
TOWARDS AN AGENT-ORIENTED FRAMEWORK
FOR SERIOUS GAMES

Architecting with Behavioural Software Agents

Aaron D. Tull, Tucker S. Smith and Kendra M. L. Cooper
The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, U.S.A.

Keywords: Serious Game Framework, Agent-oriented, Software Architecture, Pattern, Agent behaviour, Component.

Abstract: Agent-oriented software architectures for serious games and game development frameworks are beginning
to receive attention. They are viewed as potentially valuable solutions to support the rapid and inexpensive
development of games with high usability and playability. This problem domain also has challenging
technical quality of service requirements (modifiability, performance, flexibility, scalability, concurrency,
portability, integration of diverse technologies), which need to be carefully considered in the architecture.
Here, we present a collection of high level requirements (goals) for this problem domain and argue that a
new, agent-oriented component based solution is needed that explicitly models agent-based behaviour. We
propose an agent-oriented extension of the adaptive object-model pattern in this research; a running
example on requirements engineering software engineering education is used to help explain the
architecture. The architecture is discussed with respect to the technical quality of service requirements.

1 INTRODUCTION

Software Engineering (SE) is a knowledge intensive,
specialized, rapidly changing discipline; it’s
educational infrastructure faces significant
challenges including the need to rapidly, widely, and
cost effectively introduce new or revised course
material; encourage the broad participation of
students; address changing student motivations and
attitudes; support undergraduate, graduate and
lifelong learning; and incorporate the skills needed
by industry. Games have a reputation for being fun
and engaging; more importantly immersive,
requiring deep thinking and complex problem
solving. We believe educational games are essential
in the next generation of e-learning tools, which has
lead us to research an SE educational Game
Development Platform (GDP), called SimSYS
(Cooper, 2011). The vision for the GDP includes a
comprehensive collection of interacting tools,
including a Game Play Specification IDE, Game
Play Framework (engine, UI), Player Assessment,
and Adaptive Game Play. An overview of the
proposed GDP is in (Smith, 2011).

Our long term vision for SimSYS is to allow
students to play games that explore and deeply
understand the complex dependencies among SE

stakeholders, their activities, and the engineering
artefacts they create. For example, how does a
decision made by a Requirements Analyst constrain
the decisions made by a designer, tester, and project
manager? Ultimately any one decision made by a
team member can impact the entire project in
unexpected ways.

The Agent-oriented Paradigm (AOP) is an
alternative approach for constructing software
systems that is well-suited for modelling human
interaction such as collaboration, negotiation,
conflicts, and so on. AOP is based on the concept of
an agent, which are software entities that are
situated, autonomous, flexible, and social
(Wooldridge, 2009). Agents sense the environment
and perform actions that change the environment.
They have control over their own actions and
internal states; they can act without direct
intervention from humans. Agents are responsive to
changes in the environment, goal-oriented,
opportunistic, and take initiatives. They interact with
other agents (software, human) to complete their
tasks. The agent-oriented approach is beneficial in
systems that (O’Malley, 2001): require
complex/diverse types of communication; have
behaviour that is not practical/possible to specify on
a case-by case basis; involve negotiation,
cooperation and competition among different

192
D. Tull A., S. Smith T. and M. L. Cooper K..
TOWARDS AN AGENT-ORIENTED FRAMEWORK FOR SERIOUS GAMES - Architecting with Behavioural Software Agents.
DOI: 10.5220/0003621001920199
In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2011), pages
192-199
ISBN: 978-989-8425-78-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

entities; must act autonomously; and is expected to
expand or change. Recently, the agent-oriented
paradigm has been applied to games. Agent-oriented
design solutions have been proposed for intelligent
gameplay, behaviour adaptation, and computer
human interaction (Dignum, 2009; YingYing, 2009;
Goschnick, 2008; Shukri, 2009). We believe AOP is
an excellent match for the SE education GDP. Our
conjecture is that a new agent-oriented version of an
architectural style that explicitly models agent
behaviour is needed.

In this position paper we identify high level
requirements (goals) related to agent-oriented
architecture for SimSYS (Section 2). In Section 3,
we present the preliminary architectural solution for
(part of) SimSYS – the Game Runtime Systems
component, including a decomposition of the Actor
Framework. A discussion of how it addresses the
requirements issues is in Section 4. Related work is
briefly discussed in Section 5. Our conclusions and
future work are in Section 6.

