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Abstract: Many learning methods have been proposed for Takagi-Sugeno-Kang fuzzy neural modelling. However, de-
spite achieving good global performance, the local models obtained often exhibit eccentric behaviour which
is hard to interpret. The problem here is to find a set of input space partitions and, hence, to identify the corre-
sponding local models which can be easily understood in terms of system behaviour. A new hybrid approach
for the construction of a locally optimized, functional-link-based fuzzy neural model is proposed in this paper.
Unlike the usual linear polynomial models used for the rule consequent, the functional link artificial neural
network (FLANN) is employed here to achieve a nonlinear mapping from the original model input space.
Our hybrid learning method employs a modified differential evolution method to give the best fuzzy partitions
along with the weighted fast recursive algorithm for the identification of each local FLANN. Results from a
motorcycle crash dataset are included to illustrate the interpretability of the resultant model structure and the
efficiency of the new learning technique.

1 INTRODUCTION

Takagi-Sugeno-Kang (TSK) fuzzy neural systems
have been widely applied to the modelling of nonlin-
ear dynamic systems from noisy datasets. In fact, a
TSK fuzzy model can be viewed as a number of lo-
cal models valid in different input spaces. However,
due to the linear polynomial form of the rule conse-
quent, this representation may not capture fully all the
information contained in the original input space. A
functional-link-based neural fuzzy network, consist-
ing of nonlinear combinations of the model inputs has
therefore been proposed for the rule consequent (Lin
et al., 2009).

The most important issue for nonlinear modelling
is to optimize the fuzzy neural system parameters us-
ing the given data. To deal with possible local min-
ima, heuristic algorithms can either be directly ap-
plied, or else integrated with more conventional meth-
ods to enhance the training accuracy. For example
the random optimization approach has been success-
fully used to update the premise parameters (Cheng,
2009). Given sufficient rules and training data, there
are many techniques available for producing an accu-
rate TSK fuzzy model. However, the interpretability
of the local models obtained cannot always be guar-

anteed.
The goal of this paper is to construct a locally

optimized fuzzy neural model, consisting of a set of
fully-interpretable local models. Unlike (Lin et al.,
2009), the parameters to be learned are divided into
two subsets, corresponding to the premise and con-
sequent parts of the model. A simple modification
to differential evolution (DE) is described and then
utilized to optimize the nonlinear parameters in the
rule premises. A weighted version of the fast recur-
sive algorithm (FRA) (Li et al., 2005) is also derived
for determining the structure and identifying the lin-
ear parameters locally in the rule consequents. An
application study and comparison with ANFIS illus-
trated the interpretability of the resultant model struc-
ture and the efficiency of the new learning technique.

2 FUNCTIONAL-LINK-BASED
FUZZY NEURAL SYSTEMS

Functional-link-based fuzzy neural systems are repre-
sented by the following:

Ri : IF x1(t) = Ai,1 AND x2(t) = Ai,2 AND . . .

AND xn(t) = Ai,n, THEN ŷi(t) = fi(Z i(t);θθθi)
(1)
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wherei is the rule index,X(t) = [x1(t), . . . ,xn(t)]T ∈
ℜn represents then model inputs,Ai, j is the fuzzy set
associated with theith rule corresponding to the input
x j , ŷi(t) is the local model output realized using the
output of a functional link artificial neural network
fi(·), Z i(t) = [zi,1(t), . . . ,zi,qi (t)]

T ∈ ℜqi defines theqi
most significant basis functions of the input variables
selected for theith output of the FLANN, andθθθi is the
corresponding coefficient vector.

