
A CLONAL SELECTION ALGORITHM TO INVESTIGATE
DIVERSE SOLUTIONS FOR THE RELIABLE SERVER

ASSIGNMENT PROBLEM

Abdullah Konak and Sadan Kulturel-Konak
Penn State Berks, PA, Reading, U.S.A.

Keywords: Network reliability, Reliable server assignment, Clonal selection algorithm, Artificial immune systems.

Abstract: A reliable server assignment (RSA) problem in networks is defined as determining a deployment of
identical servers on a network to maximize a measure of service availability. In this paper, a simulation
optimization approach is introduced based on a Monte Carlo simulation and embedded into a Clonal
Selection Algorithm (CSA) to find diverse solutions for the RSA problem, which is important in simulation
optimization. The experimental results show that the simulation embedded-CSA is an effective heuristic
method to discover diverse solutions to the problem.

1 INTRODUCTION

The reliable server assignment (RSA) problem on
networks is described as assigning identical servers
to network nodes to maximize a measure of service
availability under a budget constraint. Given an
undirected network G=(V, E), where V={1,…,n} is
the node set, E={(i, j)} is the edge set, the RSA
problem is expressed as

1

1

max ({ , , },)

{0,1}

n

n

i i
i

i

z R s s G

c s C

s

where si is the binary server assignment decision
variable indicating whether a server is assigned to
node i (si=1) or not (si=0), ci is the cost of deploying
a server at node i, and R() is a measure of the
availability of a service provided by identical
servers.

The definition of service availability R() depends
on the nature of the service is provided by a
network. For example, a computer network will not
function properly if the servers providing the
Domain Name System (DNS) service to the network
are inaccessible. Therefore, DNS servers are
replicated over a network to ensure their availability.
In this paper, the critical service rate (CSR), which
was first defined in (Kulturel-Konak and Konak,

2009), is used as the objective function. The CSR
quantifies a network’s ability to continue providing a
service in the case of catastrophic edge or node
failures. In a catastrophic failure mode, the edges
and nodes are assumed to be in only two states,
operative or failed. Let r(i, j) be the reliability of edge
(i, j)E and ri be the reliability of node iV. For
computational tractability, edge and node failures
are assumed to be state-independent. When edge (i,j)
fails, the communication between nodes i and j is
interrupted if it cannot be rerouted through an
alternative path. When a node fails, the network
traffic cannot be routed through the node.

For a given server assignment S={s1,…,sn},
CSR(S) is defined as the probability that more than a
predetermined fraction () of the operational nodes
have access to at least one server in case of a
component failure as follows:

(|)
C S R () P r{ }

()
ii V

ii V
v

X S
S

X

(1)

where X denotes a binary state vector of the network
such that at least one node is operational, i(X|S)=1
if there exists at least one path between node i and a
server node (i(X|S)=0 otherwise), vi(X)=1 if node i
is operational in state X (vi(X)=0 otherwise), and
is the critical service level.

The RSA problem as described in this paper was
first defined in (Kulturel-Konak and Konak, 2009),
and an Ant Colony Optimization (ACO) algorithm

156 Konak A. and Kulturel-Konak S..
A CLONAL SELECTION ALGORITHM TO INVESTIGATE DIVERSE SOLUTIONS FOR THE RELIABLE SERVER ASSIGNMENT PROBLEM.
DOI: 10.5220/0003644101560161
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2011), pages 156-161
ISBN: 978-989-8425-83-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

was developed to solve the problem. (Kulturel-
Konak and Konak, 2010) also applied a simulation
embedded-Particle Swarm Optimization (PSO)
algorithm to the problem with very promising
results. Recently, three nature-inspired heuristics,
namely, ACO, PSO, and Clonal Selection Algorithm
(CSA), were compared in (Konak and Kulturel-
Konak, 2011) in terms of their performances and
convergence properties. In this paper, a CSA is
applied to the problem with an emphasis to discover
not only good but also diverse solutions.

