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Abstract: Uncertainty in the attributes and uncertainty in frequency of their occurrences are inherent to the real world 
problems and an attempt is made here to tackle them together. The possible connections between the two 
facets of uncertainty are explored and discussed. This paper also looks at the role of possibility and 
probability in the context of decision making and in the process utilizes the existing fuzzy models by 
incorporating the multiple probabilistic outputs in the associated fuzzy rules. This is needed to obtain the net 
conditional possibility from the probabilistic fuzzy rules where the probabilistic information of the outputs 
is given. A novel approach is devised to compute net conditional possibility from the given probabilistic 
rules. The basis for extending the existing fuzzy models is also presented using the computed net 
conditional possibility. The enhanced fuzzy models accruing from the addition of the probabilistic 
information would usher in better decision making. The proposed approach is demonstrated through two 
case-studies. 

1 INTRODUCTION 

Zadeh (1978) first coined the term possibility to 
represent the imprecision in information. This 
imprecision is quite different from the frequentist 
uncertainty represented by well developed 
probabilistic approach. But if we could appreciate 
the real world around us, there is a constant interplay 
between probability and possibility–even though the 
two represent different aspects of uncertainty. 
Hence, if not all, in many a situation, the two are 
intricately interwoven in the linguistic representation 
of a situation or an event by a human brain. And 
often, it is possible to infer probabilistic information 
from possibilistic one and vice versa. Even though 
they are dissymmetrical and treated differently in 
literature, there is a need to make an effort towards 
exploring a unifying framework for their integration. 
We feel that these two different, yet complimentary 
formalisms can better represent practical situations, 
going hand in hand. 

Besides the vast potential of this study in more 
closely representing the real world, we are also 
motivated by its roots in philosophy. Non-
determinism is almost a constant feature in nature, 
and together probability and possibility can go 
farther in representing the real world situations. 

Even though, probability and possibility represent 
two different forms of uncertainty and are not 
symmetrical, but still both are closely related, and 
often needs to be transformed into one other, to 
achieve computational simplicity and efficiency. 
This transformation would pave the way for simpler 
methods for the computation of net possibility. The 
intelligent controllers utilizing these transformations 
would represent the requirements and situations of 
the real world more truly and accurately. They 
would also be more computationally efficient in 
terms of speed, storage and accuracy in processing 
of the uncertain information. 

Such transformations bridge two different facets 
of uncertainty – statistical/probabilistic and 
imprecision (on account of vagueness or lack of 
knowledge). (Dubois et al., 1992; 1993) analyzed 
the transformations between the two and judged the 
consistency in the two representations.  

This paper is concerned with devising a novel 
approach for application of some of the research 
results to the field of fuzzy theory under 
probabilistic setting, and using the same to enhance 
the existing fuzzy models to better infer the value of 
possibility in the light of probabilistic information 
available. It also relooks at the relevant results along 
with their interpretations in the context of 
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probabilistic fuzzy theory. This paper basically 
addresses the following issues: 
1. To amalgamate the field of fuzzy theory with the 
probability theory and to discover the possible 
linkages or connections between these two facets of 
uncertainty. 
2. To apply the probabilistic framework on the 
existing fuzzy models for imparting the practical 
utility to them. 
3. To devise an approach to calculate the output of 
the probabilistic fuzzy models.  

4. To study the effect of probabilistic information 
on the defuzzified outputs of fuzzy rules. 
The paper is organized as follows: In Section 2, 
relationship between probability and possibility is 
explored by identifying the body of work in this 
field and giving it a new look. This section also 
gives the preliminaries needed for the paper. In 
Section 3, a few mathematical relations are 
presented in order to calculate the output of 
probabilistic fuzzy rules (PFRs). The utility and 
advantages of (PFR) are also discussed. Section 4 
discusses an algorithm to compute net conditional 
possibility from probabilistic fuzzy rules. In sections 
5 and 6, two case studies are taken up to illustrate 
the algorithm. Finally, Section 7 gives the 
conclusions and the scope of further research in the 
area. 

2 PROBABILITY AND 
POSSIBILITY: A RELOOK 

The possible links between the two facets of 
uncertainty: probability and possibility are explored 
on the basis of the key contributions in the area. 

