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Abstract: If researchers created computer-understandable descriptors as part of the process of authoring journal 
articles and other expert knowledge resources, intelligent computer-aided matching and searching 
applications that are critical for addressing complex and large-scale problems in society could be realized. 
The EKOSS system enables knowledge experts to create computer-understandable descriptors of their 
knowledge resources using description logics ontologies as formal knowledge representation languages. The 
descriptors, called semantic statements, are authored as description logic ABoxes in reference to a shared 
domain ontology in the form of a TBox. Reasoners using logic-based inference can then measure the 
semantic similarity between semantic statements, which can be applied in knowledge searching, mining and 
integration applications. A method for semantic matching that uses logic inference based on a DL ontology 
TBox to increase both the precision and recall of matching descriptors created as ABoxes is described, and 
the accuracy of the method compared to matching without logic inference is analyzed between a set of 15 
semantic statements created using EKOSS to describe research articles related to sustainability science. 

1 INTRODUCTION 

Integration of knowledge from a wide range of 
academic and non-academic domains is needed to 
address the complex problems of today’s society, e.g. 
related to achievement of sustainable societies 
(Takeuchi and Komiyama, 2006). However, just 
coming to grips with the different terminologies 
used in different disciplines, e.g. resolving different 
usages of the same term, is difficult (Allenby, 2006). 
If the accumulating knowledge resources remain 
disconnected, then soon it will be impossible to 
uncover the potential interrelationships and structure 
of all of that knowledge, which is necessary in order 
to solve the problems that contemporary science 
attempts to address (Lane and Bertuzzi, 2011).   

Information technologies can be used to generate 
networks of expert knowledge related to specific 
areas such as global sustainability and bioscience 
(Neumann and Prusak, 2007; Cahlik, 2000). Some 
of these studies include semantic relationships by 
using automated natural language processing (NLP) 
techniques, such as keyword extraction (Kajikawa et 
al., 2007). However, even the most advanced NLP 

techniques today, such as relationship extraction, 
cannot determine meaningful relationships between 
keywords with high accuracy (Erhardt et al., 2006).  

Technologies that enable creators of knowledge 
resources to provide computer interpretable 
descriptors of their resources themselves, rather than 
relying on third-party annotators or automated 
computer “bots”, could make computer-aided 
knowledge sharing more effective (Gerstein et al., 
2007; Uren et al., 2006; Power, 2009). In particular, 
technologies emerging in the context of the 
Semantic Web, such as ontologies, could be utilized 
to create an interactive knowledge sharing platform 
that would act as a forum for exchanging and 
integrating different forms of scientific knowledge 
related to a wide range of social issues (Allenby, 
2006; Berners-Lee and Hendler, 2001; for examples 
see Kraines et al., 2005; Davis et al., 2009; 
Kumazawa et al., 2009).   

If expert scientific knowledge resources, such as 
research articles or research project reports, were 
accompanied with highly accurate and semantically 
rich descriptors that can be interpreted by a 
computer, then inference and reasoning technologies 
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could be used to provide a wide range of knowledge 
processing services (Power, 2009; Alani et al., 2005; 
Hess and Schliedera, 2006). For example, by 
mapping the concepts contained in ontologies that 
have been constructed as knowledge models for 
different domains of knowledge, it should be 
possible to translate the concepts and relationships 
expressed in the descriptors between different 
domains of knowledge, e.g. between chemical 
engineering and macroeconomics. 

Any third party effort, e.g. by a group of 
professional curators, to create such descriptors for 
all published research articles could not keep up 
with the rate of scientific publication (Attwood et al., 
2009). However, knowledge processing based on 
computer-understandable descriptors authored by 
humans could be made sustainable by providing 
incentives for knowledge experts such as researchers 
and policy makers to author the descriptors for their 
own knowledge resources, perhaps as a part of the 
process of submitting research articles or project 
reports. Once the larger community is engaged in 
creating such descriptors of their expertise, then the 
knowledge processing based on those descriptors 
could be scaled up to the size of that community 
(DeRose et al., 2007; Ceol et al., 2008). 

EKOSS is a web-based platform that supports 
computer-mediated sharing and integration of expert 
knowledge resources based on computer-
understandable descriptors that are authored by 
human knowledge creators (Kraines et al., 2006). 
The TBox of a description logics ontology provides 
a simplified, unambiguous language for describing 
expert scientific knowledge with semantics that can 
be interpreted accurately by a computer reasoning 
engine. Expert knowledge is described in the form of 
ABoxes that instantiate the TBox. Those ABoxes, 
called “semantic statements” in EKOSS, are 
“computer-understandable” in that a computer can 
use logical inference and background knowledge 
encoded in the ontology to derive new 
“understanding” from a semantic statement. Each 
semantic statement is made of one or more triples 
consisting of a two ontology class instances and a 
typed, directed property between them.  