In a FLANN, the input vectorX(t) is functionally
enhanced by a set of linearly independent functions
chosen from an orthonormal basis set, to give the out-
putsi(t):

si(t) =
q

∑
j=1

ωi, j p j(X(t)) (2)

whereq denotes the total number of functional ex-
pansions for all inputs,θi, j is the weight parameter
relating to theith output of the FLANN andp j repre-
sents thejth basis function. As with (Lin et al., 2009),
trigonometric expansions are used for the expanders.
Now theith output of FLANN is taken as the conse-
quent part for theith rule. To give a compact local
model, and to enhance the understandability, a subset
qi of the most significant combination of terms se-
lected from (2) form theith rule consequent. Thus

fi(Z i(t);θθθi) =
qi

∑
j=1

θi, jzi, j(t); j = 1, . . . ,qi (3)

Here θθθi = [θi,1, . . . ,θi,qi ]
T ∈ ℜqi are the coeffi-

cients associated with theith output of the FLANN.
For N data samples,zi, j = [zi, j (1), . . . ,zi, j(N)]T ∈

ℜN and p j(X) = [p j(X(1)), . . . , p j(X(N))]T ∈ ℜN,
then Z i = [zi,1, . . . ,zi,qi ] will be a subset ofP =
[p1(X), . . . ,pq(X)].

Assuming Gaussian membership functions are
used in the fuzzy sets, the firing strength of theith
fuzzy rule can be computed from the T-norm:

µi(X(t);wi) =
n

∏
j=1

exp

{

−
1
2

(

x j(t)− ci, j

σi, j

)2
}

(4)

where ci, j and σi, j denote the centre and stan-
dard deviation ofAi, j , wi = [cT

i ,σσσT
i ]

T ∈ ℜ2n, ci =

[ci,1, . . . ,ci,n]
T ∈ ℜn, andσσσi = [σi,1, . . . ,σi,n]

T ∈ ℜn.
The normalized firing strength of theith rule which
determines its region of validity is now given by

Ni (X(t);W) = µi(X(t);wi)/
Nr

∑
i=1

µi(X(t);wi) (5)

whereW = [wT
1, . . . ,w

T
Nr
]T andNr is the number of

fuzzy rules. A weighted-average-defuzzification can
be employed to give the output of the fuzzy system:

f (X(t);ΘΘΘ) =
Nr

∑
i=1

Ni (X(t);W) fi(Z i(t);θθθi) (6)

3 HYBRID LEARNING METHOD

A modified differential evolution (DE) algorithm
(Storn and Price, 1997) is performed to globally opti-
mize the nonlinear parametersW. The network struc-
ture and associated parameters for each FLANN in (3)
are locally determined by a weighted version of fast
recursive algorithm (FRA) (Li et al., 2005).

3.1 DE for Optimizing Rule Premises

The DE algorithm (Storn and Price, 1997) is em-
ployed to optimize the fuzzy partitions for the rule
premise represented by the parameter vectorW as fol-
lows.
1) Mutation. For each individual solutionWβ(g),
three other indexesα1, α2, and α3 are randomly
selected between 1 and the size of the population
Np (with β 6= α1 6= α2 6= α3). A new trial vector
Vβ(g+1) is created as

DE/rand/1 : Vβ(g+1) = Wα3(g)+F(Wα1(g)−Wα2(g))

whereg represents the generation and F is a mutation
control parameter. Another mutation strategy is (Qin
and Suganthan, 2005):

DE/cur−best/2 : Vβ(g+1) = Wβ(g)+

F(Wbest(g)−Wβ(g))+F(Wα1(g)−Wα2(g))

whereWbest(g) is the best solution in thegth genera-
tion.
2) Crossover. Binomial crossover is now performed
on the mutated trial vectorVβ(g+1). For each gene
in the vector, a random numberϒ j( j = 1, . . . ,2nNr)
within the range [0, 1] is generated.

Vβ j(g+1) =

{

Vβ j(g+1); ϒ j ≤CR or j= I j
Wβ j(g); otherwise (7)

In (7), I j is a randomly chosen integer in the set I,
i.e., I j ∈ I = {1, . . . ,2nNr} and j represents thejth
component of the trial vector. CR is the crossover
constant lying in the range [0, 1].
3) Selection.The objective function used to evaluate
an individual solution is given by

J =
1
N

N

∑
t=1

(y(t)− ŷ(t))2 (8)

wherey(t) is the desired output and ˆy(t) is the out-
put of the overall fuzzy model. To decide whether the
vectorVβ(g+1) should be included at the next gen-
eration, it is compared with the corresponding vector
Wβ(g) as follows:

Vβ(g+1) =

{

Vβ(g+1); J(Vβ(g+1)) < J(Wβ(g))
Wβ(g); otherwise

(9)
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Steps 1)-3) are repeated until the specified termina-
tion criterion is reached.
4) Modified Differential Evolution. To balance the
exploration ability and the stability of the algorithm,
it is proposed that the two mutation variants in the
mutation part are combined. Here, the trial vectors
produced by DE/rand/1 occur with a probabilityMp
and those that from DE/cur-best/2 occur with a prob-
ability 1-Mp.