The celebrated example of Zadeh (1978) “Hans 
ate X eggs for Breakfast” illustrates the differences 
and relationships between probability and possibility 
in one go. The possibility of Hans eating 3 eggs for 
breakfast is 1 whereas the probability that he may do 
so might be quite small, e.g. 0.1. Thus, a high degree 
of possibility does not imply a high degree of 
probability; though if an event is impossible it is 
bound to be improbable. This heuristic connection 
between possibility and probability may be called 
the possibility/probability consistency principle, 
stated as:  If a variable x takes values u1, u2, ..., un 

with respective possibilities ∏ = (π1, π2,..., πn) and 
probabilities P= (p1, p2,.., pn) then the degree of 
consistency of the probability distribution P with the 

possibility distribution II is expressed by the 
arithmetic sum as   

γ = π1p1 + π2p2 +... + πnpn 

Note that the above principle is not a precise law or 
a relationship that is intrinsic to the concepts of 
possibility and probability; rather it is an 
approximate formalization of the heuristic 
observation that a lessening of the possibility of an 
event tends to lessen its probability, not vice-versa. 
In this sense, the principle is applicable to situations 
in which we know the possibility of a variable x 
rather than its probability distribution. This principle 
forms the most conceptual foundation of all the 
works in the direction of probability/possibility 
transformations having wide practical applications 
Roisenberg (2009). 

Having deliberated on the consistency principle, 
we will look into: (i) Basic difference between 
possibility and probability, (ii) Inter-relation 
between possibility and probability and vice-versa, 
(iii) Infer probability from possibility and vice-versa, 
and (iv) Transformation of probability to possibility 
and vice-versa, with a view to tackle real life 
problems involving both probabilistic and 
possibilistic information. 

2.1 Basic Difference between 
Possibility and Probability 

In the perspective of example given by Zadeh, 
possibility is the degree of ease with which Hans 
may eat u eggs whereas probability is the chances of 
actual reality; there may be significant difference 
between the two. This difference is now elucidated 
by noting that the possibility represents ‘likelihood’ 
of a physical reality with respect to some reference 
whereas the probability represents the occurrences 
of the same. To put it mathematically, 
ߨ  (ܣ) ≜ ௨݌ݑܵ ఢ ஺ߨ௫(ݑ) (1)

 

where 
A is a non fuzzy subset of U  
II is possibility distribution of x  

π (A) denotes the possibility measure of A in [0,1] 

πx (u) is the possibility distribution function of ∏x. 
 

Let A and B be arbitrary fuzzy subsets of U. In view 
of (1), we can write that 

 ܣ)  (ܤ =  (2) (ܤ)   (ܣ)

The corresponding relation for probability is written 
as ܲ ܣ)  (ܤ  ܲ (ܣ)  + (3) (ܤ) ܲ 
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2.2 Inter-relation between Possibility 
and Probability 

Any pair of dual necessity/possibility functions (Ν, 
∏ ) can be interpreted as the upper and lower 
probabilities induced from specific convex sets of 
probability functions.  

Let π be a possibility distribution inducing a pair 
of functions [N, ∏]. Then we define  

(ߨ)࣪  = ሼܲ, ,݈ܾ݁ܽݎݑݏܽ݁݉ ܣ∀ (ܣ)ܰ ≤ ሽ(ܣ)ܲ =ሼܲ, ,݈ܾ݁ܽݎݑݏܽ݁݉ ܣ∀ (ܣ)ܲ ≤ Π(ܣ)ሽ   
 

The family, ࣪ (ߨ), is entirely determined by the 
probability intervals it generates. Any probability 
measure ܲ ∈  is said to be consistent with the  (ߨ) ࣪ 
possibility distribution, π (Dubois, 1992); (De 
Cooman, 1999). That is sup௉ ∈ ࣪ (గ) (ܣ) ܲ =  Π (ܣ) (4)

 

A relevant work in this direction was carried out in 
Walley (1999). It is shown that the imprecise 
probability setting is capable of capturing fuzzy sets 
representing linguistic information. 

2.3 Inference of Probability from 
Possibility and Vice-versa 

In Zadeh (1978), Dubois (1982, 1992,1993), degrees 
of possibility can be interpreted as the numbers that 
generally stand for the upper probability bounds. 
The probabilistic view is to prepare interpretive 
settings for possibility measures. This enables us to 
deduce a strong interrelation between the two. This 
principle basically implies the following inferences: 

 

High Probability  →   High Possibility 
Low Probability ↛Low Possibility 
Zero Possibility → Zero Probability 
Zero Probability ↛ Zero Possibility 
High Possibility → High Probability 
Low Possibility ↛ Low Probability 

(5)

From Klir (2000) and from the above properties of 
possibility and necessity measures, we know that 
maximizing the degree of consistency brings about 
two strong restrictive conditions having a strong 
coherence: cloudiness is directly pointing at more 
probability of rain. 

2.4 Transformation from Probability 
to Possibility 

Any transformation from probability to possibility 
must comply with the following three basic 
principles as in (Dubois, 1993). 