In general networks, exactly calculating CSR(S)
is not practical in reasonable CPU times because its
evaluation is NP-hard as it is the case in many
network reliability analysis problems (Ball, 1980).
Therefore, solutions searched by the CSA are
evaluated by a Monte Carlo (MC) simulation. The
CSA, the MC simulation, and a hashing method are
integrated in a way to minimize the computational
effort to efficiently evaluate candidate solutions and
to reduce the effect of the noise in the objective
function due to the MC simulation.

When simulation is used to evaluate alternative
solutions in a heuristic algorithm, it is important for
the algorithm to return multiple solutions because
the evaluation of solutions includes error due to
simulation. In the context of the RSA problem,
decision makers wish to have a set of alternative
server assignments with high levels of service
availability. This observation is motivated by the
fact that in most real-life reliability optimization
problems, component reliabilities are not hard facts,
but estimations based on historical observations.
Therefore, providing decision makers with a set of
alternative solutions allows them to determine the
final design by weighing other factors in addition to
system availability. The CSA in this paper returns a
set of solutions instead of a single best solution. The
CSA is compared with two previous meta-heuristics,
namely the ACO and the PSO, with respect to its
ability to discover good solutions with diverse
structures. The computational results show that the
CSA can discover more diverse set of solutions than
the ACO and PSO while its performance is par with
them.

2 A CSA ALGORITHM FOR THE
RSA PROBLEM

Artificial Immune Systems (AIS) are relatively new
bio-inspired computational algorithms. The early
theoretical immunology work (Farmer et al., 1986);

(Perelson, 1989); (Varela et al. 1988) has prepared
the origins for AIS. There has been an increasing
interest in AIS approaches to different problems,
such as scheduling, image processing, bio
informatics etc., after early applications on machine
learning (Dasgupta, 1998); (Dasgupta and Nino,
2009); (Hart and Timmis, 2009).

One of the population based AIS algorithms,
namely CSA, is applied to solve the RSA problem in
this paper. The first CSA was developed based on
the foundational clonal selection theory of Burnet
(1959). The basic immunological components are:
maintaining a specific memory set, selecting and
cloning most stimulated antibodies, removing poorly
stimulated or non-stimulated antibodies,
hypermutating (i.e., affinity maturation) activated
immune cells and generating and maintaining a
diverse set of antibodies (Dasgupta, 1998). The
principle of the theory is mainly as follows: The
antigen (i.e., the foreign molecule that the immune
system is defending against) selects the lymphocytes
(i.e., B-cells or white blood cells that detect and stop
antigens) with receptors which are capable of
reacting with a part of the antigen. The rapid
proliferation of the selected cell occurs during the
selection to combat the invasion (i.e., clonal
expansion and production of antibodies). While
duplicating the cells, copying errors occur (i.e.,
somatic hypermutation) resulting in an improved
affinity of the progeny cells receptors for the
triggering antigen. CSA has been applied to many
engineering and optimization problems. A basic
CSA has been proposed by De Castro and von
Zuben (2000) and later renamed as CLONALG by
De Castro and von Zuben (2002), and they also
provide the extensive analysis on the algorithmic
computational complexity. In the general
CLONALG first, antibodies (i.e., candidate
solutions) are selected based on affinity either by
matching against an antigen pattern or via evaluation
of a pattern by an objective function (affinity means
objective function value in optimization problems).
Then, selected antibodies are cloned proportional to
their affinity, and each clone is subject to a
hypermutation inversely proportional to its affinity.
Finally, the resulting clonal-set competes with the
antibody population to survive for membership in
the next generation, and low-affinity population
members are replaced with randomly generated
antibodies (Brownlee, 2007). The main steps of
CLONALG are as follows:

Initialization
While (stopping criteria is not) {
Antigen Selection

A CLONAL SELECTION ALGORITHM TO INVESTIGATE DIVERSE SOLUTIONS FOR THE RELIABLE SERVER
ASSIGNMENT PROBLEM

157

Exposure and Affinity Evaluation
Clonal Selection
Affinity Maturation (Hypermutation)
Metadynamics (Replacement)
}
Termination

2.1 Solution Representation and Hyper
Mutations

In the CSA in this paper, a solution j is represent by
binary server assignment vector Sj={sj1,…,sjn} such
that sji indicates whether a server is assigned to node
i (sji=1) or not (sji =0).