Vβ(g+1) =

{

DE/rand/1; rand< Mp
DE/cur−best/2; otherwise (10)

3.2 Weighted FRA for Identification of
Rule Consequents

A weighted version of FRA (Li et al., 2005) is now
derived and applied to determine the structure of the
rule consequents and to identify the associated linear
parameters in (3). Instead of estimating all the param-
eters simultaneously,Nr separate local estimations are
carried out for each local model. The output of each
local FLANN can be expressed as

ŷi = Z iθθθi (11)

whereZ i = [Z i(1), . . . ,Z i(N)]T. To estimate all the lo-
cal linear models, weighted least-squares is employed
using the cost function

Ei(θθθi) = eT
i Qiei (12)

where ei = [ei(1), . . . ,ei(N)]T and ei(t) = y(t) −
ŷi(t) denotes theith model errors for data sam-
ple {Z i(t),y(t)}. The weighting matrix Qi =
diag(Ni (X(1),W) , . . . ,Ni (X(N),W)), has the advan-
tage that knowledge about the confidence in each data
sample which is determined by each fuzzy partition.

Assuming there areNr fuzzy partitions, the full
regression matrix is chosen asZ i = P with each
column denoted asZ i = [p1, . . . ,pq], and pk =

[pk(1), . . . , pk(N)]T, k = 1, . . . ,q. Letting Z(k)
i =

[zi,1, . . . ,zi,k] ∈ ℜN×k, the local model output weights
are thus computed as

θθθi = (Z(k)
i

T
QiZ

(k)
i )−1Z(k)

i

T
Qiy (13)

The accuracy criterion in (12) is now given by

E(k)
i (Z(k)

i ) = yTQ1/2
i R(k)

i Q1/2
i y (14)

whereR(k)
i (0< k≤ q), referred to as the residual ma-

trix is defined as

R(k)
i = I −Q1/2

i Z(k)
i (Z(k)

i

T
QiZ

(k)
i )−1Z(k)

i

T
Q1/2

i (15)

Specifically, the following properties hold forR(k)
i :

R(k+1)
i = R(k)

i −
R(k)

i Q1/2
i zi,k+1zT

i,k+1Q1/2
i R(k)

i

zT
i,k+1Q1/2

i R(k)
i Q1/2

i zi,k+1

(16)

R(k)
i

T
= R(k)

i ; R(k)
i R(k)

i = R(k)
i ; k= 0, . . . ,q (17)

R(k)
i R( j)

i = R( j)
i R(k)

i = R(k)
i ; k ≥ j ; k, j = 0, . . . ,q (18)

R(k)
i Q1/2

i p(i) = 0; rank[zi,1, . . . ,zi,k,p(i)] = k (19)
The derivation of the above properties is similar to (Li
et al., 2005). Lettingp(i) denote those terms relating
to the ith model which are still not included in the
regression matrixZ(k)

i , the net contribution to the cost
function from addingp(i) to the model is

∆E(k+1)
i (Z(k)

i ;p(i)) = E(k)
i (Z(k)

i )−E(k+1)
i (Z(k)

i ;p(i)) (20)

Using (16), this net contribution can be more easily
calculated as:

∆E(k+1)
i (Z(k)

i ;p(i))

=
yTQ1/2

i R(k)
i Q1/2

i p(i)p(i)TQ1/2
i R(k)

i Q1/2
i y

p(i)TQ1/2
i R(k)

i Q1/2
i p(i)

(21)