1.Possibility-probability consistency: γ = π1p1 + π2p2 +... + 
πnpn 
2.Ordinal faithfulness: π (u) > π (u′) iff p (u) > p (u′) 
3.Informativity: Maximization of information content of π 

(6)

If P is a probability measure on a finite set U, 
statistical in nature then, for a subset, E of U, its 
possibility distribution on U, πE (u) is given by 
(Dubois, 1982): 

୉(u) = ൜1 ∋ ݑ ݂݅   1,ܧ − ܲ (ܧ) (7) ,݁ݏ݅ݓݎℎ݁ݐ݋

Also ∏E (A) ≥ P (A), ∀A ⊆ U 
In other words, πE = x ∈ E with the confidence at 

least P (E). In order to have a meaningful possibility 
distribution, πE, care must be taken to balance the 
nature of complimentary ingredients in (7), i.e. E 
must be narrow and P (E) must be high.  

There are quite a few ways, in which one can do 
it. The one used in Dubois (1982) chooses a 
confidence threshold α so as to minimize the 
cardinality of E such that P (E) ≥ α. Conversely, 
cardinality of E can be fixed and P (E) maximized. 
This way, a probability distribution P can be 
transformed into a possibility distribution πP 
(Dubois, 1982). Take pi as the probability 
distribution on U and X = {x1, x2,.., xn} such that pi 
= P ({xi}). Similarly possibility distribution πi = ∏ 
({xi}) and p1 ≥ p2 ≥ ... ≥ pn, then we have 

π୧୔(u) = ෍ ௝௡݌
௝ୀ௜ ∀i = 1, n (8)

 

For a continuous case, if the probability density 
function so obtained is continuous unimodal having 
bounded support [a, b], say p, then  p is increasing 
on [a, x0] and decreasing on [x0, b], where x0 is the 
modal value of p. This set is denoted as D in Dubois 
(1982). 

Let p be the probability density function (pdf) in 
D such that a function f: [a, x0]  [x0, b] is defined 
as f(x) = max {y| p(y) >= p(x)}. Then the most 
specific possibility distribution ߨ (minimizing the 
integral of ߨ on [a, b]) that dominates p is defined by 

(ݔ)ߨ  = ߨ ൫݂(ݔ)൯ = න ݕ݀(ݕ)݌ + න ஶݕ݀(ݕ)݌
௙(௫)

௫
ିஶ  (9)

3 PROBABILISTIC FUZZY 
MODELING 

A probabilistic fuzzy rule (PFR), first devised by 
(Meghdadi, 2001), is an appropriate tool to represent 
a real world situation possessing both the features of 
uncertainty. In such cases, we often observe that for 
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a set of inputs, there may be more than one possible 
output. The probability of occurrence of the outputs 
may be context dependent. In a fuzzy rule, there 
being only a single output, we are unable to 
accommodate this feature of the real world – 
multiple outputs with different probabilities. This 
ability is afforded with PFR. The PFR with multiple 
outputs and their probabilities is defined as: 
Rule Rq: 
 

If x is Aq    then   y is O1 with probability P1    
& ... 

                 & y is Oj with probability Pj  

& ... 
                 & y is Oq with probability Pn 
 

Ρ = [P1, P2, P1, P3, P4, .., Pn], 
with P1 +  P2 + P1 +  P3 + P4 +...... + Pn = 1 

(10)
 

Given the occurrence of the antecedent (an event) in 
(10), one of the consequents (output) would occur 
with the respective probability of occurrence, Ρ. 
Therefore, y is associated with both qualitative (in 
terms of membership function, O) and quantitative 
(in terms of probability of occurrence, P) 
information. Therefore y is both a stochastic and 
fuzzy variable at the same time. The real outcome is 
a function of the probability, while the quality of an 
outcome is a function of the respective membership 
function.  The probability of an event is having a 
larger role to play since it is the one that determines 
the occurrence of the very event. More the 
probability of an output event, more are the chances 
of its certainty which in turn gives rise to the 
respective possibility of the event (in terms of 
membership function) determining the quality of the 
outcome. 

The above example illustrates the fact that both 
these measures of uncertainty (probability and 
possibility) are indispensable in fuzzy modelling of 
real world multi-criteria decision making, and may 
lead to incomplete and misleading result if one of 
them is ignored. So the original fuzzy set theory, if 
backed by probability theory could go miles in better 
representing the decision making problems and 
deriving realistic solutions. 

Here, one question that naturally arises is: how 
about treating probabilities in the antecedents? This 
aspect is taken into account by having more than one 
fuzzy rule and probabilistic outcome in the 
consequent which is sufficient to handle the 
frequentist uncertainty in the probabilistic fuzzy 
event. For example in (10), the antecedent could be: 

If x1 is µ1 and x2 is µ2.  