In the CSA, each solution is cloned and mutated
according to its rank in the population such that a
higher-ranked solution produces a higher number of
clones than a lower-ranked solution, and it is
mutated at a lesser degree. To achieve this, solutions
in the population are sorted and ranked into three
equal sized tiers as top 1/3, middle 1/3, and bottom
1/3 based on their objective functions. Each solution
at the top, middle, and bottom tiers respectively
produces /2, /3, and /4 clones which are mutated
by bitwise invert operators based on its tier. This
ensures that solutions with better objective function
values will produce a higher number of clones. On
the other hand, each clone is mutated at a rate
inversely proportional to its tier. Therefore, three
different invert mutation operators are applied to the
clones of the three tiers as follows. Top tier clones
are perturbed by inverting one or two decision
variables (Mutation1), middle tier clones by three
decision variables (Mutation2), and bottom tier
clones by four decision variables (Mutation3). In
other words, new solutions created from top tier
solutions are similar to their parents, and solutions
created from bottom tier solutions are much more
different than their parents. Top tier solutions are
promising; therefore, a local search around these
solutions is justified. On the other hand, bottom tier
solutions are probably in non-promising regions of
the search space. Therefore, moving away from
those regions by large perturbations is desired. The
mutation operators of the CSA are as follows:

Procedure Mutation1 (Sj) {
 Randomly select two nodes i1 and i2 such that

sji1+sji2 1
 If sji1+sji2=1, then flip the values of sji1 and sji2 to

obtain new solution S
 If sji1+sji2=0, then flip the value of sji1 to obtain

new solution S
 Return S
}

Procedure Mutation2 (Sj) {
 Randomly select three nodes i1, i2, and i3 such

that 1 sji1+sji2+sji32
 Flip the values of sji1, sji2, and sji3 to obtain new

solution S
 Return S
}

Procedure Mutation3 (Sj) {
 Randomly select four nodes i1, i2, i3, and i4 such

that sji1+sji2+sji3 +sji4=2
 Flip the values of sji1, sji2, sji3, sji4 to obtain new

solution S
 Return S
}

2.2 Solution Evaluation

As mentioned earlier, the objective function of the
problem, CSR, is estimated using a crude MC
simulation (Konak, 2009). In the crude MC
simulation, a state vector X is sampled by
individually sampling the state of each edge (i, j) E
and node iN using Bernoulli random variables with
means rij and ri, respectively. To estimate CSR, K
state vectors are sampled in this way, and the
accessibility of servers by each operational node is
checked for each state sampled. The ratio of the
number of network states where critical service level
α is achieved to the sample size (K) yields an
unbiased estimator of CSR.

Evaluating candidate solutions using simulation
within a heuristic algorithm has two important
drawbacks. Firstly, simulation output includes a
statistical error which might affect the performance
of the algorithm. Secondly, simulation is
computationally expensive, especially if a small
margin of estimation error is required. In most
population-based heuristics, as the search converges,
same solutions will appear in the population with
increasing frequencies. Therefore, computationally
expensive simulation would be used to evaluate
same solutions again and again in the case of the
RSA problem. To address these problems, a
hierarchical solution evaluation approach with
hashing is used in the CSA.

All solutions investigated during the search are
stored in a list, called solution list (SL). A hash table
(HT) is used as a pointer to quickly access the
solutions stored in SL. A second list, called collision
list (CL) is used to store solutions with a hash
collision. After a solution S is created, the hash
value of the solution is calculated as follows:

1

() mod(() ,)

 i

n
s

i

i

d e HS (2)

ECTA 2011 - International Conference on Evolutionary Computation Theory and Applications

158

where H is the hash size and ei is a prime number
corresponding to decision variable si. Hash table HT
is an integer array such that HT[d(S)]=0 if a solution
with a hash value of d(S) has not been searched yet,
or HT[d(S)]=t if the first solution with a hash value
of d(S) is the tth solution in solution list SL. In other
words, SL[t] stores the tth evaluated solution without
any hash collision. After calculating d(S) for a
solution S, there are three cases possible.
Case 1: If HT[d(S)]=0, then S has not been
investigated before.
Case 2: If HT[d(S)]=t and S=SL[t], then S has been
investigated before.

