
ONTOLOGY-DRIVEN PRODUCT CONFIGURATION
Industrial Use Case

Alexander Smirnov, Nikolay Shilov, Alexey Kashevnik
SPIIRAS, St.Petersburg, Russia

Thomas Jung, Mario Sinko, Andreas Oroszi
Festo AG & Co. KG, Esslingen, Germany

Keywords: Product configuration, Ontology, SOA, Industrial environment, Context.

Abstract: The paper proposes an approach based on application of ontology management technology to the tasks of
product configuration and product code design in an industrial company. The development of the approach
includes usage of Web-services for industrial environment representation and context-based information
processing to facilitate the product configuration task. The research is illustrated via a case study for an
industrial company that has more than 300 000 customers in 176 countries. A use case for ontology-driven
product configuration demonstrates the applicability of the approach.

1 INTRODUCTION

New information technologies open new boundaries
for researchers. The service-oriented architecture
(SOA) is one such step towards information-driven
collaboration. This term today is closely related to
other terms such as ubiquitous computing, pervasive
computing, smart space and similar, which
significantly overlap each other (Balandin et al.
2009). In this paper a conceptual model of ontology-
driven product configuration in SOA-based
industrial environment is proposed. The SOA is used
in order to provide for interoperability.

Current trends in the worldwide economy require
companies to implement new production and
marketing paradigms. This determines major trends
of knowledge-dominated economy: (i) shift from
“capital-intensive business environment” to
“intelligence-intensive business environment” – an
“e” mindset – and (ii) shift from “product push”
strategies to a “consumer pull” management – mass
customisation approach (Smirnov et al., 2002). A
strategy bringing companies and their customers in a
closer collaboration is called innovation
democratisation. This is a relatively new term
standing for involvement of customers into the
process of designing new products and services.

This enables companies to better meet the needs of
their customers (von Hippel, 2006).

For companies with wide assortments of
products (more than 30 000 – 40 000 products of
approx. 700 types, with various configuration
possibilities), it is very important to ensure that
customers can easily navigate among them. One
possible solution is to provide a codification system
that can produce easily recognizable and at the same
time relatively short codes. This is an important task
for customer communication management because
well defined and understandable product
identification is mandatory for ensuring a good
corporate look for the company (Baumeister, 2002;
Fjermestad and Romano, 2002; Piller and Schaller,
2002).

The paper proposes an ontology-based approach
to product configuration and product code design.
Ontologies have shown their usability for this type
of tasks (e.g., Bradfield et al., 2007; Chan and Yu,
2007;Patil et al., 2005). A system based on the
proposed approach has been implemented in an
industrial company that has more than 300 000
customers in 176 countries supported by more than
52 companies worldwide with more than 250 branch
offices and authorised agencies in further 36
countries.

38 Smirnov A., Shilov N., Kashevnik A., Jung T., Sinko M. and Oroszi A..
ONTOLOGY-DRIVEN PRODUCT CONFIGURATION - Industrial Use Case.
DOI: 10.5220/0003635100380047
In Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS-2011), pages 38-47
ISBN: 978-989-8425-81-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2 USE-CASE SCENARIOS

A flexible codification system can be used for
different purposes (Figure 1). The first important
feature is support for creating new codes for new
products. Given the product family and its
characteristics an engineer should be able to define
the code of this product. Festo sells a wide variety of
pneumatic drives. Based on known product type a
customer should also be able to define the code of
the desirable product based on its characteristics
(customer requirements).

The following two basic use cases can be
outlined.

2.1 Modular Product Definition

Modular products refer to products, whose
functional, spatial and other characteristics fall
within a range of possible values. For such products
their characteristics are not known in advance. What
is known are constraints for the characteristics (e.g.,
a length can be from 50 to 500 mm with step of 1
mm). It should be possible for a customer to define a
valid code for such a product even if it never existed
before.

From the customers perspective it is less
important if a product is produced from a modular
definition or a stock part (except possibility for
different delivery times). The important question for
customers is to get the product which matches best
their requirements.

If a company uses different codification systems
for modular and discrete products, its possibility to
deliver stock parts instead of modular produced
products are limited. The customer usually expects
to get the same product, with the same product code,
he / she selected during the ordering process.

2.2 Ontology-Driven Product
Configuration

On the basis of the formal description of possible
products within the common ontology it is possible
now to design new applications which offer
customers better ways to find and choose the right
product.