2 HIGH LEVEL REQUIREMENTS
(GOALS) FOR SIMSYS

The key goals for our GDP are summarized here,
along with their impact on the framework (engine,
UI) solution.
Game Playability: To keep the games fresh and
interesting to players over time, the game needs to
present different “twists” each time. Never should a
player, for instance, enter the same virtual project
stakeholder meeting twice. It should be clear that the
outcomes of the player’s actions are never
predetermined and always contain an element of
risk. As such, the graphic interface and underlying
engine need to support the dynamic generation of
new scenarios and must determine the results and
consequences of a player’s interactions in real-time.

Furthermore, multiple levels of difficulty must
be supported, which can be used to gently introduce
players to the controls and the objectives of the
game through early levels before thrusting them
headlong into a chaotic and fast-paced environment.
The stakeholder meeting from level 1 might involve
a patient and informed customer that requires almost
no player interaction. This should quickly give way
in later levels; the player must aggressively build on
previous experiences to complete later challenges.
This can be seen as an improvement over burdening
the player with a separate tutorial or user manual.
Additionally, this capacity for variation in difficulty
levels provides mechanisms to prevent the player

from becoming frustrated with overly difficult or
overly simple scenarios; the game should be
difficult, but not too difficult, and most certainly not
too easy.

Finally, immediate feedback to the player
regarding their performance, or success, needs to be
tracked and presented. For practical pedagogical
reasons, the player must know the outcomes of their
actions early. If the player does not know when that
stakeholder meeting went sour, they will have
difficulty identifying why. If they cannot identify
why, they will have great difficulty learning what to
do differently next time; which only serves to
frustrate the player further.
Modifiability: The GDP is going to need to evolve
over time and will need to be modified. For
example, the agent behaviour in early releases may
be quite straightforward; more interesting or better
performing reasoning techniques from the AI
community could be investigated and adopted over
time. These early agents may be simple fuzzy state
machines or rule-based systems, but later agents
could go much further, performing as intelligent
adversaries or collaborators. The complexity of
games that can be scripted can become richer, and
more sophisticated. The graphic interface can
become easier to use. Component based solutions
are well suited to address this issue.
Flexibility: New SE games are going to be needed
for different target players including high school;
college, university (undergraduate, graduate); and
lifelong or industry training. New games will also be
needed to keep pace with the evolving state-of-the-
art in the discipline; the GDP needs to be flexible.
For example, agile methods have recently been
added to undergraduate SE courses. Additionally, it
would be ideal for the GDP to have the capacity to
be extended beyond SE education, and into other
forms of education, particularly for business
applications. Script-based solutions have been
proposed to address this goal; we adopt this
approach as a current “best practice” in game
development.
Usability: A great game concept may be terribly
received by the gaming community because of
gameplay frustrations. For this reason it is crucially
important to analyze player interactions to
understand how user interface design can
complement the game flow to reduce frustrations
and empower the player. However, user interface
design and game play design must be balanced with
other quality constraints such as performance,
concurrency, portability, and scalability to meet the
appropriate level of responsiveness.

TOWARDS AN AGENT-ORIENTED FRAMEWORK FOR SERIOUS GAMES - Architecting with Behavioural Software
Agents

193

3 SimSys: AOP IN GAME DESIGN

3.1 Game Play

One of the primary goals of SimSys is to provide a
robust learning experience that is not possible with
less sophisticated systems. The running example in
this paper will be that of requirements elicitation.

Requirements elicitation is the process of
gathering system requirements from a stakeholder or
stakeholders. Errors during this phase are extremely
expensive in the long run. Unfortunately, this is also
one of the most difficult processes to teach in games.

The high level of interaction between elicitor and
stakeholder makes non-agent based approaches quite
limited. Each interaction would need to be scripted
beforehand. The cost of producing such an elaborate
content model quickly becomes infeasible for even
modestly sized scenarios.

However if using an agent-based approach the
agent’s initial state is modelled and non-
deterministic behaviour can be achieved through
interactions with the player and other agents. To
illustrate, we will use the following example
scenario throughout our description of SimSys:

The player is a requirements engineer for a
virtual company. This company has been contracted
to design a new inventory-management system for a
regional retailer chain. Today is the player’s first
meeting with the customer, and the player must walk
away from this meeting with a good overall
understanding of the customer’s requirements.

After introductions, the player is given the
opportunity to ask the customer, “Who uses your
inventory-management system?”

The customer considers this question and
responds, “Well, we have two types of users: store
employees and website users.”