Here, we describe work to develop and test a 
method for computing the semantic similarities 
between a set of research articles based on semantic 
statements that have been created for those articles. 
By reasoning about semantic statements with logical 
inference, we can identify similarities between 
research articles that “tell similar stories” but do not 
have any bibliographic evidence for similarity, such 
as co-citation. Thus, in comparison to conventional 

social networks that describe “who knows who”, we 
aim to discover knowledge networks of “who should 
know who” because their work is similar in a 
meaningful way (Neumann and Prusak, 2007). 

In Section 2, we describe the method for 
calculating the semantic similarity between two 
statements, and the process we used to create the 
gold standard for evaluating the calculated semantic 
similarities. In section 3, we present the results of 
the analysis of semantic similarity calculations using 
several different levels of inference. We discuss the 
results and conclude the paper in sections 4 and 5. 

2 METHODS 

Our hypothesis is that given a set of semantic 
statements of knowledge resources authored by the 
human creators of those resources, we can find more 
accurate and more “interesting” matches between 
knowledge resources than by using conventional 
matching techniques. To test this hypothesis, we 
examine the effectiveness of using logical inference 
to find which pairs of semantic statements, each of 
which describes the research presented in a single 
research article, have the highest semantic similarity. 
In the following sections, we describe the method 
for calculating the semantic similarity between a set 
of semantic statements, and the gold standard we 
have created to evaluate the matching results.  

2.1 Semantic Statement Matching 

In order to study the different kinds of semantic 
matching techniques described in the previous 
section, we have developed a semantic matching 
tool that supports three of the basic types of 
matching described by Guo and Kraines (2008): 
matching of classes only, matching of triples without 
logical inference, and matching using DL inference. 
The process flow for the matching tool is illustrated 
in figure 1. All matching tasks take a set of semantic 
statements together with a complete set of matching 
options as inputs, and they output a list of matching 
results giving the calculated matching score between 
each pair of semantic statements together with the 
specific bindings between triples or instances, 
depending on whether or not triples are used in the 
semantic matching. In addition to the matching type, 
the matching options include class and property 
generalization rules and inclusion of property 
inverses and symmetry for triple-based matching. 

The semantic matching tool generates a search 
query set from each semantic statement as follows. 
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First, the semantic statement is decomposed into a 
set of atomic search queries, which are all of the 
classes of the instances in the statement in the case 
of “class-based” matching and all of the semantic 
triples in the statement otherwise. Because queries 
are matched using class and property taxonomies, 
queries containing general classes and properties 
will match with many semantic statements, but 
queries with specific classes and properties will 
often not find any matches. In order to compensate 
for this difference, we provide users with the option 
to specify class and property generalization rules. 
These are essentially lists of classes (properties) that 
are to be substituted for any subclasses 
(subproperties) that occur in the atomic search 
queries. For example, the analysis described here 
uses property generalization rules that include the 
property “has participant”. Therefore, all of the 
properties in all search queries that are subproperties 
of the property “has participant”, such as “produces”, 
“consumes” and “has actor”, are replaced with “has 
participant”. The result of this process is a set of 
atomic search queries that represent the different 
semantic assertions contained in the original 
semantic statement at a particular level of semantic 
specificity that is specified by the user. 

 
Figure 1: Flow diagram of the semantic matching 
algorithm. 

After the search query sets are generated, each 
atomic search query in each search query set is 
matched with all of the original semantic statements, 
which we call “target statements”. In the case of 
“class-based” matching, each atomic search query is 

just a single (possibly generalized) class; property 
information is ignored. Consequently, a match is 
recorded between the atomic search query and each 
instance in the target statement whose class is the 
same as or a subclass of the class given by the query.  

For “triple-based” matching, each atomic search 
query is a semantic triple comprised of a directed 
property from a domain class to a range class. Each 
atomic search query is matched with each semantic 
triple in each target statement. A match occurs if the 
class of the domain instance, the class of the range 
instance and the property of the triple from the target 
statement are all equal to or subsumed by the 
respective classes and properties in the atomic 
search query. If the user has included the matching 
option “use property inverses” and the property in 
the atomic search query has an inverse, then the 
inverse property is substituted into the search query 
and the classes of the domain and range are reversed. 
The modified atomic search query is then matched 
once again with all of the triples in the target 
statement. Similarly, if the user has included “use 
property symmetry” and the property is declared in 
the ontology to be symmetric, then the classes of the 
domain and range are reversed and the modified 
atomic search query is matched again with all of the 
triples in the target statement.  