A simple but always necessary kind of
relationship between properties and values describes
the consistency of a complex product. This is mainly
done by constraints restricting the set of all possible
combinations to those which are possible in real-life.
The reasons for applying constraints can be
different – the most common is the technical
possibility of a certain combination.

Furthermore it is possible to add dependant
technical data to a certain configuration (which is a
set of selected properties and values). For example, a
product’s weight can be calculated based on the
properties / values selected by customer. Another
common use case is to configure a CAD 3D model
by sending its constructive relevant information
from the order code. Practically a lot of data can be
made dependant on the current configuration of a
modular product. This provides a possibility to
provide data which is similarly exact to data of
discrete products (for example with a fixed weight).

Even more challenging are inter-product-
relationships. The most common use case is the
relationship between a main product and an
accessory product (Figure 2). While both products
are derived from a different complex modular
product model there are dependencies which assign
a correct accessory to a configured main product.
Those dependencies are related to the products
individual properties and values. The depth of
product-accessory relationships is basically not
limited, so accessory-of-accessory combinations
have to be taken into account, too.

Figure 1: Codification system information flows.

PDM System
SAP R/3

Product Catalogue
Product Configurator

Codification
Tool

New codes

Existing codes

Code definition
rules

Engineer Customer

Requirements New codes

New codes for
modular products

Code definition
rules

Product manager

ONTOLOGY-DRIVEN PRODUCT CONFIGURATION - Industrial Use Case

39

Figure 2: Example for product-accessory-relationship (standard cylinder DNCB, ISO 15552, with assorted accessories).

Certain problems have to be eliminated like
circular relationships which lead back to main
product. The relationships can be very complex
when it comes to define the actual location /
orientation of interfaces and mounting points
between products.

A more complex scenario is solution-oriented.
The idea is to solve a certain real-life problem with
modular-products and their inter-product-
relationships. The result of such a solution is
basically a system of products working together.
Used formalism of Object-Oriented Constraint
Networks (OOCN, see sec. 3) makes it possible to
perform automatic definition of configurable
complex products based on the required functions
and other constraints specified by the customer.

A handling module offers a good example for
this problem. For this purpose the ontology is
extended with an extra attribute “Function” for
classes.

For illustrative purposes a simple example
consisting of three simple products is considered:

 function: movement (Figure 3a)
 function: rotation (Figure 3b)
 function: gripping (Figure 3c)

Figure 3: Simple products: (a) movement function,
(b) rotation function, (c) gripping function.

The compatibility table for these products is
presented in Table 1. The goal of the example is to
configure complex products that can perform
predefined functions. For instance, if two functions
(movement and gripping) are required, then the
resulting product will consist of two simple products
(Figure 4). If all three functions are required, the
resulting product will be as shown in Figure 5. Such
a configuration can be calculated automatically by a
constraint solver. Principles of the configuration of
more complex constructions are planned to be
researched.

Table 1: Compatibility table.

 Product 1 Product 2 Product 3
Product 1 - + +
Product 2 - - +
Product 3 - - -

a)

b) c)

KMIS 2011 - International Conference on Knowledge Management and Information Sharing

40

Figure 4: Complex product performing two functions
(movement and gripping).

Figure 5: Complex product performing three functions
(movement, rotation and gripping).

3 ONTOLOGY-BASED DOMAIN
DESCRIPTION

The developed approach is based on the idea that
knowledge can be represented by two levels. The
first level describes the structure of knowledge
(TBox in description logic). Knowledge represented
by the second level is an instantiation of the first
level knowledge; this knowledge holds object
instances (ABox in description logic).

The knowledge of the first level (structural
knowledge) is described by a common ontology of
the company's product families (classes). Ontologies
provide a common way of knowledge representation
for its further processing. They are considered as
content theories about the sorts of objects, properties
of objects and relations between objects that are
possible in a specified knowledge domain. They
give potential terms for describing the knowledge
about the domain (Chandrasekaran et al., Gruber,
1993; Guarino, 1997). Ontology is useful in creating
unique models of problem domains by developing
specialized knowledge bases specific for various
configuration problem domains. It can be defined as
an explicit specification of the structure of a certain
domain. It includes a vocabulary for referring to the
subject area, and a set of logical statements
expressing the constraints existing in the domain and
restricting the interpretation of the vocabulary.

In this particular case the entities are product
families. Usage of product families enables the
definition of product platforms that can be reused
across whole families of similar products.

