
MODEL DRIVEN DEVELOPMENT OF CONTEXT-AWARE
SERVICES USING PARAMETERIZED TRANSFORMATION

Slimane Hammoudi
ESEO 4, Rue Merlet de la Boulaye, B.P. 9249 009, Angers Cedex 01, France

Keywords: Context Aware Services, Model Driven Development, Service Platform, Parameterized transformation.

Abstract: Context-aware development has been an emergent subject of many research works in ubiquitous computing.
Few of them propose Model Driven Development (MDD) as an approach for context-aware application
development. Many focus on context capture and adaptation by the use of legacy architectures and others
artefacts to bind context with application logic. This work proposes a new approach called COMODE
(Context Aware Model Driven Development) which advocates Model Driven Development to promote
reuse, adaptability and interoperability for context-aware application development on service platforms. In
this paper we focus on the transformation issue and propose a parameterized transformation as a new
approach for model driven development of context-aware services.

1 INTRODUCTION

Traditional computing applications are often static
and inflexible. They are designed to run on a
specific device, offer a number of predetermined
functions to the user and have contextual
dependencies embedded in them. Such application
models are not suited to operate in a pervasive
computing environment, which is characterized by
richness of context, by the mobility of users and
devices (PDAs, smartphones,…) and by the
appearance and disappearance of resources over
time (Vukovic, 2004). Nowadays, where ubiquitous
(pervasive) computing, based on context-awareness,
takes a very important place in daily life, it becomes
necessary to develop context-aware applications
providing adequate services for the users by taking
into account their multiple contexts. The design of
these pervasive applications which must adapt to
different contexts (Dey, 2001) can be developed
using Service Oriented Architecture (SOA). Indeed,
the loose coupling and interoperability inherent to
SOA may provide context-aware services (Grassi,
2007). Based on the SOA paradigm, various
research works for the development of context-
aware services were carried out by proposing
different approaches and methodologies (Kapitsaki,
2009). However, in most of the approaches there is a
lack of generic methodology for formalizing the

development activity for this type of services, thus
making it very cumbersome and time consuming.
Recently, some research proposals have advocated
Model Driven Development (MDD) as an approach
for context-aware services development (DeFarias,
2007). MDD allows the development of services by
separating context information from business logic
in a set of different abstraction model constructions
and by using different transformation techniques.
MDD has many important benefits as concerns
separation, reuse of models and interoperability
(Vale, 2008). In this paper we propose a new
approach called COMODE which advocates Model
Driven Development to promote reuse, adaptability
and interoperability for context-aware application
development on service platforms. We focus our
discussion on the transformation process and we
propose a parameterized transformation technique to
weave context information with business logic at
model level. The remaining of this article is
structured as follows: section 2 presents our
proposed approach COMODE through its
architecture, section 3 presents the transformation
process and Section 4 illustrates our approach
through an example of context-aware mobile
service. Section 5 concludes this paper and
discusses the perspectives.

244 Hammoudi S..
MODEL DRIVEN DEVELOPMENT OF CONTEXT-AWARE SERVICES USING PARAMETERIZED TRANSFORMATION.
DOI: 10.5220/0003618202440248
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 244-248
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2 COMODE: PRINCIPLE
AND ARCHITECTURE

Our approach COMODE is based on the principle of
separation of concerns, and emphasizes this
principle during the design of context-aware
application. The different concerns are represented
by independent models. Figure 1 illustrates on the
one hand the principle and the main components of
our approach (a) and on the other hand the
COMODE architecture based on five views (b).

Our five architecture views are inspired from the
standard EDOC-ECA (OMG, 2004) views that in
turn are directly taken from the Reference Model of
Open Distributed Processing RM-ODP (ODP, 1995)
The EDOC-ECA views are: the Enterprise view, the
Computational view, the Information view, the
Engineering view and the Technology view. More
details concerning these views are presented in
(ODP, 1995). We have adapted these views to treat
the different requirements of the development of
distributed context aware applications, in an
independent way i.e., context definition,
representation, adaptation, reasoning and binding.
According to figure 1 (b), the Business, Context and
Composition Views are expressed by PIM models,
i.e., these models abstract platforms details.

The Business View is based on the Enterprise
Viewpoint and it focuses on business logic, roles and
activities. The Context View is based on the
Information Viewpoint and it is responsible for
defining context information, capturing,
representation and interpretation. This View is also
responsible for defining context-aware elements, i.e.,

software elements that realize activities based on
context information (components and operations).
The Composition View establishes the link between
Business logic and Context logic, i.e., how business
statements and contextual activities will be executed
harmoniously to provide relevant results for user
needs. The Adaptation and Service Views are
expressed in PSM models. They are based on the
Engineering Viewpoint, i.e., they specify target
platforms details, middleware technologies,
connectors, protocols and others platform specific
requirements. These views are specific to an abstract
platform but they are not dependable of a particular
platform (Service platform versus J2EE platform).
In this paper we are concerned by the composition
view and we will discuss in the next section a
transformation mechanism to integrate the context
into the business logic of an application using a
model driven approach.

