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Abstract: A huge number of small, computationally restricted sensor nodes can be connected wirelessly to form a sensor
network. Such networks can be used to monitor large areas and communicate a multitude of measurements
(like temperature, humidity, radiation, and so on) to a remote base station. Since this communication happens
over the air interface, the transmitted messages are susceptible to forgery, manipulation and eavesdropping.
Conventional cryptographic countermeasures against these kind of attacks cannot be readily applied in the
context of sensor networks, due to the limited resources of the individual nodes. Since single nodes can be
very easily captured and examined, symmetric schemes with the secret key present in every (or at least a
subset of) node(s) pose quite a risk in this setting. In this work, we examine the applicability of threshold
cryptographic techniques, especially the Gennaro-Rabin-Rabin multiparty multiplication protocol, for sensor
networks by employing several optimizations to the different steps of this algorithm, building on previous
results we obtained. We are able to improve the running time up to a factor of 6 compared to an unoptimized
version for a bitlength of 1,024 Bit and 33 players.

1 INTRODUCTION

Wireless Sensor Networks (WSNs), where a (poten-
tially huge) number of small, resource-constrained
sensor nodes is deployed in a large area to measure
a wide variety of parameters and communicate them
wirelessly in a hop-to-hop manner to a base station
for evaluation are still an emerging field of technol-
ogy. They can be used to efficiently monitor things
like water quality, temperature distribution or radioac-
tive particles in areas where approaches using wired
devices are too costly or even impossible.

The current challenge when dealing with wireless
sensor networks is the difficulty to achieve confiden-
tial, authenticated communication over the air inter-
face. Common techniques against eavesdropping,

message forgery and manipulation that can easily be
deployed on stationary PCs usually do not work in
WSNs, due to the huge constraints in terms of avail-
able memory, computing power and energy of the in-
dividual nodes. The usual way to secure WSNs today
is to use symmetric cryptographic techniques, which
in general can be calculated much more efficiently
than their asymmetric counterparts. The problem with
this approach is the storage and distribution of the
keys: two sensor nodes can only communicate when
they share a common symmetric key. But due to the
special structure of WSNs, the loss or malicious re-
moval of single nodes goes largely undetected, so that
an attacker can easily try to extract the secret key from
a captured node. To avoid the whole network becom-
ing compromised by such an attack, usually only a
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certain number of nodes share the same key, which
raises the new problem of key distribution. A general
overview of different key management techniques us-
able in WSNs is given in (Merwe et al., 2007).

Given these special challenges, the use of thresh-
old cryptography becomes attractive: instead of stor-
ing the secret key on a single node, a numbert + 1
of uncompromised nodes must cooperate to generate
a valid secret. Capturing a single node is now use-
less for an attacker, he has to gain access to at least
t+1 nodes to extract the individual shares of the secret
and combine them. There is a multitude of threshold
cryptography schemes proposed in the literature, their
main problem usually being the computational com-
plexity.

In this work we extend our previous work on the
subject by further trying to optimize the Gennaro, Ra-
bin and Rabin (GRR)(Gennaro et al., 1998) protocol,
thereby improving the applicability of this protocol in
the context of sensor nodes.

The remainder of this position paper is structured
as follows: Section 2 gives a general introduction to
the protocol of Gennaro, Rabin and Rabin and details
of our optimizations. Section 3 then presents our cur-
rent experimental results, while finally Section 4 gives
an outlook on our next steps planned.

2 THE PROTOCOL OF
GENNARO, RABIN AND RABIN

Classical theoretical results (Ben-Or et al., 1988;
Chaum et al., 1988; Goldreich et al., 1987; Yao, 1986)
show that any multiparty computation can be per-
formed securely if the number of corrupted partici-
pants does not exceed certain bounds. For a survey
of these results the reader is referred to the article of
Cramer and Damgård (Cramer and Damgård, 2005).

Unfortunately, without further optimizations these
results are not easily applicable in real world appli-
cations. One of the most prominent examples for
the efforts to accelerate these approaches is the pa-
per of Gennaro, Rabin and Rabin (Gennaro et al.,
1998). Among other results, it presents a more effi-
cient variant of the Ben-Or, Goldwasser and Wigder-
son (Ben-Or et al., 1988) multiplication protocol. It
gives a protocol for the fast multiparty multiplication
of two polynomially shared values overZq with a
public prime numberq.