In the approach the ontological model is
described using the formalism of Object-Oriented

Constraint Networks (OOCN). Application of
constraint networks allows simplification of the
formulation and interpretation of real-world
problems which in the areas of management,
engineering, manufacturing, etc. are usually
presented as constraint satisfaction problems (e.g.,
Baumgaertel, 2000). This formalism supports
declarative representation, efficiency of dynamic
constraint solving, as well as problem modelling
capability, maintainability, reusability, and
extensibility of the object-oriented technology. In
the presented approach the product information is
supposed to be interpreted as a dynamic constraint
satisfaction problem (CSP).

Compatibility of CSP, ontology, and OOCN
models is achieved through identification of
correspondences between the primitives of these
models. The CSP model consists of three parts: (i) a
set of variables; (ii) a set of possible values for each
variable (its domain); and (iii) a set of constraints
restricting the values that the variables can
simultaneously take. Typical ontology modelling
primitives are classes, relations, functions, and
axioms. The formalism of OOCN describes
knowledge by sets of classes (product families),
class attributes (properties of the products), attribute
domains (possible values for the properties), and
constraints (explained below). The concept “class”
in OOCN notation is introduced instead of concept
“object” in the way object-oriented languages
suggest. The set of constraints consists of constraints
describing “class, attribute, domain” relations;
constraints representing structural relations as
hierarchical relationships “part-of” and “is-a”,
classes compatibility, associative relationships,
attribute cardinality restrictions; and constraints
describing functional dependencies.

The OOCN paradigm defines the common
ontology notation used in the system. According to
this representation an ontology (A) is defined as:
A = (O, Q, D, C) where: O – a set of object classes
(“classes”); each of the entities in a class is
considered as an instance of the class. Q – a set of
class attributes (“attributes”). D – a set of attribute
domains (“domains”). C – a set of constraints
(Figure 6).

For the chosen notation the following six types
of constraints have been defined
C = CI ∪ CII ∪ CIII ∪ CIV ∪ CV ∪ CVI: CI = {cI},
cI = (o, q), o∈O, q∈Q – accessory of attributes to
classes; CII = {cII}, cII = (o, q, d), o∈O, q∈Q, d∈D –
accessory of domains to attributes; CIII = {cIII},
cIII = ({o}, True ∨ False), |{o}| ≥ 2, o∈O – classes
compatibility (compatibility structural constraints);

ONTOLOGY-DRIVEN PRODUCT CONFIGURATION - Industrial Use Case

41

Figure 6: Object-oriented constraint network paradigm.

CIV = {cIV}, cIV = 〈o', o'', type〉, o'∈O, o''∈O, o' ≠ o''
– hierarchical relationships (hierarchical structural
constraints) “is a” defining class taxonomy (type=0),
and “has part”/“part of” defining class hierarchy
(type=1);CV = {cV}, cV = ({o}), |{o}| ≥ 2, o∈O –
associative relationships (“one-level” structural
constraints); CVI = {cVI}, cVI = f({o}, {o, q}) =
True ∨ False, |{o}| ≥ 0, |{q}| ≥ 0, o∈O, q∈Q –
functional constraints referring to the names of
classes and attributes.

Below, some example constraints are given:
the attribute Locking in end positions (q1)

belongs to the class Series C (pneumatic drive) (o1):
cI

1 = (o1, q1);
the attribute Locking in end positions (q1)

belonging to the class Series C (o1) may take the
values Without (Standard), Extend / Retract, Extend,
and Retract (the explanation of the values is given in
sec. 4): cII

1 = (o1, q1, {Without (Standard); Extend /
Retract; Extend; and Retract});

the class Valve (o2) is compatible with the class
Series C (o1): cIII

1 = ({o1, o2}, True);
an instance of the class Valve (o2) can be a part

of an instance of the class Valve terminal (o3): cIV
1 =

〈o2, o3, 1〉;
the Series C (o3) is a Pneumatic Drive (o4):

cIV
1 = 〈o3, o4, 0〉;
an instance of the class Valve (o2) can be

connected to an instance of the class Series C (o1):
cV

1 = (o2, o1);
the value of the attribute cost (q2) of an instance

of the class solution (o5) depends on the values of
the attribute cost (q2) of instances of the class
component (o6) connected to that instance of the
class solution and on the number of such instances:
cVI

1 = f({o6}, {(o5, q2), (o6, q2)}).