In “DL-based” matching, once again each atomic 
search query is a semantic triple. First, all instances 
and properties of one target statement are loaded 
into the knowledge base of the DL reasoner (we use 
RacerPro here) as the ABox, together with the 
ontology which comprises the TBox. Then each 
atomic search query is evaluated by the reasoner 
against the knowledge base. If the reasoner finds an 
answer set to the query, then all pairs of instances in 
the ABox that can be bound to the class variables in 
the search query are recorded. The ABox of the 
knowledge base is then cleared, and the next target 
statement is loaded into the knowledge base.  

In both “triple-based” and “DL-based” semantic 
matching, multiple pairs of instances in the target 
statement may match with a particular atomic search 
query. Also, it is possible that more than one search 
query may match with a particular pair of instances. 

To obtain the score of a match between a search 
query set and a target statement, we calculate 
weights for each atomic search query using inverse 
document frequency (IDF) (Spark Jones, 1972): 

weight of atomic query =  
          ln[(total # of statements)/ 

(# of statements having at least 1 
match with the atomic query)] 

(1) 

Begin 

End 

Receive matching parameters:  
- matching type, generalization rules, etc. 

Generate search query sets from each semantic
statement 
- Decompose statement into triples or instances 
- Replace properties and classes according to the 

generalization rules 

Calculate matching score from IDFs of each atomic query

Match each atomic query in each search query set
with each target statement 
- Class-based: match atomic queries to instances 
- Triple-based: match atomic queries to triples 
- DL-based: query DL reasoner for bindings to atomic 

query 
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The matching score is then just the normalized 
sum of the weights of the matching atomic queries: score(s, t)= ∑ (weight of matched atomic query୨)୫୨ୀଵ ∑ (weight of atomic query୧)୬୧ୀଵ  (2) 

Where n is the total number of atomic queries in 
the search query set s, and m is the number of 
atomic queries that have at least one match in target 
statement t.  

2.2 Creating the Gold Standard 

In order to evaluate the precision and recall of the 
matching results using each of the semantic 
matching techniques, we have created a gold 
standard that gives the “correct” matches between a 
set of 15 semantic statements that were created using 
the EKOSS system to describe research articles on 
topics related to sustainability science. The semantic 
statements were authored using the SCINTENG 
ontology implemented in OWL-DL, which makes 
extensive use of the logical constructs provided in 
the DL framework such as domain and range 
restrictions on properties, logical characteristics of 
properties such as being transitive or functional, and 
universal, existential, and cardinal restrictions on 
classes (Kraines and Guo, 2011). All of these 
constructs can be used for semantic inference. 

We have chosen to focus on a small set of the 
semantic statements in order to be able to thoroughly 
investigate all of the matching results. The 15 
semantic statements were selected for research 
articles that are recent, published in internationally 
recognized journals, and are representative of the 
coverage of the SCINTENG ontology: five articles 
focus on experimental studies in material science, 
four articles focus on modeling studies of energy 
devices, three articles focus on studies of natural or 
agrarian ecosystems, and three articles focus on 
analyses of economic systems. Each semantic 
statement contains on average about 40 semantic 
triples, so there are over 500 triples, not including 
the triples in the TBox and the triples obtained 
through logic inference.  

We created the gold standard by examining the 
actual semantic similarity between pairs of semantic 
statements that had non-zero scores when DL 
inference was used for semantic matching. This set 
of matches necessarily includes all of the matches 
generated using triples, both with and without 
property inverses and symmetry. However, many of 
the matches generated using class matching will not 

be in this set, and these will all be treated as negative 
matches. We discuss this issue in section 4. 

Figure 2 shows the results of matching the 15 
research articles using DL inference. Each of the 
articles appears on both axes, so the diagonal 
consists of 100% matches of the semantic statement 
for a research article with itself. The matrix is not 
diagonal, however, because the semantic matching 
techniques are based on logical inference matches 
from the search query sets (on the X axis) to the 
target statements (on the Y axis).  

 
Figure 2: Results of matching semantic statements using 
DL inference. Labels on the X axis are short versions of 
the article titles. Target statements are on the Y-axis and 
search query sets for each of the semantic statements are 
on the X-axis. Shades of gray show match scores: a white 
cell is a zero match and a black cell is a match with a score 
of 20% or more. The gold standard scores are shown as 
circled numbers from 0 to 9 overlaying the shaded cells. 
Black circles are used on cells where the actual matching 
score using DL inference was less than 8%, and white 
circles are used where the match score was 8% or more.  