Now, the range of probable values of occurrence of 

inputs is either Input1 or Inputn etc. Thus for each 
occurrence of an antecedent condition, there is a 
corresponding probabilistic fuzzy consequent event 
in (9). 

As per the scope of this paper, we would be 
considering similar PFRs with the same structure for 
a probabilistic fuzzy system under consideration. 
That is, any two PFRs would have the same order of 
probabilistic outputs. 

 

݆, ,ݍ ݍ ∶  ௤ܱೕ  =  ܱ௤ᇲೕ   =  ௝ܱ  

where, 

q and q′ represent two PFRs ܣ௤ and ܣ௤ᇲ ௤ܱೕ is jth output in qth rule; ܱ௤ᇲೕ is jth output in q′th rule ௝ܱ is jth output that remains the same in any PFR 

The mathematical framework follows from (Van den 
Berg, 2002).Assuming two sample spaces, say X 
and Y, in forming the fuzzy events Ai and Oj 
respectively, the following equations hold good, 

:ݔ∀  ෍ ௜௜ߤ (ݔ) = 1, :ݕ∀ ෍ ௝௝ߤ (ݕ) = 1 (11)
 

If the above conditions are satisfied then X and Y 
are said to be well defined. 

3.1 Input Conditional Probabilities of 
Fuzzy Antecedents 

Given a set of S samples (xs, ys), s = 1,.., S from two 
well-defined sample spaces X, Y,  the probability of 
Ai can be calculated as  ܲ(ܣ௜) = ሚ݂஺೔ = ஺݂೔ܵ = 1ܵ ෍ ௜(௫ೞߤ (ௌݔ = ௜ (12)ߤ̂ 

 

where, 

Ai: is the antecedent fuzzy event, which leads to one 
of the consequent events O1, .., On to occur. ሚ݂

Ai: Relative Frequency of fuzzy sample values μi 

(xs) for the fuzzy event Ai 

ƒAi: Absolute Frequency of fuzzy sample values μi 

(xs) for the fuzzy event Ai 

The fuzzy conditional probability is given by, 
 ܲ ൫ ௝ܱ ห (௜ܣ = ܲ ( ௝ܱ ∩ ܲ(௜ܣ (௜ܣ) ≈  ∑ ௦(௦ݔ) ௜ߤ(௦ݕ) ௝ߤ ∑ ௦(௦ݔ) ௜ߤ  (13)

The density function, pj (y) can be approximated 
using the fuzzy histogram [11] as follows:  ݌௝(ݕ) = ܲ ൫ ௝ܱ൯ߤ௝(ݕ)׬ ஶିஶݕ݀(ݕ)௝ߤ  (14)

 

where denominator ׬ ஶିஶ j(y)dy is a scaling factor. 
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3.2 Input Conditional Probabilities of 
Fuzzy Arbitrary Inputs 

A input vector x, activates the firing of multiple 
fuzzy rules, q, with multiple firing rates μq(x), such 
that q μq(x) = 1. In case this condition is true for a 
single rule, only one of the consequents Oq will 
occur with the conditional probability P(Oj | x). 

In the light of (13) and (14) we obtain, P൫ ௝ܱห ݔ) =  ෍ (ݔ)௤ߤ P൫ ௝ܱ ห ܣ௤)׬ ஶିஶ௤ୀଵݔ݀(ݔ)௝ߤ  (15)
 

Extending the conditional probability P(Oj|x) to 
estimate the overall conditional probability density 
function p (y | x), using (14), we get (ݔ | ݕ) ݌ =  P൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶݕ݀(ݕ)௝ߤ  (16)

 

where, probabilities P(Oj|x) is calculated using (15). 
In view of (4) and (8) we obtain, (ݔ | ݕ) ߨ =  ෍ Pr൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ  (17)

This value for conditional possibility can be used in 
the expression for finding the defuzzified output of 
fuzzy models 

3.3 Obtaining Defuzzified Output 

The existing fuzzy models can be used to obtain the 
defuzzified output by replacing the conditional 
possibility obtained. 

3.3.1 Mamdani-larsen Model 

Consider a rule of this model as: 

Rule q: If x is Aq then y is Bq. 