At this point, the player is given the opportunity
to ask for more detail about the concepts present in
customer’s response, “What exactly do you mean by
‘website users’? What do they do?”

The customer responds, “Well, I guess there are
two types of website users: customers viewing
whether an item is in stock, and site administrators.”

The player continues to ask more questions until
the meeting is over. Slowly, the player is coaxing
out a model of the customer’s business domain.

3.2 Game Runtime Systems

The new architecture proposed in this work (Figure
1) is an agent-oriented, component version of the
adaptive object-model architectural style (Yoder
2002). At the top level, the architecture has two
components: Game Engine and Actor Framework
(Figure 1a). The Game Engine is responsible for
handling all graphics, audio, processing user input,
and managing game mechanics (i.e. graphical) state.
When the player enters the virtual stakeholder
meeting, this component displays the office. When
the player interacts with an object in the office, this
component gathers and processes the physical input.
When the player moves around the office, this
component keeps track of their location. In this work
we focus on the Actor Framework, as the strategic
decision making capabilities (agent-oriented
behaviour) are allocated to this component.

The Actor Framework has three components that
handle the initialization, state, and agent-oriented
strategic decision making capabilities of the Actors.
Figure 1b illustrates the components of the Actor’s
strategic decision making, which includes
components responsible for perception, awareness,
reasoning and action. The reasoning component is
further decomposed in Figure 1c. The Actor
component is described in more detail in Section
3.3.

Decoupling the Actor Framework from the
Game Engine provides the capacity to radically
change agents while maintaining minimal changes to
the overall game. From the perspective of player-
actor interactions, modifying our stakeholder
meeting to become, say, a project meeting then
simply becomes a matter of replacing agents.

 (a) Game Runtime Systems (b) Actor Subsystem (c) Reasoning Subsystem

Figure 1: Preliminary Agent-oriented Component-Based Architecture.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

194

To integrate with the Actor Framework, the
Game Engine must first provide an Actor content
model to the ActorInitialization component. This
contains, effectively, the identity of an actor: who
they are, and what they can do. Second, it must
notify the ActorStateManager when events pertinent
to the Actors decision making processes occur, and
make callback functions available for Actor Actions
to notify the GameEngine of an Actor’s actions.
ActorStateManager Component. The ActorSta-
teManager component is responsible for notifying
Actors of environmental conditions affecting the
Actors within the ActorFramework component as
well as managing interactions with the GameEngine
component. Managing the Actors includes
activating/de-activating Actors (i.e. allot a thread
from a thread pool) and communicating messages to
Actors. In our meeting example, this component
would act as our stakeholder’s eyes, ears, and voice
to the environment around him.
ActorInitialization Component. The ActorInitiali-
zation component is responsible for interpreting a
client provided specification model of Actors and
their configuration for the purpose of instantiating
Actors. The ActorInitialization component also
creates and instantiates all Actors and the meta-
descriptions of Actors’ goals, knowledge, and
capabilities. This entails creation of an ontology
graph that represents an actor’s “brain”. Concepts
are initialized; relationships are created to link them;
attributes are attached. Given a specification input, a
real, functioning agent is produced as an output.
Actor Component. The Actor Component is res-
ponsible for receiving incoming stimuli from the
AgentStateManager, interpreting the data, determi-
ning any necessary course of action to take, and
executing a plan for handling the data.

Let us consider this process in light of the
example stakeholder meeting in Section 3.1. In our
example, the player’s first question was a request for
elaboration on the system’s users. Within the GDP
the following sequence of events would transpire to
return a response to the player:

1. The player is given a multiple choice-
multiple select menu of options to choose from and
the player has chosen to ask for elaboration on the
system’s users. A message is sent to from the
GameEngine to the ActorStateManager which
interprets the player’s selection and generates a
logical expression is formed that expresses the
statement “Who uses your inventory-management
system?”. (The meta-model for representing the

Actor’s knowledge is discussed in Section 3.3.2, in
addition to an instantiated example).

Figure 2: Model of an Actor KnowledgeGraph.

2. The ActorStateManager sends the
LogicalExpression to the addressed stakeholder
Actor and also sends a carbon copy to any active
Actor also present in the game environment. This
message is queued by the Actor as an observation to
be interpreted.

3.3 Actor

The Actor system models a non-player character’s
decision making processes and may initiate
interactions with players, other Actors, or the game
environment. This is accomplished by interpreting
the surrounding game environment (Perception),
storing the stimuli as memories (Awareness),
reasoning over goals with respects to knowledge
(Reasoning), and taking action to fulfil the Actor’s
goals (Action). For further details of each
component see Figure 1b and the detailed discussion
of each component below.