For efficient computation of∆E(k+1)
i (Z(k)

i ;p(i)), the
following quantities are defined:











a(i)k+1,c = zT
i,k+1Q1/2

i R(k)
i Q1/2

i zi,c

a(i)k+1,y = yTQ1/2
i R(k)

i Q1/2
i zi,k+1

(k= 0, . . . ,q−1; c= k+1, . . . ,q)

(22)

and successively using (16), gives














a(i)k+1,c = zT
i,k+1Qizi,c−

k
∑
j=1

a(i)j,k+1a(i)j,c/a(i)j, j

a(i)k+1,y = yTQizi,k+1−
k
∑
j=1

a(i)j,ya(i)j,k+1/a(i)j, j

(23)

Now, suppose a number ofk regressors have been

added intoZ(k)
i from the full regression matrixZ i , A

variablek×q upper triangular matrixA is defined as

A = [a(i)r,c]k×q

a(i)r,c =











0; c< r

zT
i,rQ

1/2
i R(r−1)

i Q1/2
i zi,r ; r ≤ c≤ k

zT
i,rQ

1/2
i R(r−1)

i Q1/2
i p(i)

c ; k< c≤ q

(24)

Finally zi,k+1 = argmax∆E(k+1)
i (Z(k)

i ;p(i)
r ), which

means that thep(i)
r giving the maximumvalue of

∆E(k+1)
i (Z(k)

i ;p(i)
r ) can be selected as the(k+1)th ba-

sis vector inZ(k+1)
i for the ith local model. Akaike’s

information criterion (AIC) is adopted as the stopping
condition here. To avoid linear correlated terms in
Z(k+1)

i , small values for the diagonal entriesA must
not be generated. In this situation, the term leading to

the secondlargest reduction in∆E(k+1)
i (Z(k)

i ;p(i)) is
employed. Assuming thatqi terms have been selected
for theith rule consequent by the proposed algorithm,
the solution for each local model is then given by:







θ̂i, j = (a(i)j ,y−
qi

∑
c= j+1

θ̂i,ca
(i)
j ,c)/a(i)j , j

(i = 1, . . . ,Nr ; j = qi , . . . ,1)
(25)
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4 MOTORCYCLE DATASET

A simulated motorcycle crash dataset (Silverman,
1985) is used as a illustrative example. This dataset
consists of a series of measurements of head acceler-
ation in a simulated motorcycle accident. A total of
133 one-dimensional time-series accelerometer read-
ings were recorded experimentally. Note that the time
points are not regularly spaced, and there are multiple
observations at some instants. The interest here is to
determine the general nature of the underlying accel-
eration as a function of time soon after an impact by
using a locally optimized, functional-link-based fuzzy
neural model with time and acceleration taken as the
input and output respectively. Modelling was done
using 67 readings for training and the remaining 66
records as a test dataset. All the samples were normal-
ized to lie in the range [0, 1], thus limiting the centres
and widths of the Gaussian membership functions to
the same range.

The hybrid learning approach involved 300 itera-
tions with 40 individuals in each population. The val-
ues ofF , CR, andMp were set as 0.7, 0.9, and 0.5
respectively, and the learning process was repeated
for 10 runs. The number of evaluations for each
run was therefore 40(individuals)×300(iterations) =
12,000. As with ANFIS, the number of rules was
determined by trial-and-error, four fuzzy rules finally
being adopted in this application. The overall mean
sum-squared error of the best fuzzy neural model
obtained was 6.34× 10−3 on the training data and
15.6× 10−3 on the test data, both comparable with
the corresponding ANFIS results to be discussed later.
The final fuzzy model with the best performance over-
all was defined by the following rule:

R1 : IF x1 is µ1,1(0.2982;0.0453)

THEN f1 is −2.9995cos(πx1)

−5.5678sin(πx1)+6.4335

R2 : IF x1 is µ2,1(0.1028;0.0481)

THEN f2 is 0.0418+0.5836cos(πx1)

+0.1290sin(πx1)

R3 : IF x1 is µ3,1(0.4815;0.0458)

THEN f3 is 1.8445x1−5.4456+5.2852sin(πx1)

R4 : IF x1 is µ4,1(0.7959;0.0967)

THEN f4 is 0.3436+0.6079cos(πx1)+0.9580x1

(26)

whereµi,1(ci,1;σi,1) denotes the centreci,1 and stan-
dard deviationσi,1 of the ith membership function
with regard to the input, used to partition the time axis
into different local regions, andfi represents the cor-
responding local predicted acceleration (i = 1,2,3,4).