Case 3: If HT[d(S)]=t and SSL[t], then a hash
collision occurs (i.e., two different solutions have
the same hash value). In this case, S is compared
with all solutions in collision list CL. If S is not in
CL, then it has not been searched before and added
to CL.

In the CSA, instead of a single best solution-found-
so-far, the best b solutions found-so-far during the
search are maintained in a sorted list called elitist list
(EL) such that CSR(EL[1])> CSR(EL[2])>…>
CSR(EL[b]). When a new solution is created, it is
compared to previously evaluated solutions using
the hashing technique used in (Kulturel-Konak and
Konak, 2009) as briefly described above. If the
solution has not been searched before, it is first is
evaluated using a low number of simulation
replications (K1). After the first evaluation, the
solution is identified as promising if the solution has
a better estimated objective function value than the
worst elitist solution in EL, and then it is rigorously
evaluated using a higher number of replications (K2).
The statistical error due to simulation can be
controlled by increasing the size of EL. After the
search is terminated, all elitist solutions are
evaluated one more time using a very high number
of simulation replications (K3). The solution
evaluation procedure of the CSA is given below.

Procedure Evaluate_Solution (S) {
 If solution S has not been searched before {
 Evaluate S using K1 simulation replications
 If (CSR(S)> the worst CSR in EL) {
 Evaluate S using K2 simulation replications
 Update EL by including S if necessary
 }}}

2.3 The Overall CSA Algorithm

In this section, the overall procedure of the CSA
algorithm is presented. Initially, solutions are
randomly generated by a simple construction

heuristics as follows:

Procedure Create_Random_Solution (Sj) {
 Set A=V, C=C, sji =0 for each node iV
 While (A{}) {
 Randomly and uniformly select node i from A
 Set sji =1 and C=C-ci
 Set A=A\ {i} }
 Return solution Sj }

The replacement strategy of the CSA is to replace
the worst % of the population with randomly
generated new solutions using Procedure
Create_Random_Solution(), and it is applied once in
every five iterations. Infeasible solutions are not
evaluated and discarded because of the high
computational cost of the MC simulation. The
overall procedure of the CSA is as follows:

Procedure CSA {
 Randomly generate solutions
 While (stopping criterion is not satisfied) {
 Sort and rank the population
 If (replacement=TRUE) {
 Replace worst % of the population with
 randomly generated solutions }
 For each top tier solution Sj do {
 Generate /2 clones of Sj using Mutation1(Sj)
 Evaluate the generated clones
 Replace Sj if a better solution is found }
 For each middle tier solution Sj do {
 Generate /3 clones of Sj using Mutation2(Sj)
 Evaluate the generated clones
 Replace Sj if a better solution is found }
 For each bottom tier solution Sj do {
 Generate /4 clones of Sj using Mutation3(Sj)
 Evaluate the clones
 Replace Sj if a better solution is found }
 Simulate the elitist solutions using K3
 replications and return them.
}

3 COMPUTATIONAL
EXPERIMENTS

In (Konak and Kulturel-Konak, 2011), the CSA was
compared with the previous PSO and ACO
approaches with promising results, and it was
reported that the performance of the CSA was par
with the PSO in some cases and between the PSO
and the ACO in most cases. Hence, there is no clear
evidence to justify the CSA to solve the RSA
problem. In (Dasgupta and Nino, 2009), CSA is
recommended as an approach to multi-modal

A CLONAL SELECTION ALGORITHM TO INVESTIGATE DIVERSE SOLUTIONS FOR THE RELIABLE SERVER
ASSIGNMENT PROBLEM

159

optimization problems where there are multiple
optimal points in the solution space. To test this
claim, we designed test problems with multiple
optimal solutions and investigated whether the three
heuristics can discover these multiple optimal
solutions in a single run. Not that in simulation
optimization approaches such as the CSA in this
paper, it is particularly important to discover a set of
diverse solutions because of the noise in solution
evaluation.