4 ONTOLOGICAL MODEL
IMPLEMENTATION

The first step to an implementation of the approach
is creation of the ontology described above. This
operation was done semi-automatically based on
existing electronic documents and defined rules of
the model building. The resulting ontology consists
of more than 1000 classes organized into a 4 level
taxonomy, which is based on the VDMA (Verband
Deutscher Maschinen- und Anlagenbau - German
Engineering Federation) classification (Figure 7).
Taxonomical relationships support inheritance that
makes it possible to define more common attributes
for higher level classes and inherit them for lower
level subclasses. The same taxonomy is used in the
company's PDM (Product Data Management) and
ERP (Enterprise Resource Planning) systems.

For each product family (class) a set of
properties (attributes) is defined, and for each
property its possible values and their codes are
defined as well. The lexicon of properties is
ontology-wide, and as a result the values can be
reused for different families. Application of the
common single ontology provides for the
consistency of the product codes and makes it
possible to instantly reflect incorporated changes in
the codes.

The ontology and the lexicon of properties are
multilingual. Each class and attribute can be
assigned several names in different languages so that
specialists from different countries could work
simultaneously while still preserving consistency of
the ontology. Additionally, metadata fields and
comments can be defined to provide for an
additional description of the classes, properties and
property values (Figure 8).

Class A

Class B

Superclasses

Class AB

Class AA

Class BA Subclasses
“has_part” relation

(constraint)

“uses” associative
relation (constraint)

Class C

Class CA

“i
s_

a”
 r

el
at

io
n

(c
on

st
ra

in
t)

Attributes
“attribute to class

accessory” constraint

Attribute F

Attribute G

functional
constraint

Domains

Domain K

Domain L

“domain to attribute
accessory” constraint

co
m

pa
tib

ili
ty

co

ns
tr

ai
nt

KMIS 2011 - International Conference on Knowledge Management and Information Sharing

42

Figure 7: Ontology - Festo Product Classification.

Figure 8: Class description example.

5 CODIFICATION RULES
DEFINITION

The ontology described above provides rules for the
codification system in the following way. For each
class a number of attributes is assigned in a certain
sequence. This sequence of attributes forms a
template for codes of products belonging to the
appropriate product family. For each product the
properties are replaced with codes of their values
corresponding to the particular product to generate
its code.

To illustrate this idea the following example can
be considered.

The DSBC series is a family of pneumatic drives
with a single moving rod (Figure 9). There are 35
different properties each with between 4 to 10

values. Customer and engineers can select from
these properties and values. Some combinations of
different properties and values are not allowed
because they are technically impossible.

Figure 9: DSBC product: a pneumatic drive.

Typical properties of the DSBC series are
“locking in end positions” and “special antifriction
features”. Their possible values / codes are presented
in Table 2.

Given code template consisting of a delimiter
and the above two properties, the following codes
can be built:

 Standard (no locking, no antifriction features):
DSBC

 “Extend / retract” (locking in both directions)
and standard antifriction features: DSBC-E1

 “Extend / retract” and reduced friction:
DSBC-E1L

Figure 10 represents a fragment of the real code
scheme for the DSBC series.

Inheritance of more common properties from
higher, more abstract classes ensures that for
different branches of the classification the sequence
of common properties will be the same. This
simplifies the code interpretation.

For example, the “locking in end positions”
property is inherited from the DS class (2nd level,
product subgroup in the classification) and it can be
used in the same relative position in child classes of
the DS class.

To avoid ambiguous code interpretations a
special validation algorithm has been developed.

classification (all products)

product group

product subgroup

product segment

product series
discrete products
(product variants)

modular products
(possible variants)

single code scheme

ONTOLOGY-DRIVEN PRODUCT CONFIGURATION - Industrial Use Case

43

Table 2: Compatibility table.

Code Value Name Description
Locking in end positions

 Without (Standard) the most common choice, no locking in end positions
E1 Extend / Retract locking is applied in both directions of movement
E2 Extend locking is applied in the direction of extension
E3 Retract locking is applied in the direction of retraction

Special antifriction features
 None / Normal type the most common choice, no special antifriction features

L Low friction product with reduced friction
S Slow speed product oriented to slow movement

Figure 10: Code scheme for the DSBC series (a fragment).