To obtain a visual understanding of each fuzzy lo-
cal model over the test dataset, the behaviour of each
has been characterized in its corresponding working
region as shown in Fig. 1. (Here only the domi-
nant rule for both ANFIS and our method is shown
for each local region). The rule premises are used
to generate these working regions and the behaviour
within each is defined by the rule consequents. It can
be seen that the predicted acceleration of each local
model matches well the measured value in each lo-
cal time interval. As required, the locally optimized
models can therefore be individually interpreted as
a description of the identified nonlinear behaviour
within the regime represented by the corresponding
rule premise. These properties thus allow one to gain
insight into the model behaviour and thus to improve
its interpretability as required. Furthermore, in (26)
the fi (i=1,2,3,4) also show the relative order of im-
portance of the combinations of FLANN terms in-
cluded. This could be helpful in understanding the
evolution of the head acceleration over time.
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Figure 1: Proposed method over the test dataset (The dotted
line represents each local model behaviour as distinguished
by the vertical dashed line, the solid line is the original test
data, and the bottom curve stands for the testing error be-
tween original data and overall model output).

For comparison, the well-known ANFIS model
trained by another two-stage method combining
steepest descent with least-squares was applied. The
overall training error and testing error were now
6.79× 10−3 and 16.3× 10−3 respectively. Both the
ANFIS model and ours are capable of producing good
accuracy in terms of the error between the measured
acceleration and that produced by the model. The lo-
cal models produced by ANFIS are as shown in Fig.
2. In this case its clear that these local models are
less successful, particular so around the time interval
[0.29 0.41]. To evaluate the local models and to com-
pare ANFIS and our method, the mean sum-squared
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Table 1: Comparison of local performance of ANFIS and our method.

Model/Method ANFIS (training) Proposed (training) ANFIS (testing) Proposed (testing)
Local Model 1 63.6×10−3 7.5×10−3 55.5×10−3 12.0×10−3

Local Model 2 31.1×10−3 0.2×10−3 73.5×10−3 0.3×10−3

Local Model 3 349.5×10−3 7.4×10−3 276.8×10−3 25.0×10−3

Local Model 4 1.5×10−3 7.4×10−3 2.7×10−3 22.2×10−3
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Figure 2: ANFIS model over the test dataset.

error of each dominant local model in its correspond-
ing time interval are listed in Table 1. This shows
that the local models obtained by ANFIS did not al-
ways give an accurate approximation within the local
regions. Note especially the eccentric behaviour of
submodel three (see Fig. 2 and Table 1). Fig. 1 and
the results in Table 1 confirm that the method pro-
posed here led to an interpretable fuzzy neural model
with respect to all the local model behaviours. This
was not the case for the ANFIS method. Notice also
that the fourth local ANFIS model gave good results
due to the small (5) number of data points coupled
with the low noise in this time interval. Due to the
local characteristic of the weighted FRA, the hybrid
approach was also able to find interpretable partitions
in a more complex problem than the one above. This
has not been included due to lack of space.

5 CONCLUSIONS AND FUTURE
WORK

In contrast to existing learning methods for fuzzy neu-
ral models which focus on the overall accuracy of
the model, and which may lead to uninterpretable ec-
centric behaviour in the local models, the aim here
has been to obtain a set of interpretable input space
partitions and the corresponding local models. Tak-
ing into account the two different parameter types

corresponded to the rule premise and rule conse-
quent, a new hybrid learning approach has been pro-
posed. This employed a modified differential evolu-
tion method to give the best fuzzy partitions, along
with a weighted fast recursive algorithm for identi-
fication of each local FLANN. An application study
and comparison with ANFIS illustrated the inter-
pretability of the resultant model structure and the
efficiency of the new learning technique. Further
improvements might accrue from investigating other
evolutionary strategies to optimize the rule premises.
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