3 TRANSFORMATION
APPROACH

The separation of concerns (business and context) is
emphasized at the model level of our approach
where PIM and context models are defined
independently, and then merged by suitable
transformation techniques. Two types of
transformations are involved in our proposal. The
first type of transformation called Parameterized
transformation allows weaving context information
with business logic at model level. We have
investigated (Vale, 2008); (Monfort, 2009)

 (a): Principle and the main components (b) Five architecture views

Figure 1: Main components and architecture of a context-aware application in COMODE.

MODEL DRIVEN DEVELOPMENT OF CONTEXT-AWARE SERVICES USING PARAMETERIZED
TRANSFORMATION

245

this type of transformation which is not sufficiently
explored nowadays and for which there is no
standard transformation language. We will discuss
shortly this type of transformation. A CPIM model
(Contextual Platform Independent Model) is then
obtained and fits together business requirements with
contextual data. The second type of transformation is
the traditional transformation technique using a
language such as QVT, which operates in two steps,
mapping specification followed by transformation
definition. Parameterized transformation is based on
parameter paradigm (Frankel, 2003) (Vale, 2009).
The OMG (OMG, 2001) has defined the concept of
parameter as follows:
 “A parameter specifies how arguments are passed
into or out of an invocation of a behavioral feature
like an operation. The type and multiplicity of a
parameter restrict what values can be passed, how
many, and whether the values are ordered”.
In (Frankel, 2003), David Frankel mentions the
importance of parameterization in model operations
using the association of tagged values with PIM and
PSM models. Tagging model elements allows the
model language to easily filter out some specific
elements. Transformation by parameter could be used
to improve new functionalities (values, properties,
operations) or to change the application behavior
(activities). In our approach, we are convinced that
parameterized transformation focusing on PIM to
PIM transformations is the fitted solution. The
designer must specify the parameters to be inserted
during the transformation phase. In our proposition
these parameters represent the context and the
transformation process will join this context
information into the business application (PIM) as
illustrated in Figure 2. A PIM model can be
developed without contextual details. User name,
profiles, device type, location can be added as
parameters in transformations. The same PIM can be
re-transformed and refined many times adding,
deleting or updating context information. The
designer has to specify into the application model the
elements that will receive the context information. A
mark, identified by the symbol #, is given for these
elements to be recognized by the transformation
engine. The marked elements represent context-
aware elements, in others words, the model elements
that can be contextualized.

The transformation language must support
parameterization. In our case the parameters can be a
Context Property and/or a Context Data Type. We
use templates to specify which elements in the
application model are potentially context-aware. A
detailed discussion about our approach is presented

Figure 2: Parameterized Transformation.

in (Monfort, 2011). The transformation engine must
navigate through the PIM model to verify the
parameters and the elements marked and then make
the transformation consisting in an update of
contextual properties in the PIM. Template parameter
(Vale, 09) is an element used to specify how
classifiers, packages and operations can be
parameterized. UML 2.0 states that any model
element can be templateable. For independent
context-aware models we need to identify context
elements that could be parameterable. A
parameterable element is an element that can be
exposed as a formal parameter for a template, or
specified as an actual parameter in the binding of the
TEMPLATE (VALE, 09). A context parameter can be
expressed as a constraint and compared with the
element’s signature in the template parameter. This
operation is named the matching operation.

4 CASE STUDY

In order to illustrate the parameterized transformation
technique allowing the weaving of context
information with business logic, we take an example
of a service provider named FunFinder. Using this
service provider, a mobile user can find attractions in
a city according to two principles:
• The user specify only the wished service

(example: A restaurant)
• The system uses in a transparent manner all the

relevant information (context) in order to give to
the user the most adapted answers.

Figure 3 shows an example illustrating the
parameterized transformation technique. Three
models are presented: The business logic model
(PIM) of the service provider FunFinder, the context

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

246

model in the middle, and finally the merging model
CPIM. In this example we are particularly interested
in a restaurant finding for a mobile user.

Initially, in the business model a greeting service
is invoked that greets the user with a welcome
message in his native language. Then, the user
invokes the RestaurantsFinder service to find a
restaurant. The findByContext () method whose
parameters are defined in a CPIM model, allow to
find a restaurant with two contextual parameters: the
user culinary preference as well as its location. The
context model groups the relevant contextual entities
for the RestaurantsFinder service. We thus have an
actor which represents the mobile user with in one
side his profile limited to his culinary preferences,
and in another side, also his mobile phone allowing
giving anytime the user location. In order to
implement the transformation process allowing to
weave the context model and the business logic
model, the designers of the two models should update
respectively the PIM model and the context model
according to figure 9 as follows:

 In the business logic model, elements that
represent context are marked and if necessary a
template may precise their generic type. In our
example the designer mark the person class as a
main contextual entity and use a template to

precise the generic type of this class: user.

