affinity, and each clone is subject to a 
hypermutation inversely proportional to its affinity. 
Finally, the resulting clonal-set competes with the 
antibody population to survive for membership in 
the next generation, and low-affinity population 
members are replaced with randomly generated 
antibodies (Brownlee, 2007). The main steps of 
CLONALG are as follows: 

 

Initialization 
While (stopping criteria is not) { 
Antigen Selection 
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Exposure and Affinity Evaluation 
Clonal Selection 
Affinity Maturation (Hypermutation) 
Metadynamics (Replacement) 
} 
Termination 

2.1 Solution Representation and Hyper 
Mutations 

In the CSA in this paper, a solution j is represent by 
binary server assignment vector Sj={sj1,…,sjn} such 
that sji indicates whether a server is assigned to node 
i (sji=1) or not (sji =0).   

In the CSA, each solution is cloned and mutated 
according to its rank in the population such that a 
higher-ranked solution produces a higher number of 
clones than a lower-ranked solution, and it is 
mutated at a lesser degree. To achieve this, solutions 
in the population are sorted and ranked into three 
equal sized tiers as top 1/3, middle 1/3, and bottom 
1/3 based on their objective functions. Each solution 
at the top, middle, and bottom tiers respectively 
produces /2, /3, and /4 clones which are mutated 
by bitwise invert operators based on its tier. This 
ensures that solutions with better objective function 
values will produce a higher number of clones. On 
the other hand, each clone is mutated at a rate 
inversely proportional to its tier. Therefore, three 
different invert mutation operators are applied to the 
clones of the three tiers as follows. Top tier clones 
are perturbed by inverting one or two decision 
variables (Mutation1), middle tier clones by three 
decision variables (Mutation2), and bottom tier 
clones by four decision variables (Mutation3). In 
other words, new solutions created from top tier 
solutions are similar to their parents, and solutions 
created from bottom tier solutions are much more 
different than their parents. Top tier solutions are 
promising; therefore, a local search around these 
solutions is justified. On the other hand, bottom tier 
solutions are probably in non-promising regions of 
the search space. Therefore, moving away from 
those regions by large perturbations is desired. The 
mutation operators of the CSA are as follows: 

Procedure Mutation1 (Sj) { 
 Randomly select two nodes i1 and i2 such that 

sji1+sji2 1  
 If sji1+sji2=1, then flip the values of sji1 and sji2 to 

obtain new solution S 
 If sji1+sji2=0, then flip the value of sji1 to obtain 

new solution S 
 Return S 
} 

Procedure Mutation2 (Sj) { 
 Randomly select three nodes i1, i2, and i3 such 

that 1 sji1+sji2+sji32  
 Flip the values of sji1, sji2, and sji3 to obtain new 

solution S 
 Return S 
} 

Procedure Mutation3 (Sj) { 
 Randomly select four nodes i1, i2, i3, and i4 such 

that sji1+sji2+sji3 +sji4=2  
 Flip the values of sji1, sji2, sji3, sji4 to obtain new 

solution S 
 Return S 
} 

2.2 Solution Evaluation 

As mentioned earlier, the objective function of the 
problem, CSR, is estimated using a crude MC 
simulation (Konak, 2009). In the crude MC 
simulation, a state vector X is sampled by 
individually sampling the state of each edge (i, j) E 
and node iN using Bernoulli random variables with 
means rij and ri, respectively. To estimate CSR, K 
state vectors are sampled in this way, and the 
accessibility of servers by each operational node is 
checked for each state sampled. The ratio of the 
number of network states where critical service level 
α is achieved to the sample size (K) yields an 
unbiased estimator of CSR. 

Evaluating candidate solutions using simulation 
within a heuristic algorithm has two important 
drawbacks. Firstly, simulation output includes a 
statistical error which might affect the performance 
of the algorithm. Secondly, simulation is 
computationally expensive, especially if a small 
margin of estimation error is required. In most 
population-based heuristics, as the search converges, 
same solutions will appear in the population with 
increasing frequencies. Therefore, computationally 
expensive simulation would be used to evaluate 
same solutions again and again in the case of the 
RSA problem. To address these problems, a 
hierarchical solution evaluation approach with 
hashing is used in the CSA. 

All solutions investigated during the search are 
stored in a list, called solution list (SL). A hash table 
(HT) is used as a pointer to quickly access the 
solutions stored in SL. A second list, called collision 
list (CL) is used to store solutions with a hash 
collision. After a solution S is created, the hash 
value of the solution is calculated as follows: 
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where H is the hash size and ei is a prime number 
corresponding to decision variable si. Hash table HT 
is an integer array such that HT[d(S)]=0 if a solution 
with a hash value of d(S) has not been searched yet, 
or HT[d(S)]=t if the first solution with a hash value 
of d(S) is the tth solution in solution list SL. In other 
words, SL[t] stores the tth evaluated solution without 
any hash collision.  After calculating d(S) for a 
solution S, there are three cases possible. 
Case 1: If HT[d(S)]=0, then S has not been 
investigated before. 
Case 2: If HT[d(S)]=t and S=SL[t], then S has been 
investigated before. 