We examined each of the 81 non-zero matches 
off the diagonal to evaluate the actual semantic 
similarity. There are 210 pairs of different semantic 
statements, so this gives a coverage of 39%. We 
manually assigned a semantic similarity score to 
each of the matches based on our knowledge of the 
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matching domain, as shown in figure 2. The 
occasional disagreements between the match 
scores and the gold standard scores, e.g. the black 
cell in the first column that is labelled with a “1”, 
are indication that even matching using DL 
inference does not give perfectly accurate matches. 

3 RESULTS 

We ran the semantic matching process using class-
based matching (classes), triple-based matching 
without inverses or symmetry (triples), triple-based 
matching with both inverses or symmetry (triples+), 
and DL inference (DL). All of the matching 
techniques include inference over class and property 
hierarchies defined in the ontology. We used a set of 
property generalization rules but no class 
generalization rules for all of the semantic matching.  

To calculate precision and recall, we treat all of 
the matches in the gold standard having scores 
greater than or equal to 5 as true positives. We 
calculated PR curves by adjusting the cut off for the 
semantic matching results. Only 9 matches were 
greater than 15% in the DL semantic matching case, 
as shown in figure 2, so we have evaluated the 
number of true and false positives and negatives for 
cut off values of 1%, 2%, 5%, 8%, and 10%.  

The resulting PR curves are shown in figure 3. 
Except for the last point for the 10% cutoff, 
matching with DL inference outperformed all other 
matching techniques. While class matching tended 
to have high recall, the large number of matches that 
did not fulfil our criteria for the gold standard (at 
least one matching triple) meant very low values for 
precision. Even at the 10% cut off, the precision for 
the class matching case was just 60%.  

The PR value for the DL inference case at the 
10% cut off is clearly a low performance result, 
having both lower precision and lower recall than 
the previous cutoff at 8%. The reason for the 
simultaneous decrease in precision and recall is as 
follows. The number of true positives decreased 
from 18 to 13 when the cutoff was raised from 8% to 
10%. However, the cut off did not actually result in 
the removal of any false positives because already at 
8% cutoff there were only 5 false positives. A 
decrease in true positives with no change in false 
positives resulted in a decrease in both precision and 
recall. In comparison, the triples+ case at 8% cutoff 
had one less false positive than the DL inference 
case at 10% cutoff with the same number of true 

positives, so although the recall is the same, the 
precision is slightly better for the triples + case.  

The simultaneous decrease in precision and 
recall for the triples case from 5% cutoff to 10% 
cutoff occur for reasons similar to the DL inference 
case from 8% cutoff to 10% cutoff. 

 
Figure 3: PR curves for the four semantic matching runs 
described in the text. 

4 DISCUSSION 

The approach we have used for creating the gold 
standard favors the DL matching results. Therefore, 
the comparison of PR curves in the previous section 
should be viewed as a measure of the degree to 
which simpler forms of semantic matching can 
reproduce the results given by the DL inference 
based semantic matching. However, we believe that 
this is a useful evaluation because it is reasonable to 
think that the manual (rather than computer-
extracted) addition of rich semantic information 
should result in more semantically accurate matches. 

Ontologies formalized in logic have well known 
limitations in regard to expression of fuzzy concepts 
and uncertainty. Furthermore, the logical formalisms 
provided by OWL-DL do not allow us to express the 
propagation of a relationship from one property to 
another (Horrocks et al., 2006). For example, we 
might want to infer that if a particular instance of 
activity, such as “driving”, is identified to be located 
in a particular city “Tokyo” and have a particular 
participant “diesel truck”, then we know that the 
“diesel truck” has location “Tokyo” (at least for the 
duration of the activity). This function is supported 
in the new OWL2 protocol (Grau et al., 2008). The 
propagation function could also be implemented by 
defining Horn clause rules that create new properties 
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every time a propagating combination is detected. 
For the example given above, the Horn clause would 
have the head “A has location B and A has 
participant C” and the implication “C has location 
B”. We plan to examine the effect of adding rules 
such as this on semantic matching in future work. 

5 CONCLUSIONS 

We have described a method and tool for matching 
semantic statements that represent the expert 
knowledge reported in research articles based on a 
DL ontology. The precision and recall of matching 
using DL inference versus matching triples or 
classes directly without inference were measured 
using a gold standard prepared specifically for this 
study. The results indicate that the non-inference 
matching techniques were significantly less accurate 
than matching with DL inference.  
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