All test problems have ring topologies with
identical node reliabilities and costs (0.99 and 1,
respectively), as well as identical edge reliabilities.
The test problems were solved for C=5 and =0.5.
In other words, the test problems were defined as
how to locate five servers on a ring network. Since
all nodes have identical reliabilities and costs, and in
addition all edges have the same reliability, there are
many alternatives with the same optimal CSR. For
example, for n=30 two solutions where five servers
are located at nodes {6, 12, 18, 24, 30} and {7, 13,
19, 25, 1}, respectively, have the same CSR. To
minimize the sampling error, simulation parameters
were set as K1=104, K2=2x104, K3=106, H=99001,
and |EL|=20. Each problem was solved for ten
random replications with the CSA parameters µ=50
and =20%. The search was terminated after 8000
solutions were searched (the stopping criterion). The
worst 20% of the population was replaced with
randomly generated solutions once in every five
iterations. The ACO and PSO were run with the
same algorithm parameters given in (Konak and
Kulturel-Konak, 2011) with the stopping criteria of
8000 maximum solutions searched.

The Hamming distances between each pair of the
elitists solutions found by the ACO, PSO, and CSA
were calculated, and the average Hamming distance
(AHD) in the final EL was used as the indicator for
the diversity of the solutions found by each heuristic
as follows:

1,...,|EL| 1,...,

| |

AHD
| EL | (| EL | 1) / 2

ji ki
j k j i n

s s

n

 (3)

Table 1 presents the averaged CSR of the best and
worst elitist solutions found in ten replications and
the AHD among the elitist solutions. For problems
n=30, 40, 50, 60, and 70, the three heuristics
performed equally well with respect to the best and
worst elitist solutions. However, the CSA provided
the highest average Hamming distance, particularly
compared to the PSO. For problems n=80 and 100,
the ACO did not perform as well as the other
heuristics. The ACO and the CSA have the same
average Hamming distance, but the CSA performs
better. In Table 1, the column titled Normalized
Average Hamming Distance (NAHD) gives the
AHD divided by the difference between the best and
worst elitist solution. It is clear that the CSA was
able to discover the most diverse sets of elitist
solutions while it performed as well as the PSO
based on the results in Table 1. For problems n=80
and n=100, both ACO and CSA have the same level
of diversity in the elitist list, but the CSA
outperformed the ACO in these problems in terms of
the objective function. These results are consistent
with the claim in the CSA literature that CSA is a
suitable heuristic for multi-modal optimization
problems.

Figure 1 illustrates three best solutions found by
the ACO and the CSA for a multi-modal problem
with n=30. As seen the figure, the solutions found by
the CSA are very different in terms of server
assignments. For example, the best two solutions,
{20, 11, 50, 40, 29} and {19, 10, 1, 40, 30} have
only one common nodes, which is node 40. On the
other hands, the best two solutions found by the
ACO, {19, 8, 48, 38, 28} and {19, 9, 48, 38, 28},
have four common nodes. This example
demonstrates the ability of the CSA to investigate
diverse solutions.

Table 1: Results of multi-modal problems.

 ACO PSO CSA
(n, m) Best Worst AHD NAHD Best Worst AHD NAHD Best Worst AHD NAHD

(30,30) 0.602 0.592 0.204 21.77 0.602 0.593 0.186 19.40 0.603 0.595 0.265 34.97
(40,40) 0.440 0.431 0.165 18.75 0.440 0.433 0.134 19.28 0.441 0.433 0.202 28.72
(50,50) 0.662 0.652 0.151 15.20 0.663 0.656 0.112 17.21 0.663 0.656 0.168 26.18
(60,60) 0.925 0.921 0.135 34.78 0.926 0.923 0.098 33.83 0.926 0.923 0.143 50.09
(70,70) 0.907 0.902 0.122 22.65 0.908 0.904 0.079 23.65 0.908 0.904 0.124 34.28
(80,80) 0.876 0.870 0.109 17.26 0.877 0.872 0.075 17.02 0.877 0.872 0.108 26.73

(100,100) 0.819 0.811 0.088 10.56 0.821 0.815 0.059 11.14 0.821 0.816 0.088 19.17

ECTA 2011 - International Conference on Evolutionary Computation Theory and Applications

160

Figure 1: Best three solutions found by (a) the ACO and
(b) the CSA for multi-model problems with n=30.