Polynomial sharing refers to the threshold scheme
originally proposed by Shamir (Shamir, 1979), which
assumes thatn players share a secretα in a way that
each playerPi (1 ≤ i ≤ n) owns the function value
fα(i) of a polynomial fα with degree at mostt and

α = fα(0). Then any subset oft +1 participants can
retrieve the secretα (for example by Lagrange’s inter-
polation formula). At the beginning of the multiplica-
tion protocol each playerPi holds as input the function
values fα(i) and fβ(i) of two polynomialsfα and fβ
with maximum degreet andα = fα(0),β = fβ(0). At
the end of the protocol each player owns the function
valueH(i) of a polynomialH with maximum degree
t as his share of the productαβ = H(0). Multiplica-
tion protocols of this type are important cryptographic
primitives. In particular, they play a decisive role
in comparing shared numbers (Damgård et al., 2006)
and in the shared generation of an RSA modulus by a
number of participants such that none of them knows
the factorization (Algesheimer et al., 2002; Catalano,
2005).

The multiplication protocol of Gennaro, Rabin
and Rabin (Gennaro et al., 1998) consists of two
steps and requires one round of communication and
O(n2k logn+nk2) bit-operations per player, wherek
is the bit size of the primeq andn is the number of
players.

In step 1. playerPi (1 ≤ i ≤ 2t + 1) computes
fα(i) fβ(i) and shares this value by choosing a ran-
dom polynomialhi(x) of maximum degreet, such that
hi(0)= fα(i) fβ(i). He then gives playerPj (1≤ j ≤ n)
the valuehi( j).

In (Lory, 2007) a modification of this step is given,
which reduces its complexity fromO(n2k logn) to
O(n2k) (and thus the complexity of the entire protocol
to O(n2k+nk2)) by utilization of Newton’s scheme of
divided differences.

However, in many practical situations (e. g. the
above mentioned shared generation of an RSA mod-
ulus) k (typically k = 1024) will exceedn and the
O(nk2)-term will still dominate. For these cases, in
(Lory, 2009) a protocol is given, which modifies step
2 to require onlyO(n2k) bit-operations per player. All
of the above mentioned optimizations were also im-
plemented and subsumed in (Koschuch et al., 2010).

In this work, we perform an additional investiga-
tion of step 2: in this step, each playerPj(1≤ j ≤ n)
determines his shareH( j) of αβ by locally computing
the linear combination

H( j) =
2t+1

∑
i=1

λihi( j), (1)

where the valueshi( j) have been communicated to
him by playersPi(1≤ i ≤ 2t+1) during step 1. Here,
theλi are the coefficients of Lagrange’s interpolation
formula of degree 2t, which interpolate the support
abscissasi = 1,2, ...,2t + 1 to 0. In general, for a
polynomial of degreed− 1 these known non-zero-
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constants are given by

λ(d)
i = ∏

1≤k≤d
k6=i

k
k− i

modq. (2)

Expanding this equation becomes:

λ(d+1)
i = 1·2·...·(i−1)·(i+1)·...·d·(d+1)

(−(i−1))·(−(i−2))·...·(−1)·1·2·...·(d−i)·(d+1−i)

= (−1)i−1 (d−i+2)·(d−i+3)·...·d·(d+1)
2·3·...·i .

Consequently

|λ(d+1)
i |= (d−i+2)·(d−i+3)·...·d·(d+1)

2·3·...·i ,

|λ(d)
i |= (d−i+1)·(d−i+2)·...·(d−1)·d

2·3·...·i ,

|λ(d)
i−1|=

(d−i+2)·(d−i+3)·...·(d−1)·d
2·3·...·(i−1) ,

and

|λ(d)
i−1|+ |λ(d)

i |= i·(d−i+2)·(d−i+3)·...·(d−1)·d
2·3·...·i +

(d−i+1)·(d−i+2)·...·(d−1)·d
2·3·...·i

= (d−i+2)·(d−i+3)·...·(d−1)·d
2·3·...·i ∗

(i+d−i+1)
1

= (d−i+2)·(d−i+3)·...·(d−1)·d·(d+1)
2·3·...·i

= |λ(d+1)
i | .