3.3.1 Perception Component

The responsibility of the Actor’s Perception
component is to interpret incoming observations
from the ActorStateManager into knowledge that is
stored in the Awareness component. The Actor
receives a message from the ActorStateManager.
This message includes a LogicalExpression that
describes the observation being made. The
Perception component will parse the
LogicalExpression into a KnowledgeGraph and

TOWARDS AN AGENT-ORIENTED FRAMEWORK FOR SERIOUS GAMES - Architecting with Behavioural Software
Agents

195

enqueue the message in the Awareness component.
Later the Reasoning component can interpret the
new knowledge and determine if there is an
appropriate response.

The example we described in Section 3.1 refers
to a stakeholder Actor that the player interacts with.
In terms of game play the player is given a chance to
ask the stakeholder to confirm their understanding of
the requirements. The ActorStateManager will form
a LogicalExpression describing a requirement in
terms similar to the stakeholder’s own conceptual
model of knowledge. This model is expressed and
captured in a KnowledgeGraph (refer to Figure 2).

An example query that could be made by the
player could be something similar to the following
plain English statement “A Business customer
prefers a product that is able to be accessed from a
mobile device.” The stakeholder would be given the
chance to either agree or disagree with this statement
and may elaborate on the player’s statement by
describing additional desirable product features or
other types of customers who also would like a
product that is accessible from a mobile device.

3.3.2 Awareness Component

The responsibility of the Actor’s Awareness
component is to manage the internal content model
of the Actor’s environment, goals, and capabilities
(i.e., maintain its knowledge). This component
enables Actors to analyse incoming observation
stimuli, create associations to related memories, and
use this information to process logical expressions.
The Actor Awareness meta-model is illustrated in
Figure 3. At the center of the meta-model is the
KnowledgeGraph. It is a representation of the
Actor’s knowledge.

In the example statement “A Business customer
prefers a product that is able to be accessed from a
mobile device” the KnowledgeGraph will contain a
logical definition (similar to Figure 2 above), where
the EntityDescriptors from the meta-model are
instantiated in terms of the Actor’s goals.

3.3.3 Reasoning Component

The responsibility of the Actor’s Reasoning
component is to interpret stimuli and select the best
course of action. A decomposition of the Reasoning
component including conceptual classes used in the
decision making process is shown in Figure 1c.

An Actor’s Reasoning component will evaluate a
LogicalExpression in the following steps:

1. The Reasoning component’s
ProcessControl will delegate to the GraphMatcher
the task of comparing the next incoming stimuli to
the Agent’s knowledge.

Figure 3: Actor Awareness Meta-Model.

2. The GraphMatcher will retrieve two
KnowledgeGraphs from the Awareness component
using the Query interface. The first graph is a
representation of the Agent’s knowledge and the
second is a representation of the incoming stimuli.

3. The ProcessControl receives from the
GraphMatcher a statistic representing the Actor’s
relative agreement with the stimuli. This figure is
based on the amount of contradicting knowledge,
supporting knowledge (i.e. matches), and the lack of
supporting knowledge.

4. The ProcessControl uses the context of the
stimuli to form an appropriate action to take. For
instance, if the stimuli originated from a direct
question, a heavily weighted response would be to
respond with either a statement of agreement or
disagreement and elaboration.

3.3.4 Action Component

The responsibility of the Actor’s Action component
is to maintain a list of actions to take and
periodically execute them. One important example
action is the process of integrating new stimuli into
their knowledge representation; other actions include
interacting with the environment, such as responding
to the player’s questions using a configured
GameEngine callback. The use of GameEngine
callbacks would need to be configured in the
ActorBehaviormodel (see Section 4 for a discussion
of the Actor in the XML input specification model).

3.4 XML Specification Model

The specification model provides instructions to the

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

196

GameFramework for generating Actors and their
awareness of the environment and their capabilities.
At runtime the client system will supply an
ActorModel, an ActorKnowledgeModel, and an
ActorBehaviorModel. These three content models
will be interdependent meta-descriptions that when
interpreted by the ActorInitialization component will
fully describe the initial state of the Actor system. It
should be noted that due to memory constraints in
video game systems it is likely that the
ActorInitialization functions must be capable of
conducting resource allocation of Actors at runtime.