Here, fuzzy implication operator maps fuzzy subsets 
from the input space Aq to the output space Bq (with 
membership function ∅(ݕ)) and generates the fuzzy 
output Bq with the fuzzy membership 
 

Rule q: (ݕ) =  (ݕ)∅  (x)ߤ 
 

The output fuzzy membership is:  

φo(y) = φ1(y) ∨ φ2(y) ∨  φ3(y) ∨ ..... ∨ φk(y) (18)
 

In Mamdani-Larsen (ML) model, the output of rule 
q is represented by Bq (bq, vq), with centroid bq and 
the index of fuzziness vq given by  ݒ௤ =  න(y)݀ݕ 

௬  (19)
 ܾ௤ = ׬  ׬௬ ݕ݀(ݕ)ݕ (ݕ)݀ݕ ௬  (20)

where 

(y) is output membership function for rule q.  
 

Now in the probabilistic fuzzy setting, the above 
expressions (19) and (20) need to be modified. 
Replacing the value of the output membership 
function from (8) into (19) and (20) we get 

௤ݒ  = න ෍ P൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ௬ݕ݀  (21)

ܾ௤ = ׬  ݕ ∑ P൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ׬௬ݕ݀ ∑ P൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ௬ ݕ݀  (22)

where, vq is index of fuzziness and bq is Centroid.   
The defuzzified output can be calculated in the 

ML model by applying the weighted average gravity 
method for the defuzzification. The defuzzified 
output value of  yo is given by 

଴ݕ  = ׬ ׬௬ݕ݀(ݕ)ݕ (ݕ)݀ݕ௬  (23)
 

where (ݕ) is the output membership function 
calculated using (18). 

Also, the defuzzified output ݕ଴ can be written as: 

଴ݕ = ෍ .(ݔ)௤ߤ ∑௤ݒ ௤ߤ .(ݔ) ௤ொ௤ୀଵݒ
ொ

௤ୀଵ . ܾ௤ (24)

where, 

ܾ௤ = ׬  ݕ ∑ P൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ׬௬ ݕ݀ ∑ Pr൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ௬ ݕ݀  

௤ݒ  = න ෍ P൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ௬ݕ݀  (25)

3.3.2 Generalized Fuzzy Model 

The Generalized fuzzy model (GFM) model Azeem 
(2000) generalizes both the ML model and the TS 
(Takagi- Sugeno) model. The output in GFM model 
has the properties of fuzziness (ML) around varying 
centroid (TS) of the consequent part of a rule. Let us 
consider a rule of the form 

 

Rk:  if xk is Ak then y is Bk (fk (xk), ݒ௞). 
 

where Bk is the output fuzzy set,  
vk is the index of fuzziness \ 
fk  is the output function.  
 

Using (23), we can obtain the defuzzified output y0 
as  
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଴ݕ = ෍ .(ݔ)௤ߤ ∑௤ݒ ொ௤ୀଵ(ݔ) ௤ߤ . ௤ݒ
ொ

௤ୀଵ . ݂௤(ݔ) (26)

 

where ݂௤(ݔ) is a varying singleton. It may be linear or non-
linear. The linear form is: ݂௤(ݔ) = =  b୯బ +  b୯బxଵ + . . . + b୯ీxୈ  

 

Replacing the value of bq from (22) into (26) we get  

଴ݕ = ෍ .(ݔ)௤ߤ ׬ ∑ Pr൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ∑௬ ݕ݀ ொ௤ୀଵ(ݔ) ௤ߤ . ׬ ∑ Pr൫ ௝ܱหݔ൯ ׬(ݕ)௝ߤ ஶିஶ௝ݕ݀(ݕ)௝ߤ ௬ ݕ݀
ொ

௤ୀଵ . ݂௤(ݔ) (27)

4 COMPUTATION OF 
PROBABILISTIC POSSIBILITY 
FROM PROBABILITY FUZZY 
RULES 

How to compute the probabilistic possibility from a 
probabilistic fuzzy rule is presented as an algorithm 
here.  
Step 1: Determine the fuzzy rules that are 
applicable for the given test input, x. 
Step 2: Evaluate the membership values of the 
input fuzzy sets. 
Step 3: Determine the membership values of the 
output fuzzy sets. 
Step 4: Calculate the conditional probability of 
each probabilistic output using (15). 
Step 6: Find the net conditional possibility of the 
output using (17). 
Step 7: This step is an optional step. The relations 
for finding the defuzzified output for the fuzzy 
models as in (25) and (27) may be used in case all 
the values of parameters are available besides the 
possibility term (as computed in Step 6). 