From this it follows that for equidistant support ab-
scissasi = 1,2, ...,d (as they are used in the GRR pro-

tocol) the unreduced coefficientsλ(d)
i of Lagrange’s

interpolation formula of degreed−1 obey the recur-
sion

|λ(d+1)
i |= |λ(d)

i−1|+ |λ(d)
i | (3)

This and trivial initial values demonstrate that theλ(d)
i

are always integers.
This fact has the consequence that the reduced co-

efficients as given by Equation (2) can be calculated
very easily, because no computation of a modular in-
verse is necessary. In order to keep the absolute val-
ues of the coefficients low, the reduction should not
be done intoZq = {x∈ Z|0≤ x< q} . Rather, the co-
efficients should be fromZq := {x∈ Z|−q/2< x≤
q/2} (Algesheimer et al., 2002). For small values of
d = 2t + 1 this guarantees small absolute values for
the coefficients and saves computing time.

3 PRELIMINARY RESULTS

Tables 1 and 2 give the comparison between step 2
of the unmodified GRR protocol with the modifica-
tions made in (Lory, 2009) and in this work, respec-
tively. The first version is the straightforward imple-
mentation of the unoptimized GRR protocol, with co-
efficientsλi in the intervalZq; the second version is

designed for small values ofn as presented in (Lory,
2009); the third version finally exploits the observa-
tions of this work and uses coefficientsλi from Zq.
All the computations use the GNU multiple preci-
sion arithmetic library1 in version 5.0.1 and are on
an AMD Athlon64 X2 5200+ with one physical core
deactivated, fixed to 1.0GHz. The results obtained
on this setup can obviously not be compared to those
achievable on actual sensor hardware, but if the cy-
cle count on this test setup is already far too large,
the proposed solution obviously does not work as ex-
pected.

Table 1: Comparison of the running time in milliseconds
of step 2 of the unmodified GRR protocol and our opti-
mizations of this protocol, as published in (Koschuch et al.,
2010).k denotes the bitlength,n the number of players.

k= 1024 GRR (Koschuch et al., 2010)
n= 5 0.047 0.018
n= 9 0.154 0.081
n= 33 2.218 2.866
n= 129 40.495 154.847

Table 2: Comparison of the running time in milliseconds of
step 2 of the unmodified GRR protocol and the additional
optimizations of this protocol from this work.k denotes the
bitlength,n the number of players.

k= 1024 GRR Reduction toZq

n= 5 0.047 0.009
n= 9 0.154 0.027
n= 33 2.218 0.371
n= 129 40.495 12.588

Tables 1 and 2 show the comparison of step 2 of
the unmodified protocol with the optimizations de-
tailed in (Lory, 2009) and the ones performed in this
work, respectively. Our new approach with reduction
to Zq improves the running times significantly, up to
a factor of 6 when compared to an unmodified GRR
implementation. In addition, it can be assumed that
this reduction also results in significantly less mem-
ory requirements during protocol execution, although
this still remains to be proven by complementary mea-
surements.

4 OUTLOOK

Our preliminary results look promising and clearly in-
dicate an additional performance improvement when
using the optimizations proposed in this work. The

1http://gmplib.org
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next steps will be to replace the GMP library with
our own code, optimized for constrained devices and
much smaller than the GNU library and finally port-
ing the protocol to a sensor node to get the timings on
real hardware.

In addition, we also plan to perform a more de-
tailed analysis of the algorithm, including several dif-
ferent bitlengths and numbers of players.

ACKNOWLEDGEMENTS

Manuel Koschuch, Matthias Hudler, and Michael
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Fonds für regionale Entwicklung (EFRE).

REFERENCES

Algesheimer, J., Camenisch, J., and Shoup, V. (2002). Ef-
ficient computation modulo a shared secret with ap-
plication to the generation of shared safe-prime prod-
ucts. In Yung, M., editor,Advances in Cryptology
– CRYPTO 2002, number 2442 in Lecture Notes in
Computer Science, pages 417–432. Springer Berlin.

Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988).
Completeness theorems for non-cryptographic fault-
tolerant distributed computation. InProceedings of
the 20th Annual Symposium on Theory of Computing
(STOC’88), pages 1–10. ACM Press.

Catalano, D. (2005).Contemporary Cryptology, Advanced
Courses in Mathematics - CRM Barcelona, chapter
Efficient distributed computation modulo a shared se-
cret, pages 1–39. Birkhäuser, Basel.
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