Case 3: If HT[d(S)]=t and SSL[t], then a hash 
collision occurs (i.e., two different solutions have 
the same hash value). In this case, S is compared 
with all solutions in collision list CL.  If S is not in 
CL, then it has not been searched before and added 
to CL. 

In the CSA, instead of a single best solution-found-
so-far, the best b solutions found-so-far during the 
search are maintained in a sorted list called elitist list 
(EL) such that CSR(EL[1])> CSR(EL[2])>…> 
CSR(EL[b]).  When a new solution is created, it is 
compared to previously evaluated solutions using 
the hashing technique used in (Kulturel-Konak and 
Konak, 2009) as briefly described above. If the 
solution has not been searched before, it is first is 
evaluated using a low number of simulation 
replications (K1). After the first evaluation, the 
solution is identified as promising if the solution has 
a better estimated objective function value than the 
worst elitist solution in EL, and then it is rigorously 
evaluated using a higher number of replications (K2). 
The statistical error due to simulation can be 
controlled by increasing the size of EL.  After the 
search is terminated, all elitist solutions are 
evaluated one more time using a very high number 
of simulation replications (K3). The solution 
evaluation procedure of the CSA is given below. 

Procedure Evaluate_Solution (S) { 
 If solution S has not been searched before { 
  Evaluate S using K1 simulation replications 
  If (CSR(S)> the worst CSR in EL) { 
   Evaluate S using K2 simulation replications 
   Update EL by including S if necessary 
  }}} 

2.3 The Overall CSA Algorithm 

In this section, the overall procedure of the CSA 
algorithm is presented. Initially,  solutions are 
randomly generated by a simple construction 

heuristics as follows:  

Procedure Create_Random_Solution (Sj) { 
 Set A=V, C=C, sji =0 for each node iV 
 While (A{}) {  
  Randomly and uniformly select node i from A 
  Set sji =1 and C=C-ci  
  Set A=A\ {i} } 
 Return solution Sj } 
 

The replacement strategy of the CSA is to replace 
the worst % of the population with randomly 
generated new solutions using Procedure 
Create_Random_Solution(), and it is applied once in 
every five iterations. Infeasible solutions are not 
evaluated and discarded because of the high 
computational cost of the MC simulation. The 
overall procedure of the CSA is as follows: 

Procedure CSA { 
 Randomly generate  solutions  
 While (stopping criterion is not satisfied) { 
  Sort and rank the population 
  If (replacement=TRUE) { 
   Replace worst % of the population  with 
    randomly generated solutions  } 
  For each top tier solution Sj do { 
   Generate /2 clones of Sj using Mutation1(Sj) 
   Evaluate the generated clones 
   Replace Sj if a better solution is found } 
  For each middle tier solution Sj do { 
   Generate /3 clones of Sj using Mutation2(Sj) 
   Evaluate the generated clones 
   Replace Sj if a better solution is found } 
  For each bottom tier solution Sj do { 
   Generate /4 clones of Sj using Mutation3(Sj) 
   Evaluate the clones 
   Replace Sj if a better solution is found  } 
  Simulate the elitist solutions using K3   
 replications and return them. 
} 

3 COMPUTATIONAL 
EXPERIMENTS 

In (Konak and Kulturel-Konak, 2011), the CSA was 
compared with the previous PSO and ACO 
approaches with promising results, and it was 
reported that the performance of the CSA was par 
with the PSO in some cases and between the PSO 
and the ACO in most cases. Hence, there is no clear 
evidence to justify the CSA to solve the RSA 
problem. In (Dasgupta and Nino, 2009), CSA is 
recommended as an approach to multi-modal 
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optimization problems where there are multiple 
optimal points in the solution space. To test this 
claim, we designed test problems with multiple 
optimal solutions and investigated whether the three 
heuristics can discover these multiple optimal 
solutions in a single run. Not that in simulation 
optimization approaches such as the CSA in this 
paper, it is particularly important to discover a set of 
diverse solutions because of the noise in solution 
evaluation. 