5 CASE-STUDY 1 

Let us contemplate the functioning of a fuzzy air 
conditioner example in Kosko (1993) described by 
five input linguistic terms/in the form of fuzzy sets 
on X, along with five output linguistic terms 
represented by fuzzy sets on Y: 

• The input fuzzy sets on X are: Cold, Cool, Just 
Right, Warm, and Hot 

• The output fuzzy sets on Y are: Stop, Slow, 
Medium, Fast, and Blast 

The following fuzzy rules are framed from an 
expert’s knowledge. 
1. If temperature is cold,  motor speed is stop 
2. If temperature is cool, motor speed is slow 
3. If temperature is just right, motor speed is 
medium 
4. If temperature is warm, motor speed is fast 
5. If temperature is hot, motor speed is blast 

 

A realistic representation of the above in the garb of 
PFR when the probabilities are associated with the 
outputs is the main concern now. The corresponding 
PFR of Rule 1 is as follows: 

If temperature is cold then  
motor speed is stop with probability 70% 
& motor speed is slow with probability 20% 
& motor speed is medium with probability 8%  
& motor speed is fast with probability 2%  

 

Similarly, other PFRs can also be constructed. The 
first column in Table 1 gives the antecedent value 
for each rule. The remaining columns give the 
values of the possible outputs for each rule. The 
conditional possibility of the output, is calculated 
when the inputs are 63௢F and 68௢F. 

Table 1: The Probabilistic Fuzzy Rule-set. 

# Temp(X) PStop PSlow PMedium PFast PBlast

1 Cold 0.7 0.2 0.08 0.02 0.0 
2 Cool 0.1 0.7 0.1 0.08 0.02 
3 Jt Right 0.05 0.1 0.7 0.1 0.05 
4 Warm 0.02 0.08 0.1 0.7 0.1 
5 Hot 0.0 0.02 0.08 0.2 0.7 

5.1 Case: Input ૟૜ܗF 

It may be noted that the output fuzzy set with the 
highest probability is only opted followed by the 
others in the line. The farther a fuzzy set is from this 
output, the lesser is its probability. We will elaborate 
on the steps using the above example. The input and 
output fuzzy sets for this example are shown in Fig. 
1 and Fig. 2 respectively. The corresponding 
applicable PFRs are as follows: 

If temperature is just right  
then motor speed is stop with probability 5% 
& motor Speed is slow with probability 10% 
& motor speed is medium with probability 70% 
& motor speed is fast with probability 10%  
& motor speed is blast with probability 5%  

If temperature is cool  
then motor speed is stop with probability 10% 
& motor speed is slow with probability 70% 
& motor speed is medium with probability 10% 
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& motor speed is fast with probability 8%  
& motor speed is blast with probability 2%  

The fuzzy membership values for input fuzzy sets, 
µ0(x) as noted from Fig. 1 and Fig. 2 are as follows: 
 

µ0(Just Right): 80% (0.8)       µ0(Cool): 15% (0.15) 
 

The fuzzy membership values for output fuzzy sets, 
µ1(x) as noted from Fig. 1 and Fig. 2 are as follows: 
 

µ1(Slow): 15% (0.15)       µ1(Medium): 80% (0.8) 
 

 

Figure 1: Input fuzzy sets and their membership. 

 

Figure 2: Output fuzzy sets and their membership values 
when input temperature is 63oF. 

We apply (15) to calculate the conditional 
probability for each probabilistic output of a fuzzy 
rule that is applicable, given the input temperature is 63௢F. 

In the light of (15), we have P൫ ௝ܱห ݔ) =  ෍ (ݔ)௤ߤ P൫ ௝ܱ ห ܣ௤)௤ୀଵ  

P(OStop|x) = (0.8 * 0.05) + (0.15 * 0.10) = 0.055 
P (Oslow | x) = [(0.8 * 0.1) + (0.15 * 0.7) = 0.185 
P (OMedium | x) = [(0.8 * 0.7) + (0.15 * 0.1) = 0.575 
P (Ofast | x) = [(0.8 * 0.1) + (0.15 * 0.08) = 0.092 
P (Oblast | x) = [(0.8 * 0.05) + (0.15 * 0.02) = 0.043 
 

The net conditional possibility for the output is 
calculated using (17) as 
 

π (y | x) = (0 + (0.185 * 0.15) + (0.575 * 0.8) + 0 + 
0) = 0.48775 

Thus having got the value of the conditional 
probability, the same can be substituted along with 
other values in the relations for ML and GFM 
models as per (25) and (27) to obtain the defuzzified 
output. 
 

Comparison of the Output with Basic Fuzzy 
Rules. We now use the above algorithm to estimate 
the effect of the probabilistic output on the net 
output conditional possibility. The fuzzy rules of 
interest are as follows: 
1. If temperature is cold then motor speed is stop 
2. If temperature is cool then motor speed is slow 
3. If temperature is just right then motor speed is 
medium 
4. If temperature is warm then motor speed is fast 
5. If temperature is hot then motor speed is blast 

 

The input and output fuzzy sets and their 
corresponding membership values are the same as 
above. The fuzzy sets for the given test input are 
shown in Fig.2 and the valid fuzzy rules are: 

If temperature is just right then motor speed is 
medium. 