 In the context model, all the relevant contextual
entities for the RestaurantsFinder service are
marked. Thus, the actor, its culinary profile and
its location are marked. The template linked to
the actor class allows defining the generic type
of this class. The MobilePhone class has not
been marked as it doesn’t impact in the process
of finding a restaurant. It’s the class location
which intervenes in the process of finding a
restaurant.

The parameterized transformation process takes as
input the two models: PIM and context, and execute a
matching operation between these models. The
person class (marked) from a PIM model is aligned
with the class actor from a context model as they
have the same generic type user. The alignment
process produces a CPIM model composed by all the
relevant classes involved in the RestaurantsFinder
service. The parameters of the method
findByContexte (FoodPreference and Location) of
RestaurantsFinder class will be linked to the two
classes FoodPreference and Location, in order to find
restaurants according to the data from these two
classes.

Figure 3: Parameterized transformations for context weaving.

MODEL DRIVEN DEVELOPMENT OF CONTEXT-AWARE SERVICES USING PARAMETERIZED
TRANSFORMATION

247

5 CONCLUSIONS

In this work we have investigated the development of
context-aware services in a mobile environment and
we have proposed an approach called COMODE to
develop these services according to a model driven
approach. Mobile services are traditional services
delivered via mobile devices, such as mobile phones
or PDA's. Mobile services can also be specifically
tailored to the needs of mobile users. A context-
aware mobile service is adapted to the current
situation of the user. The goal of a context-aware
service is to support the user by providing him with
the right service at the right moment. If the user
context changes, the context-aware service should
self-adapt or be adapted to the new context. A
context-aware service is autonomous and tries to
support the user without too much interaction with a
computing device. Several approaches have been
proposed to answer the challenges of mobile and
context-aware service development. However, most
of these approaches merge context information and
context-aware activities with business logic. We
promote context independence by the MDD concerns
separation. Context models are defined
independently of business logic models and context
aware statements are defined in individual
components developed independently of application
ones.

We have proposed a model driven context-aware
approach aiming to support service adaptability. The
main features of our approach are:

• Context modeling allows to provide information
and situation which intervene in the process of
service adaptability.

• Services are unaware of their context and the
context aware mechanisms adapt themselves to
the current environment according to the current
context. Context-dependent behaviors are
extracted into "context services" and weaved with
the base service during execution.

• Using model driven development, context models
are built as independent pieces of application
models and at different abstraction levels then
attached by suitable transformation techniques.

Parameterized transformation techniques allow the
binding of context information to a service at a model
level, and therefore, allows specifying which
behavior should be weaved at execution level.

REFERENCES

De Farias, C. R. G., Pires, L. F., and van Sinderen, M.
(2007). A MOF Metamodel for the Development of
Context-Aware Mobile Applications. In Proceeding of
the 22nd ACM Symposium on Applied Computing
(SAC'07) pages: 947 - 952.

Dey, A. K. (2001). Understanding and Using Context.
Personal and Ubiquitous Computing 5, 1, 4-7.

Frankel S. David. (2003). Model Driven Architecture:
Applying MDA to Enterprise Computing, Wiley
Publishing, Inc.

Vincenzo Grassi and Andrea Sindico, Towards model
driven design of service-based context-aware
applications, ACM (2007), pp. 69-74

Kapitsaki, G. M., Prezerakos, G. N., Tselikas, N. D. et
Venieris, I. S. (2009). Context-aware service
engineering : A survey. Journal of Systems and
Software, 82(8):1285–1297.

Matthias, B., Dustdar, S., and Rosenberg, F. (2007). A
survey on context-aware systems. International
Journal of ad Hoc and ubiquitous Computing, 2007.

Mary, B., and Patrick, B. (2005). Understanding context
before to use it. In 5th International and
Interdisciplinary Conference on Modeling and Using
Context vol. 3554 of Lectures Notes in Artificial
Intelligence, Springer-Verlag, pp. 29-40.

Monfort, V., Hammoudi, S. When Parameterized MDD
Supports Aspect Based SOA , IJEBR 2011,
International Journal of e-Business Research (To
appear).

Monfort, V., Hammoudi, S. ICSOC, Towards Adaptable
SOA: Model Driven Development, Context and
Aspect The 7th International Conference on Service
Oriented Computing, November 23-27 2009,
Stockholm, Sweden.

OMG (Object Management Group). (2001). Model Driven
Architecture (MDA), OMG document number
ormsc/2001-07-01.

Vale, S., Hammoudi, S. Model Driven Development of
Context-aware Service Oriented Architecture. In
PerGrid’08, July 16-18, 2008 - São Paulo – Brazil.

Vale, S., Hammoudi, S., Context-aware Model Driven
Development by Parameterized Transformation
Proceedings of MDISIS, 2008.

Maja Vukovic and Peter Robinson, Adaptive, planning
based, web service composition for context awareness,
Advances in Pervasive Computing (2004), pp. 247-252

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

248