The ActorModel declares the identifiers that the
client system will use to address Actors using the
MessageActor interface. This would also prescribe a
specific ActorKnowledgeModel and an
ActorBehaviorModel. By separating these meta-
descriptions the system could reuse content models
for multiple Actors.

The ActorKnowledgeModel content is
interpreted to generate an internal representation,
referred to as the meta-ontology, which will describe
things, types, and capabilities in an Actor’s
Awareness component. This internal awareness
model will describe Entities, EntityTypes, and
Actions (Yoder, 2002). Actors may also maintain
associativity and identity relationships between
EntityTypes, which could describe polymorphic
relationships between Entities. Note that we use the
Adaptive Object-Model ontology to describe the
conceptual entities (Yoder, 2002).

The ActorBehaviorModel first declares a meta-
pedagogy of motivations and goals that the Actor
attempts to maintain or achieve. Secondly, Entities
and Actions in the ActorKnowledgeModel are
associated to these goals; this combination drives the
Actor Reasoning process managed by the Awareness
Component.

4 DISCUSSION

We recognize that not all QOS Attributes have been
addressed with this architecture. One point of future
research is the prioritization of other quality of
service attributes and a subsequent re-evaluation of
the architecture. We have summarized our current
knowledge of concerns in discussions below.
Game Playability. Implementation of an agent-
oriented paradigm in video games will enable games
to respond to non-linear game play options. By
scripting goal oriented scenario objectives in the to
be selected and played at runtime will enable players
to exercise creative problem solving skills. Also,

because the interactions (human-actor as well as
actor-actor) will be governed by goals the Actor
content model can be scripted to respond to stimuli
from both the player(s) as well as other Actors
creating unexpected behaviour and a richer
immersive game world.
Game Scenario Flexibility. The Actor content
model could be written in a way that enables both
simple scripted behavior as well as non-
deterministic behavior in Actors. Creative content
design of the Actor specification would be
performed without the need to recompile game
engine source code. The only time that source code
would need to be modified or recompiled is when
the Actors need a new parameterized callback
function to exercise some activity they didn’t have
the ability to perform before. In most cases, this
would not be the case. New responses could be
scripted in the content model using existing
callbacks (such as movement, attack, or other game
specific behavior).
GDP Modifiability. Future enhancements to the
ActorFramework component infrastructure could
include features to handle performance constraints.
Due to the non-deterministic nature of agents,
predicting and profiling specific Actor behavior is
likely to be problematic. There are different
approaches possible to handle performance analysis
and although it is not clear at this time the most
effective way to provide insight into the
performance of non-deterministic systems it is clear
that this is an area for future research.
Framework Overhead. The additional cost of
packaging the SimSys Actor Framework needs to be
reviewed. The usage of callback functions for
Actions is a measure in the presented architecture to
mitigate the performance concerns of an additional
layer of abstraction. Additionally, performance gains
could be attained through the process of fine-tuning
the interpreted interactivity model. Optimizations
can be made to tailor to a more precise desired Actor
behaviour and potentially realize performance
improvements through simplification of the Actor’s
meta-ontology or meta-pedagogy. This would have
the desirable side effect of teaching the Actor to skip
unnecessary steps in logic calculations.
Concurrency. At this time, the presented
architecture is capable of supporting Actors in a
multi-threaded environment. In the case that the
game platform is not capable of a multi-threaded
architecture, the system would need alternative
functionality to run in a single threaded process. We
plan to evaluate game developer needs and the

TOWARDS AN AGENT-ORIENTED FRAMEWORK FOR SERIOUS GAMES - Architecting with Behavioural Software
Agents

197

feasibility of implementing a single-threaded
configuration of the ActorFramework component.
Portability and Integration. Integrating the
GameFramework into other systems would require
an undergraduate level of experience programming
with the C++ programming language with
knowledge of behavioural design patterns such as
the Observer pattern or the Command pattern.

5 RELATED WORK

Research on agent-oriented software architecture is
emerging as a topic of great interest and value. Due
to space constraints, we select sample research that
relates to technical quality of service requirements
and modelling the behaviour of agents.

At the architecture level, response-time
performance, agent behaviour and communication
have received attention (Shukri, 2008; Jepp, 2010);
less work is available on the concurrency
(Duvigneau, 2003), scalability (Luo, 2010), or
extensibility/evolution of games (Lee, 2002) or
GDPs.