4 CONCLUSIONS

The reliable server assignment problem (RSA) in
networks is studied in this paper. A simulation
optimization approach is used based on a MC
simulation and embedded into a CSA to solve the
RSA problem. During the search, hashing method is
used to rapidly detect whether a solution has been
previously investigated or not to prevent costly
evaluation process of same solutions again and
again. The experimental study shows that the CSA
algorithm is capable of searching very diverse
solutions to the problem. This is an important
concern in the RSA problem because very different
solutions may have very similar system reliability,
and decision makers can choose the best alternative
by weighing in other factors.

REFERENCES

Ball, M., 1980. Complexity of Network Reliability
Calculation. Networks, 10, 153-165.

Brownlee, J. (2007) Clonal Selection Algorithms.
Victoria, Australia, Complex Intelligent Systems
Laboratory (CIS), Swinburne University of
Technology.

Burnet, F. M., 1959. The Clonal Selection Theory of
Acquired Immunity, Cambridge University Press.

Dasgupta, D. (1998) An overview of Artificial Immune
Systems and their applications. Artificial immune
systems and their applications. New York, Springer-
Verlag

Dasgupta, D. and Nino, L. P., 2009. Immunological
Computation: Theory and Applications, CRC Press.

De Castro, L. N. and Von Zuben, F. J., 2000. The clonal
selection algorithm with engineering applications. In:
Proceedings of GECCO’00, Las Vegas, USA. 36-37,

De Castro, L. N. and Von Zuben, F. J., 2002. Learning and

optimization using the clonal selection principle. IEEE
Transactions on Evolutionary Computation, 6 (3),
239-251.

Farmer, J. D., Packard, N. H. and Perelson, A. S., 1986.
The immune system, adaptation, and machine
learning. In: Physica D (Netherlands), Netherlands.
187-204.

Hart, E. and Timmis, J., 2009. Application areas of AIS:
the past, the present and the future. Applied Soft
Computing Journal, 8 (1), 191-201.

Konak, A., 2009. Efficient event-driven simulation
approaches to analysis of network reliability and
performability. International Journal of Modelling
and Simulation, 29 (Copyright 2010, The Institution of
Engineering and Technology), 156-168.

Konak, A. and Kulturel-Konak, S., 2011. Reliable Server
Assignment in Networks Using Nature Inspired
Metaheuristics. IEEE Transactions on Reliability 60
(2), 381-393.

Kulturel-Konak, S. and Konak, A., 2009. Reliable network
server assignment using an ant colony approach. In:
Joint ESREL (European Safety and Reliability) and
SRA-Europe (Society for Risk Analysis Europe)
Conference, September 22, 2008 - September 25,
2008, Valencia, Spain. 2657-2663,

Kulturel-Konak, S. and Konak, A., 2010. Simulation
optimization embedded particle swarm optimization
for Reliable Server Assignment. In: Winter Simulation
Conference (WSC), Proceedings of the 2010, 5-8 Dec.
2010 2897-2906,

Perelson, A. S., 1989. Immune network theory.
Immunological Reviews, 110, 5-36.

Varela, F. J., Coutinho, A., Dupire, B. and Vaz, N., 1988.
Cognitive networks: Immune, neural and otherwise.
Theoretical Immunology 2,359-375.

A CLONAL SELECTION ALGORITHM TO INVESTIGATE DIVERSE SOLUTIONS FOR THE RELIABLE SERVER
ASSIGNMENT PROBLEM

161