If temperature is cool then motor speed is slow. 
The conditional probability is computed using 

(15) as  P൫ ௝ܱห ݔ) =  ෍ (ݔ)௤ߤ P൫ ௝ܱ ห ܣ௤)௤ୀଵ  

The conditional probabilities are evaluated as: 
P (OStop | x) =  0 
P (Oslow | x) = (0.15 * 1) = 0.15 
P (OMedium | x) = (0.8 * 1) = 0.8 
P (Ofast | x) = 0   P (Oblast | x) = 0 
 

The net conditional possibility is found using (17) as 
 

π (y | x) = 0 + (1 * 0.15) + (1 * 0.8) + 0 + 0 = 0.95 

5.2 Case: Input ૟ૡܗF 

The fuzzy input and output membership values are: 
 

µ0(Warm): 0.2         µ0(Just Right): 0.55 
 

µ1(Medium):0.55        µ1(Fast): 0.2 
 

Applying (15) and taking Table 1 into account, the 
conditional probability can be computed as in 5.1. 

 

P(OStop | x) =  0.0315  P (Oslow | x) = 0.071 
P (OMedium | x) = 0.525 P (Ofast | x) = 0.075 
                      P (Oblast | x) = 0.0475 

The net conditional possibility is found using (17) as 
above in 5.1. 
 

π (y | x) = (0.55 * 0.525) + (0.2 * 0.075) = 0.303 
 

Comparison of the Output with Basic Fuzzy 
Rules when Input is 680F. The conditional 
probabilities in the case of basic fuzzy rules can be 
computed as 
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P(OStop | x) =  0   P (Oslow | x) = 0 
P (OMedium | x) = 0.55  P (Ofast | x) = 0.2 
                        P (Oblast | x) = 0 

The net conditional possibility is found using (17) as 

π (y | x) = 0 + (1 * 0.55) + (1 * 0.2) + 0 + 0 = 0.75 
 

It is pertinent to note that what we have here is the 
possibility in the probabilistic framework. So, in this 
example, the overall conditional possibility would 
converge to the sum of the individual possibilities, 
whereas in the case of probabilistic fuzzy rules, the 
conditional possibility is a factor of probabilities as 
well as possibilities. 

6 CASE-STUDY 2 

Consider designing a fuzzy controller for the control 
of liquid level in a tank by varying its valve position 
Meghdadi(2001). The simple fuzzy controller 
employs Δh and dh/dt as inputs and dα/dt (rate of 
change of valve position α , α∈[0,1]) as the output, 
where h is the actual liquid level, hd is desired value 
of the level, and Δh=hd - h is the error in the desired 
level. 

Three Gaussian membership functions for three 
input fuzzy sets (negative, zero, positive) are 
applicable on the input variables Δh and dh/dt. The 
output fuzzy sets (close-fast, close-slow, no-change, 
open-slow, open-fast) have triangular membership 
functions. The following fuzzy rules are selected 
using a human expert’s knowledge. 

R1. If ∆h is zero then dα/dt is no-change 
R2. If ∆h is positive then dα/dt is open-fast 
R3. If ∆h is negative then dα/dt is close-fast 
R4. If ∆h is zero and dh/dt is positive then dα/dt is 
close-slow 
R5. If ∆h is zero and dh/dt is negative then dα/dt is 
open-slow 

In order to model the existing scepticism of humans’ 
opinion in defining the optimal rule set, we may 
substitute each conventional rule with a probabilistic 
fuzzy rule with the output probability vector P 
defined such that the only output sets of the 
conventional fuzzy rules are the most probable from 
the probabilistic fuzzy rules. Also the neighbouring 
fuzzy sets in the PFR have smaller probabilities and 
the other fuzzy sets have zero probabilities. For 
example rule RI in the above rule set may be 
modified as follows: 
RI. If ∆h is zero then  

dα/dt is no-change with probability 80% 

& dα/dt is close-slow with probability 10% 

& dα/dt is open-slow with probability 10% 
 

The consequent part of the PFR can be thus 
expressed in a compact form using the output 
probabilities vector P. The sample probabilistic 
fuzzy rule set is given in Table 2. 

Table 2: Probabilistic Fuzzy Rule-set for the Liquid Level 
Fuzzy Controller. 