Built codes and values name can be used for
different purposes. Some examples are:

 Order Code Schemas in printed catalogues
(selections of properties -> order code)

 Online configurator applications (selections of
properties -> order code)

 Order code interpretation / validation (order
code -> list of selected properties -> order
fulfillment)

6 CONCLUSIONS

Generating a new order code for a new series with
the help of the developed system tool takes

approximately one day. The technical options
presented by the product manager and developer are
converted into order-relevant options. As most of the
characteristics can be used again, only new options
must be discussed and entered in the system.
Without the system this process would need several
days. Besides this, the error risk would be very
large. It could happen that for the same option
another code letter is used for example.

The major advantages of the developed system
are:

 Systematic order codes for all products;
 Machine readability;
 Quick orientation;
 Security when selecting and ordering

products.

KMIS 2011 - International Conference on Knowledge Management and Information Sharing

44

One other advantage is the reusability of the
data. The structured data are used in other processes
such as:

 Automatically creating master data in SAP
models;

 Automatically creating data for the
configuration models;

 Automatically generating an ordering sheet for
the print documentation (this ordering sheet
was generated earlier with high expenditure
manually);

 Automatically generating a product list which
is needed in the complete process
implementing new series.

7 FUTURE WORK:
COLLABORATIVE SOA-BASED
INDUSTRIAL ENVIRONMENT

The approach is based on the idea of characterizing
all members and components of the industrial
environment by their roles (e.g., designer,
production manager, production facility, etc.) and of
describing them via profiles. These profiles are
associated with agent-based services that negotiate
in order to take into account explicit and tacit
preferences of the industrial environment
components.

This approach integrates efficient sharing of
information with a service-oriented architecture
taking into account the dynamic nature of the
industrial environment. For this purpose the models
proposed are actualized in accordance with the
current situation. An ontological model is used in the
approach to solve the problem of service
heterogeneity. This model makes it possible to
enable interoperability between heterogeneous
information services due to provision of their
common semantics and terminology (Uschold and
Grüninger, 1996). Application of the context model
makes it possible to reduce the amount of
information to be processed. This model enables
management of information relevant for the current
situation (Dey, 2001) (e.g., the current industrial
segment). The access to the services, information
acquisition, transfer, and processing (including
integration) are performed via usage of the
technology of Web-services.

This work is work-in-progress and the paper
proposes conceptual ideas for their further
development. Figure 11 represents the generic
scheme of the SOA-based industrial environment
representation.

The main idea of the approach is to represent the
members and components of the industrial
environment by sets of services provided by them.
This makes it possible to replace the information
sharing between them with that between distributed
services. For the purpose of interoperability the

Figure 11: Generic scheme of the approach.

Distributed Service
network

Service

Web-service
interface

Application ontology Abstract context Operational context

Ontology-driven
interoperability

SOA-based
industrial

environment

Relationship
Correspondence

Web-Service network

Information and
service sharing in

the industrial
environment

Industrial environment
members and components

Industrial
environment

Service-oriented
architecture

Reference
Information flow

ONTOLOGY-DRIVEN PRODUCT CONFIGURATION - Industrial Use Case

45

services are represented by Web-services using the
common notation described by the application
ontology. Depending on the considered problem the
relevant part of the application ontology is selected
forming the abstract context that, in turn, is filled
with values from the sources resulting in the
operational context.

The service-oriented architecture has a number
of advantages resulting from its principles (CADRC,
2009). Among these the following should be
mentioned (the specifics related to the industrial
environment are indicated in italics):

1 Service Autonomy. Services engineered for
autonomy exercise a high degree of control
over their underlying run-time execution
environment. Autonomy, in this context,
represents the level of independence which a
service can exert over its functional logic. With
regard to the industrial environment the
autonomy also reflects independence of the
network members, which in real life are often
have different subordination.

2 Service Abstraction. Further supporting
service autonomy, SOA advocates that the
scope and content of a service’s interface be
both explicitly described and limited to that
which is absolutely necessary for the service to
be effectively employed. Beyond the service
interface, abstraction applies to any
information, in any form, describing aspects of
the service’s design, implementation, employed
technologies, etc. This principle helps to
abstract from real services provided by the
industrial environment members and
components and concentrates on their
modelling via Web-services.

3 Service Standardisation. As services are
typically distributed throughout networks, they
must be easily accessible by other entities in
terms of discoverability and consequential
invocation. Given this requirement, service-
oriented architecture recommends that services
adhere to standards, including, for example,
standards for the language used to describe a
service to prospective consumers. In the
proposed approach the standardisation is
achieved via usage of the common standards
such as WSDL and SOAP as well as common
terminology described by the application
ontology. As a result the services constituting
the network are fully interoperable and can
communicate with each other without any
problems.