All test problems have ring topologies with 
identical node reliabilities and costs (0.99 and 1, 
respectively), as well as identical edge reliabilities. 
The test problems were solved for C=5 and =0.5. 
In other words, the test problems were defined as 
how to locate five servers on a ring network. Since 
all nodes have identical reliabilities and costs, and in 
addition all edges have the same reliability, there are 
many alternatives with the same optimal CSR. For 
example, for n=30 two solutions where five servers 
are located at nodes {6, 12, 18, 24, 30} and {7, 13, 
19, 25, 1}, respectively, have the same CSR. To 
minimize the sampling error, simulation parameters 
were set as K1=104, K2=2x104, K3=106, H=99001, 
and |EL|=20. Each problem was solved for ten 
random replications with the CSA parameters µ=50 
and =20%. The search was terminated after 8000 
solutions were searched (the stopping criterion). The 
worst 20% of the population was replaced with 
randomly generated solutions once in every five 
iterations. The ACO and PSO were run with the 
same algorithm parameters given in (Konak and 
Kulturel-Konak, 2011) with the stopping criteria of 
8000 maximum solutions searched. 

The Hamming distances between each pair of the 
elitists solutions found by the ACO, PSO, and CSA 
were calculated, and the average Hamming distance 
(AHD) in the final EL was used as the indicator for 
the diversity of the solutions found by each heuristic 
as follows: 

1,...,|EL| 1,...,

| |

AHD
| EL | (| EL | 1) / 2

ji ki
j k j i n

s s

n
  




  

  
 (3)

 

Table 1 presents the averaged CSR of the best and 
worst elitist solutions found in ten replications and 
the AHD among the elitist solutions. For problems 
n=30, 40, 50, 60, and 70, the three heuristics 
performed equally well with respect to the best and 
worst elitist solutions. However, the CSA provided 
the highest average Hamming distance, particularly 
compared to the PSO. For problems n=80 and 100, 
the ACO did not perform as well as the other 
heuristics. The ACO and the CSA have the same 
average Hamming distance, but the CSA performs 
better. In Table 1, the column titled Normalized 
Average Hamming Distance (NAHD) gives the 
AHD divided by the difference between the best and 
worst elitist solution. It is clear that the CSA was 
able to discover the most diverse sets of elitist 
solutions while it performed as well as the PSO 
based on the results in Table 1. For problems n=80 
and n=100, both ACO and CSA have the same level 
of diversity in the elitist list, but the CSA 
outperformed the ACO in these problems in terms of 
the objective function. These results are consistent 
with the claim in the CSA literature that CSA is a 
suitable heuristic for multi-modal optimization 
problems. 

Figure 1 illustrates three best solutions found by 
the ACO and the CSA for a multi-modal problem 
with n=30. As seen the figure, the solutions found by 
the CSA are very different in terms of server 
assignments. For example, the best two solutions, 
{20, 11, 50, 40, 29} and {19, 10, 1, 40, 30} have 
only one common nodes, which is node 40. On the 
other hands, the best two solutions found by the 
ACO, {19, 8, 48, 38, 28} and {19, 9, 48, 38, 28}, 
have four common nodes. This example 
demonstrates the ability of the CSA to investigate 
diverse solutions. 

Table 1: Results of multi-modal problems. 

  ACO     PSO     CSA   
(n, m) Best Worst AHD NAHD  Best Worst AHD NAHD  Best Worst AHD NAHD 

(30,30) 0.602 0.592 0.204 21.77  0.602 0.593 0.186 19.40  0.603 0.595 0.265 34.97 
(40,40) 0.440 0.431 0.165 18.75  0.440 0.433 0.134 19.28  0.441 0.433 0.202 28.72 
(50,50) 0.662 0.652 0.151 15.20  0.663 0.656 0.112 17.21  0.663 0.656 0.168 26.18 
(60,60) 0.925 0.921 0.135 34.78  0.926 0.923 0.098 33.83  0.926 0.923 0.143 50.09 
(70,70) 0.907 0.902 0.122 22.65  0.908 0.904 0.079 23.65  0.908 0.904 0.124 34.28 
(80,80) 0.876 0.870 0.109 17.26  0.877 0.872 0.075 17.02  0.877 0.872 0.108 26.73 

(100,100) 0.819 0.811 0.088 10.56  0.821 0.815 0.059 11.14  0.821 0.816 0.088 19.17 
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Figure 1: Best three solutions found by (a) the ACO and 
(b) the CSA for multi-model problems with n=30. 

4 CONCLUSIONS 

The reliable server assignment problem (RSA) in 
networks is studied in this paper. A simulation 
optimization approach is used based on a MC 
simulation and embedded into a CSA to solve the 
RSA problem. During the search, hashing method is 
used to rapidly detect whether a solution has been 
previously investigated or not to prevent costly 
evaluation process of same solutions again and 
again. The experimental study shows that the CSA 
algorithm is capable of searching very diverse 
solutions to the problem. This is an important 
concern in the RSA problem because very different 
solutions may have very similar system reliability, 
and decision makers can choose the best alternative 
by weighing in other factors. 
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