From the real-time community, Lee’s
architecture (Lee, 2002) is the closest with respect to
our component based design concept. The
components in this architecture are encapsulated
with well-defined interfaces; components of
different characteristics, functionalities, and
implementations can be used to form real-time
agents. The task-scheduling component deals with
requests arriving at unexpected time points that are
of different levels of urgency and importance. It
dynamically manages overload conditions by
plugging in alternative components. To include
additional components for system evolution,
however, would require code modifications to the
game (not scripted). The architecture presented in
(Lee, 2002) does not focus on the agents from a
social, behavioural perspective.

From the AI community, the multi-agent
architecture by (Kobti, 2007) focuses on the social,
learning, behavioural perspective. Here, agents are
intelligent, interact, and make decisions in positional
games. The overall architecture is based on the
General Game Playing architecture (http://games.
stanford.edu). The architecture presented in (Kobti,
2007) does not focus on the technical quality of
service requirements.

6 CONCLUSIONS

The characteristics of the SimSYS GDP include a
rich collection of quality of service requirements:
modifiability of the platform; flexibility of the
games; playabilty of the games; and usability of the
games and platform. From a software architecture
perspective, the evolvability and playability
requirements have lead us to a domain specific
architecture that is agent-oriented and component
based; new/modified games are defined with a
domain specific modelling language. Our position is
that our unique combination of the agent-oriented
paradigm and component based design is well suited
for this problem domain. In the future we plan to
refine and rigorously verify the architecture; model
checking the agent-oriented architecture would be of
great interest. An empirical evaluation with a
prototype is underway. In addition, the usability
requirements (response time performance,
concurrency, portability, scalability) will be
thoroughly investigated; their trade-offs with the
playability and system modifiability requirements
assessed.

REFERENCES

Cooper, K., 2011. SimSYS Project Website, available at:
http://www.utdallas.edu/~kcooper/SimSYS.

Dignum, F., Westra, J., van Doesburg, W., and Harbers,
M., 2009. Games and Agents: Designing Intelligent
Gameplay, in International Journal of Computer
Games Technology.

Duvigneau, M., Moldt, D., and Rölke, H., 2003.
Concurrent Architecture for a Multi-agent Platform,
Agent-Oriented Software Engineering III, LNCS.

Goschnick, S., Balbo, S., and Sonenberg, L., 2008.
ShaMAN: An Agent Meta-model for Computer
Games, in Proceedings 2nd Conference on Human-
Centered Software Engineering.

Jepp, P. Fradinho, M., and Pereira, J. M., 2010. An Agent
Framework for a Modular Serious Game. In
Proceedings 2nd International Conference on Games
and Virtual Worlds for Serious Applications.

Kobti, Z. and Sharma, S., 2007. A Multi-Agent
Architecture for Game Playing. In Proceedings of the
2007 IEEE Symposium on Computational Intelligence
and Games.

Lee, J. and Zhao, L., 2002. A Real-Time Agent
Architecture: Design, Implementation and Evaluation.
In Intelligent Agents and Multi-Agent Systems, LNCS.

Luo, J. and Chang, H., 2010. A Scalable Architecture for
Massive Multi-player Online Games Using Peer-to-
Peer Overlay. In Proceedings 2010 12th International
Conference on Advanced Communication Technology.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

198

O’Malley, S. and DeLoach, S., 2001. Determining When
to Use an Agent-Oriented Software Engineering
Paradigm, in Proceedings of the Second International
Workshop On Agent-Oriented Software Engineering.

Shukri, S. and Shaukhi, M., 2008. A Study on Multi-
Agent Behavior in a Soccer Game Domain, in World
Academy of Science, Engineering and Technology.

Smith, T., Tull, A., Cooper, K., and Longstreet, C, 2011.
Can simulation training games help shift the paradigm
of software and systems engineering education?,

 SIMULTECH 2011 (submitted).
Wooldridge, M., 2009. Introduction to MultiAgent

Systems, John Wiley & Sons, 2nd edition.
Yingying, S. and Grogono, P., 2009. An approach of real-

time team behavior control in games, in Proceedings
21st IEEE International Conference on Tools with
Artificial Intelligence.

Yoder, J and Johnson, R., 2002. The Adaptive Object-
Model Architectural Style. In Proceeding of the 3rd
IEEE/IFIP Conference on Software Architecture:
System Design, Development and Maintenance.

TOWARDS AN AGENT-ORIENTED FRAMEWORK FOR SERIOUS GAMES - Architecting with Behavioural Software
Agents

199