4 Service Reusability. Reusability is a central

property of any successful service. It denotes
the capacity of a service to be employed in
support of not just one but rather a variety of
business models. SOA promotes such
functional reuse through stipulations for
service autonomy and interface abstraction.
With these features, the same service can be
invoked by multiple consumers, operating in
various business domains, without requiring
the service provider to re-code service internals
for each application domain. Service
reusability significantly facilitates the
modelling process and decreases the amount of
work required for model building. Besides, the
existing services of the industrial network
members and components can be used.

ACKNOWLEDGEMENTS

The presented work is a result of the joint project
between SPIIRAS and Festo Ag&Co KG. Some
parts of the research were carried out under projects
funded by grants # 09-07-00436, # 10-07-00368 and
09-07-00066 of the Russian Foundation for Basic
Research, and project #213 of the research program
“Intelligent information technologies, mathematical
modelling, system analysis and automation” of the
Russian Academy of Sciences.

REFERENCES

Balandin, S., Moltchanov, D., Koucheryavy, Y., eds.,
2009. Smart Spaces and Next Generation
Wired/Wireless Networking, Springer, LNCS 5764.

Baumeister, H., 2002. Customer relationship management
for SMEs, Proceedings of the 2nd Annual Conference
eBusiness and eWork e2002, Prague, Czech Republic.

Baumgaertel, H., 2000. Distributed constraint processing
for production logistics, IEEE Intelligent Systems,
15(1) 40-48.

Bradfield, D. J., Gao, J. X., Soltan, H., 2007. A
Metaknowledge Approach to Facilitate Knowledge
Sharing in the Global Product Development Process,
Computer-Aided Design & Applications, 4(1-4) 519-
528.

CADRC, 2009. KML Sandbox: An Experimenation
Facility Based on SOA Principles. CADRD Currents,
Fall, 2009, Collaborative Agent Design Research
Center (CADRC), California Polytechnic State
University, San Luis Obisro.

Chan, E. C. K., Yu, K. M., 2007. A framework of
ontology-enabled product knowledge management,
International Journal of Product Development,
Inderscience Publishers, 4(3-4) 241-254.

KMIS 2011 - International Conference on Knowledge Management and Information Sharing

46

Chandrasekaran, B., Josephson, J. R., Benjamins, V. R.,
1999. What are Ontologies, and Why Do We Need
Them?,IEEE Intelligent Systems & Their Applications,
(January/February), 20-26.

Dey, A. K., 2001. Understanding and Using Context,
Personal and Ubiquitous Computing J., 5(1) 4-7.

Fjermestad, J., Romano, N. C., Jr., 2003. An Integrative
Implementation Framework for Electronic Customer
Relationship Management: Revisiting the General
Principles of Usability and Resistance, Proceedings of
the 36th Hawaii International Conference on System
Sciences (HICSS’03), Big Island, HI, USA.

Gruber, T. R. 1993. A translation approach to portable
ontologies, Knowledge Acquisition, 5(2) 199-220.

Guarino N. 1997. Understanding, Building, and Using
Ontologies – A Commentary to "Using Explicit
Ontologies in KBS Development" (by van Heijst,
Schreiber, and Wielinga), International Journal of
Human and Computer Studies, 46(2/3) 293-310.

von Hippel, E., 2006. Democratizing innovation, The MIT
Press, Cambridge, Massachussets, USA.

Piller, F., Schaller, C., 2004. Individualization based
Collaborative Customer Relationship Management:
Motives, Structures, and Modes of Collaboration for
Mass Customization and CRM, Working Paper No. 29
of the Dept. of General and Industrial Management,
Technische Universität München.

Patil, L., Dutta, D., Sriram, R., 2005. Ontology-based
exchange of product data semantics, IEEE
Transactions on Automation Science and Engineering,
2(3) 213-225.

A. Smirnov, A., Pashkin, M., Chilov, N., Levashova, T.,
2002. Knowledge Fusion in the Business Information
Environment for e-Manufacturing Pursuing Mass
Customisation, Moving into Mass Customization.
Information Systems and Management Principles (eds.
C. Rautenstrauch, R. Seelmann-Eggebert, K.
Turowski), Springer, 153-175.

Uschold, M., Grüninger, M., 1996. Ontologies: Principles,
methods and applications, Knowledge Engineering
Review, 11(2) 93-155.

ONTOLOGY-DRIVEN PRODUCT CONFIGURATION - Industrial Use Case

47