# Q1 V1 Q2 V2 Pc-f Pc-s Pn-c Po-s Po-f

1 Δh 0   0 0.1 0.8 0.1 0 
2 Δh +   0 0 0 0.2 0.8 
3 Δh -   0.8 0.2 0 0 0 

4 Δh 0 
݀ℎ݀ݐ  + 0.1 0.8 0.1 0 0 

5 Δh 0 
݀ℎ݀ݐ  - 0 0 0.1 0.8 0.1 

 
Let Input: Δh = 0. 
The PFRs for the given input are as follows:  

R1. If ∆h is zero then dα/dt is no-change with 
probability 80% 

& dα/dt is close-slow with probability 10% 
& dα/dt is open-slow with probability 10% 

 

R4. If ∆h is zero and dh/dt is positive then dα/dt is 
no-change with probability 10% 

& dα/dt is close-slow with probability 80% 

& dα/dt is close-fast with probability 10% 

R5. If ∆h is zero and dh/dt is negative then dα/dt is 
no-change with probability 10% 

& dα/dt is open-slow with probability 80% 

& dα/dt is open-fast with probability 10% 
 

The membership values, µzero(x), µPositive(x) and 
µNegative(x) for the given input are given as follows: 
 

µZero(Δh): 1           µpositive(
ௗ௛ௗ௧): 1         µNegative(

ௗ௛ௗ௧): 0 
 

The membership grades for the output fuzzy sets are 
given as follows: 
 

µNoChange(
ௗௗ௧): 1       µSlow(

ௗௗ௧): 0.15     µFast(
ௗௗ௧): 0.15 

 

The conditional probability is calculated using (15) 
for each probabilistic output in each fuzzy rule that 
is applicable, given the input value. 
 

P(Ono-change |x) = [(1 * 0.8) + (1 * 0.1) + (0 * 0.1)]/2 = 
0.45. 
Note:- The probability values are normalized by taking the 
number of the input fuzzy sets as denominator. Similarly, 

P (Oclose-slow | x) = 0.45 P (Oclose-fast | x) = 0.1 
P (Oopen-slow | x) = 0.1            P (Oopen-fast | x) =  0 

 

We arrive at the net consolidated conditional 
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possibility for the output using (17) as 

π (y|x) = (0.45 * 1) + (0.45 * 0.15) + (0.1 * 0.15) + 
(0.1 * 0.15) + (0 * 0.15) = 0.5475 
 

Thus having obtained the value of net membership, 
the same can be substituted in the ML and GFM 
models to obtain (vq, bq). It can also be noted that for 
the basic fuzzy rules the net conditional possibility 
for a given input is the sum of the memberships of 
the various output fuzzy sets that are applicable. 

7 CONCLUSIONS 

It is shown how a probabilistic fuzzy framework is 
more flexible and convenient than the conventional 
methodology. As a consequence of this the 
probabilistic possibility is derived from the 
applicable probabilistic fuzzy rules which constitute 
the probabilistic fuzzy system with the help of the 
fuzzy modelling. The utility of probabilistic fuzzy 
systems in representing real world situations is also 
highlighted. Its ability to represent fuzzy nature of 
situations along with corresponding probabilistic 
information brings it much closer to real-world. 

Two examples dealing with the practical 
applications of an air-conditioner and a liquid level 
controller are taken up to demonstrate a probabilistic 
fuzzy system. It is noticed from this study how the 
probability of the output affects the net possibility 
for a particular test input. 

It is observed that in the case of probabilistic 
fuzzy rules, the conditional output probabilistic 
possibility of an output fuzzy set for a given input 
spans over the applicable output fuzzy sets. A basic 
fuzzy rule is a special case of probabilistic fuzzy rule 
in which there is only one output for a fuzzy rule 
that translates into 100% probability for that 
particular output. The methodology proposed for 
calculating conditional probabilistic possibility for 
PFRs fits well with basic fuzzy rules and leads to the 
intuitively acceptable result. The proposed work 
provides functionality to process the probabilistic 
fuzzy rules that are better equipped to represent the 
real-world situations. 

Another feature of probabilistic fuzzy rules is the 
enhanced adaptability in view of the outputs with 
varying probabilities. This is borne out of the fact 
that the outputs in the fuzzy rules are context-
dependent hence vary accordingly.  

The proposed approach to calculate the 
possibility from probability can be tailored to a 
specific application depending upon the output 
membership functions and their probabilities. This 

can also be extended to represent probabilistic rough 
fuzzy sets and other types of fuzzy sets so as to 
increase its utility in capturing the higher forms of 
uncertainty from probability since the probabilistic 
information along with possibility aids the decision 
making in the solution of the real-world problems. 
The proposed framework has the capability to 
address the uncertainty arising from fuzziness and 
vagueness in the wake of their random occurrences. 
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